Comparison of HPLC and ATR-FTIR Methods for the Determination of Rosmarinic Acid in Aqueous Leaf Extract of Orthosiphon stamineus.

Article ID: e290422204275 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Rosmarinic Acid (RA) is an important natural bioactive compound widely distributed in food plants. ATR-FTIR and HPLC methods for comparative determination of RA in aqueous methanolic extracts of Orthosiphon stamineus leaf samples are described.

Methods: The quantitative determination of RA was performed by using HPLC with UV detection at 340 nm and ATR-FTIR based on peak height location at 1712.29 cm-1.

Results: The mean recovery of RA was 99.54 ± 1.23% by the HPLC method and 105.48 ± 2.76 by the ATR-IR method. The relative standard deviation for the intra-day and inter-day precision was less than 5% for the HPLC method and less than 8% for the ATR-FTIR method. The limit of detection and limit of quantification values for the HPLC method were 2 ng/ml and 10 ng/ml, respectively. The limit of detection and limit of quantification values for the ATR-FTIR method were 0.34% and 0.86% w/w, respectively. The validated methods were used for the quantification of RA in leaf samples of O. staminues. The results of HPLC and ATR-FTIR methods were comparable.

Conclusion: ATR-FTIR method is suitable for the routine determination of RA in herbal medicinal products of O. stamineus.

Keywords: ATR-FTIR, aqueous extract, fixed height location, HPLC, Orthosiphon stamneus, rosmarinic acid

Graphical Abstract

[1]
Akowuah, G.A.; Zhari, I.; Norhayati, I.; Sadikun, A. Radical scavenging activity of methanol leaf extracts of Orthosiphon stamineus. Pharm. Biol., 2005, 42, 629-635.
[http://dx.doi.org/10.1080/13880200490902572]
[2]
Tezuka, Y.; Stampoulis, P.; Banskota, A.H.; Awale, S.; Tran, K.Q.; Saiki, I.; Kadota, S. Chemical constituents and biological activities of Vietnamese medicinal plants. Chem. Pharm. Bull. (Tokyo), 2000, 48, 1711-1719.
[http://dx.doi.org/10.1248/cpb.48.1711] [PMID: 11086900]
[3]
Ho, J.H.; Hong, C.Y. Salvianolic acids: Small compounds with multiple mechanisms for cardiovascular protection. J. Biomed. Sci., 2011, 18, 30-32.
[http://dx.doi.org/10.1186/1423-0127-18-30] [PMID: 21569331]
[4]
Bulgakov, V.P.; Inyushkina, Y.V.; Fedoreyev, S.A. Rosmarinic acid and its derivatives: Biotechnology and applications. Crit. Rev. Biotechnol., 2012, 32(3), 203-217.
[http://dx.doi.org/10.3109/07388551.2011.596804] [PMID: 21838541]
[5]
Leung, A.Y.; Foster, S. Encyclopaedia of Common Natural Ingredients used in Foods, Drugs and Cosmetics, 3rd ed; Wiley & Sons: New York, 1996.
[6]
Shanlou, Q. Weihua, Li; Ryoko, T.; Miyako, H.; Keiko, M.; Fumio, T.; Yukio, N.; Masataka, Y. Free Radic. Res., 2005, 39(9), 995-1003.
[PMID: 16087481]
[7]
Huang, N.; Hauck, C.; Yum, M.Y.; Rizshsky, L.; Widrlechner, M.P.; McCoy, J.A.; Murphy, P.A.; Dixon, P.M.; Nikolau, B.J.; Birt, D.F. Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages. J. Agric. Food Chem., 2009, 57(22), 10579-10589.
[http://dx.doi.org/10.1021/jf9023728] [PMID: 19919113]
[8]
Shafaei, A.; Halim, N.H.A.; Zakaria, N.; Ismail, Z. Analysis of free amino acids in different extracts of Orthosiphon stamineus leaves by high-performance liquid chromatography combined with solid-phase extraction. Pharmacogn. Mag., 2017, 13(Suppl. 3), S385-S391.
[http://dx.doi.org/10.4103/0973-1296.216337] [PMID: 29142388]
[9]
Saidan, N.H.; Hamil, M.S.R.; Memon, A.H.; Abdelbari, M.M.; Hamdan, M.R.; Mohd, K.S.; Majid, A.M.; Ismail, Z. Selected metabolites profiling of Orthosiphon stamineus Benth leaves extracts combined with chemometrics analysis and correlation with biological activities. BMC Complement. Altern. Med., 2015, 15, 350.
[http://dx.doi.org/10.1186/s12906-015-0884-0] [PMID: 26446501]
[10]
Sivakumar, C.; Jeganathan, K. Phytochemical profiling of cat whisker’s (Orthosiphon stamineus) tea leaves extract. J. Pharmacogn. Phytochem., 2018, 7(6), 1396-1402.
[11]
Sik, B.; Kapcsándi, V.; Székelyhidi, R.E.L.; Ajtony, Z. Recent advances in the analysis of rosmarinic acid from Herbs in the Lamiaceae Family. Nat. Prod. Commun., 2019, 14(7), 1-10.
[http://dx.doi.org/10.1177/1934578X19864216]
[12]
Guang, L.; Yihang, L.; Yana, L.V.; Xuelan, Li.; Chen, Xi.; Zhang, N. Metabolic study of the mechanism of Dai medicine Orthosiphon stamineus on. Jaijie. Sci. Sin., 2018, 48(4), 455-468.
[http://dx.doi.org/10.1360/N052017-00192]
[13]
Akowuah, G.A.; Ismail, Z.; Ahmad, M. HPLC-TOF/MS profile and nitric oxide scavenging activity of Orthosiphon stamineus leaf extracts. Asian Pac. J. Trop. Biomed, 2012, 2(3), S1436S1439.
[14]
Ozturk, N.; Tuncel, M.; Uysal, U.D.; Oncu-Kaya, E.M.; Koyuncu, O. Determination of rosmarinic acid by high-performance liquid chro-matography and its application to certain Salvia species and rosemary. Food Anal. Methods, 2011, 4, 300-306.
[http://dx.doi.org/10.1007/s12161-010-9164-2]
[15]
Stehfest, K.; Boese, M.; Kerns, G.; Piry, A.; Wilhelm, C. Fourier transform infrared spectroscopy as a new tool to determine rosmarinic acid in situ. J. Plant Physiol., 2004, 161(2), 151-156.
[http://dx.doi.org/10.1078/0176-1617-01099] [PMID: 15022828]
[16]
Saltas, D.; Pappas, C.S.; Daferera, D.; Tarantilis, P.A.; Polissiou, M.G. Direct determination of rosmarinic acid in Lamiaceae herbs using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and chemometrics. J. Agric. Food Chem., 2013, 61(13), 3235-3241.
[http://dx.doi.org/10.1021/jf305520m] [PMID: 23496773]
[17]
Mehmet, O.; Mehmet, E.; Duru, B.; Mansur, H.; Topcu, G. A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts. Food Chem., 2010, 123(4), 1352-1356.
[http://dx.doi.org/10.1016/j.foodchem.2010.06.021]
[18]
Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem., 2011, 126(4), 1821-1835.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.026] [PMID: 25213963]
[19]
International conference on harmonization (ICH). Guideline Q2(R1), Validation of Analytical Procedures: Text and Methodology; ICH: Geneva, 2005.
[20]
AOAC International. AOAC Guidelines for Single Laboratory Validation of Chemical Method for Dietary Supplements and Botanical; Association of Official Analytical Chemists: Arlington, 2002.
[21]
Mallah, M.A.; Sherazi, S.T.H.; Mahesar, S.A.; Khaskheli, A.R. Simultaneous quantification of ibuprofen and paracetamol in tablet formu-lation using transmission Fourier transform infrared spectroscopy. Am. J. Anal. Chem., 2012, 3, 503-511.
[http://dx.doi.org/10.4236/ajac.2012.38067]
[22]
Sawsan, I.; Khalivula, S.I.; Akowuah, A.G. Determination of Alendronate sodium in tablets by attenuated total reflectance Fourier trans-form infrared spectroscopy. Curr. Bioact. Compd., 2016, 13(1), 71-77.
[http://dx.doi.org/10.2174/1573407212999160506112738]
[23]
Gunasekaran, S.; Natarajan, R.K.; Renganayaki, V.; Natarajan, S. Vibrational spectra and thermodynamic analysis of metformin. Indian J. Pure Appl. Phy., 2006, 44, 495-500.
[24]
Gontijo, L.C.; Guimaraes, E.; Mitsutake, H.; Santana, F.B.; Santos, D.Q.; Borges, N.W. Development and validation of PLS models for quantification of biodiesels content from waste frying oil in diesel by HATR-MIR. Rev. Virtual Quim., 2014, 6(5), 1517-1528.
[http://dx.doi.org/10.5935/1984-6835.20140098]