Introduction: Diabetes mellitus (T2DM) and cardiovascular diseases (CVDs) have become some of the most urgent and prevalent health problems in recent decades, side by side with the growing obesity crisis. The close relationship between T2DM and CVD has become clear: endothelial dysfunction caused by oxidative stress and inflammation resulting from hyperglycaemia are the key factors in the development of vascular complications of T2DM, leading to CVD. Coenzyme Q10 (CoQ10) is a great candidate for the treatment of these diseases, acting precisely at the intersection between T2DM and CVD that is oxidative stress, due to its strong antioxidant activity and fundamental physiological role in mitochondrial bioenergetics. CoQ10 is a biologically active liposoluble compound comprising a quinone group and a side chain of 10 isoprenoid units, which is synthesized endogenously in the body from tyrosine and mevalonic acid. The main biochemical action of CoQ10 is as a cofactor in the electron transport chain that synthesizes adenosine triphosphate (ATP). As most cellular functions depend on an adequate supply of ATP, CoQ10 is essential for the health of virtually all human tissues and organs. CoQ10 supplementation has been used as an intensifier of mitochondrial function and an antioxidant with the aim of palliating or reducing oxidative damage that can worsen the physiological outcome of a wide range of diseases including T2DM and CVDs.
Conclusion: Although there is not enough evidence to conclude it is effective for different therapeutic indications, CoQ10 supplementation is probably safe and well-tolerated, with few drug interactions and minor side effects. Many valuable advances have been made in the use of CoQ10 in clinical practice for patients with T2DM and a high risk of CVD. However, further research is needed to assess the real safety and benefit to indicate CoQ10 supplementation in patients with T2DM.
Keywords: Cardiovascular, diabetes, ubiquinol, ubiquinone, CoQ10, oxidative stress.