Journal of Fuzzy Logic and Modeling in Engineering

Author(s): Issam Kouatli*, Skander Ben Abdallah, Abbas Terhini and Hiba Naccash

DOI: 10.2174/2666294901666220428145618

Cite As
A Review of the Applicability of Classical and Extension of Fuzzy Logic Approaches to Project Decision-Making using Real Options

Article ID: e280422204234 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Introduction: In this study, a review of fuzzy implementation to Real Options Approach (ROA) theory where the applicability of classical and extended theories of “fuzziness” studied.

Background: ROA allows taking into account the value of some sources of managerial flexibility and therefore assessing a more accurately project value. The positive value of flexibility results from limiting the impacts of adverse events while taking advantage of positive ones. One of the main lessons is that uncertainty adds value in the presence of flexibility. Ambiguous parameters that have a significant effect on the project value are usually represented as fuzzy sets using Zadeh's classical theory of Fuzzy logic (also termed "type-1"). However, there have been so many derivatives, and expansions of the fuzzy set theories developed by different researchers. Dealing with uncertainty can be manifested in the different mechanism of fuzziness.

Objective: The objective of this review is to identify the research gap as well as provide an elementary guide to the applicability of different varieties of classical and extended applicability of fuzziness to ROA when evaluating project investment.

Methods: After a generic review of the progress of ROA theory and fuzzy approaches by researchers This paper reviews the applicability of ROA to fuzzy sets (classical and extended) implementation to decision-making for large projects where project timing and uncertainty are key parameters affecting the project value.

Results: After reviewing the applicability of each of the classical and extended theories of fuzzy logic to ROA, a tabular format shows the result of this study summarizing the scenario, showing the applicability of different techniques.

Conclusion: Most of the reviewed techniques of fuzzy implementation to ROA approach, still based on the classical theory of fuzzy logic. Implementation of more extended techniques has a potential of enhancing the outcome of such research.

Keywords: Fuzzy real options, fuzzy logic, uncertainty, decision-making, project valuation, flexibility.

[1]
Zadeh, L.A. Fuzzy sets. Inf. Control, 1965, 8(3), 338-353.
[http://dx.doi.org/10.1016/S0019-9958(65)90241-X]
[2]
Zadeh, L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern., 1973, (1), 28-44.
[http://dx.doi.org/10.1109/TSMC.1973.5408575]
[3]
Bennouna, K.; Meredith, G.G.; Marchant, T. Improved capital budgeting decision making: Evidence from Canada. Manage. Decis., 2010, 48(2), 225-247.
[http://dx.doi.org/10.1108/00251741011022590]
[4]
Graham, J.R.; Harvey, C.R. The theory and practice of corporate finance: Evidence from the field. J. Financ. Econ., 2001, 60(2), 187-243.
[http://dx.doi.org/10.1016/S0304-405X(01)00044-7]
[5]
Gitman, L.; Forrester, J. A survey of capital budgeting techniques used by major US firms. Financ. Manag., 1977, 66-71.
[http://dx.doi.org/10.2307/3665258]
[6]
Brennan, M.J.; Schwartz, E.S. Evaluating natural resource investments. J. Bus., 1985, 58(2), 135.
[http://dx.doi.org/10.1086/296288]
[7]
Dixit, A.K.; Pindyck, R.S. Investment under uncertainty; Princeton university press, 1994.
[http://dx.doi.org/10.1515/9781400830176]
[8]
McDonald, R.L.; Siegel, D.R. Investment and the valuation of firms when there is an option to shut down. Int. Econ. Rev., 1985, 331-349.
[http://dx.doi.org/10.2307/2526587]
[9]
McDonald, R.; Siegel, D. The value of waiting to invest. Q. J. Econ., 1986, 101(4), 707-727.
[http://dx.doi.org/10.2307/1884175]
[10]
Trigeorgis, L.; Mason, S.P. Valuing managerial flexibility. Midland Corporate Finance Journal, 1987, 5(1), 14-21.
[11]
Luehrman, T.A. Strategy as a portfolio of real options Harv. Bus. Rev., 1998, 76(5), 89-99-187.
[PMID: 10185434]
[12]
Ben Abdallah, S.; Sicotte, H. A real options analysis of project portfolios: Practitioners’ assessment. J. Mod. Project Manage, 2018, 6(2)
[13]
Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Polit. Econ., 1973, 637-654.
[http://dx.doi.org/10.1086/260062]
[14]
Merton, R. The Theory of Rational Option Pricing. Bell J. Econ. Manage. Sci., 1973, 4(Spring), 141-183.
[http://dx.doi.org/10.2307/3003143]
[15]
Luehrman, T. Investment opportunities as real options: getting started on the numbers. Harv. Bus. Rev., 1998, 76(4), 51-67.
[16]
Yeo, K.; Qiu, F. The value of management flexibility-a real options approach to investment evaluation. Int. J. Project Manage., 2003, 21(4), 243-250.
[http://dx.doi.org/10.1016/S0263-7863(02)00025-X]
[17]
Carlsson, C.; Fullér, R. A fuzzy approach to real options valuation. Fuzzy Sets Syst., 2003, 139(2), 297-312.
[http://dx.doi.org/10.1016/S0165-0114(02)00591-2]
[18]
Zmeškal, Z. Application of the fuzzy-stochastic methodology to appraising the firm value as a European call option. Eur. J. Oper. Res., 2001, 135(2), 303-310.
[http://dx.doi.org/10.1016/S0377-2217(01)00042-X]
[19]
Wang, J.; Hwang, W-L. A fuzzy set approach for R&D portfolio selection using a real options valuation model. Omega, 2007, 35(3), 247-257.
[http://dx.doi.org/10.1016/j.omega.2005.06.002]
[20]
Cheng, J-H.; Lee, C-Y. Product outsourcing under uncertainty: An application of fuzzy real options approach 2007 IEEE International Fuzzy Systems Conference, 2007.
[http://dx.doi.org/10.1109/FUZZY.2007.4295675]
[21]
Liao, S-H.; Ho, S-H. Investment project valuation is based on the fuzzy real options approach 2010 International Conference on Technologies and Applications of Artificial Intelligence, 2010.
[http://dx.doi.org/10.1109/TAAI.2010.26]
[22]
Sun, T.; Guo, W.; Dai, H. Brownfield redevelopment evaluation based on fuzzy real. Sustainability, 2016, 8(2), 170.
[23]
Ben Abdallah, S.; Kouatli, I. Fuzzy Volatility Effect on Major Projects Timing 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2018.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2018.8491567]
[24]
Ross, T.J. Fuzzy logic with engineering applications; John Wiley & Sons, 2005.
[25]
Sugeno, M. An introductory survey of fuzzy control. Inf. Sci., 1985, 36(1-2), 59-83.
[http://dx.doi.org/10.1016/0020-0255(85)90026-X]
[26]
Wang, Q.; Kilgour, D.M.W.; Hipel, K. Facilitating risky project negotiation: An integrated approach using fuzzy real options, multicriteria analysis, and conflict analysis. Inf. Sci., 2015, 295(20), 544-557.
[http://dx.doi.org/10.1016/j.ins.2014.10.049]
[27]
Dong, Y.; Li, C.C.; Herrera, F. Connecting the linguistic hierarchy and the numerical scale for the 2-tuple linguistic model and its use to deal with hesitant unbalanced linguistic information. Inf. Sci., 2016, 367-368, 259-278.
[http://dx.doi.org/10.1016/j.ins.2016.06.003]
[28]
Servati, Y.; Ghodsypour, S.H.; Shirazi, M.A. The use of fuzzy real options valuation method to rank Giga Investment Projects on Iran’s natural gas reserves. J. Fundam. Appl. Sci, 2017, 9(1S)
[29]
Ben Abdallah, S.; Kouatli, I. Fuzzy Volatility of Project Option Value Based on Trapezoidal Membership Functions In: Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making. INFUS 2019. Advances in Intelligent Systems and Computing; Springer: Cham, 2019; 1029, pp. 1307-1314.
[30]
Kouatli, I.; Abdallah, S.B. An Augmentation of Fuzziness to Randomness in Project Evaluation; Frontiers in Artificial Intelligence and Applications, 2018, 309, .
[31]
Montajabiha, M.; Khamseh, A.A.; Afshar-Nadjafi, B. A robust algorithm for project portfolio selection problem using real options valuation. Int. J. Managing Proj. Bus., 2017, 10(2), 386-403.
[http://dx.doi.org/10.1108/IJMPB-12-2015-0114]
[32]
Gao, H.; Ding, X-H.; Li, S. “EPC renewable project evaluation: A fuzzy real option pricing model”, Energy Sources, Part B. Econ. Plann. Policy, 2018, 13(9-10), 404-413.
[33]
Zhou, Z.; Liu, X.; Pei, J.; Pardalos, P.; Liu, L.; Fu, C. Real options approach to explore the effect of organizational change on IoT development project. Optim. Lett., 2017, 11(5), 995-1011.
[http://dx.doi.org/10.1007/s11590-016-1006-8]
[34]
Tang, W.; Cui, Q.; Zhang, F.; Chen, Y. Urban rail-transit project investment benefits based on compound real options and trapezoid fuzzy numbers. J. Constr. Eng. Manage., 2019, 145(1)
[35]
Mendel, J.; John, R.; Liu, F. Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst., 2006, 14(6), 808-821.
[36]
Tai, K.; El-Sayed, A-R.; Biglarbegian, M.; Gonzalez, C.; Castillo, O.; Mahmud, S. Review of Recent Type-2 Fuzzy Controller Applications. Algorithms, 2016, 9, 39.
[http://dx.doi.org/10.3390/a9020039]
[37]
Liang, Q.; Mendel, J.M. Interval Type-2 fuzzy logic systems: Theory and design. IEEE Trans. Fuzzy Syst., 2000, 18, 535-550.
[http://dx.doi.org/10.1109/91.873577]
[38]
Semercioglu, N.; Tolga, A.C. A multi-stage new product development using fuzzy Type-2 sets in a real options valuation IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016.
[http://dx.doi.org/10.1109/FUZZ-IEEE.2015.7338043]
[39]
Tolga, A.C. Real options valuation of an IoT based healthcare device with interval Type-2 fuzzy numbers. Socioecon. Plann. Sci., 2019, 2019.
[40]
Lagunes, M.L.; Castillo, O.; Valdez, F.; Soria, J. Comparative Study of Fuzzy Controller Optimization with Dynamic Parameter Adjustment Based on Type 1 and Type 2 Fuzzy Logic. Fuzzy Techniques: Theory and Applications. IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing; Springer: Cham, 2019, 1000, .
[http://dx.doi.org/10.1007/978-3-030-21920-8_27]
[41]
Sanchez, M.A.; Castillo, O.; Castro, J.R. Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems. Expert Syst. Appl., 2015, 42(14), 5904-5914.
[http://dx.doi.org/10.1016/j.eswa.2015.03.024]
[42]
Zarandi, M.H.F.; Soltanzadeh, S.; Mohammadi, A.; Castillo, O. Designing a general type-2 fuzzy expert system for diagnosis of depression. Appl. Soft Comput., 2019, 80(July), 329-341.
[http://dx.doi.org/10.1016/j.asoc.2019.03.027]
[43]
Castillo, O. Bio-inspired Optimization of Type-2 Fuzzy Controllers in Autonomous Mobile Robot Navigation.Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. Studies in Systems, Decision, and Control; Springer: Cham, 2019, 203, .
[http://dx.doi.org/10.1007/978-3-030-21927-7_9]
[44]
Atanassov, K. More on Intuitionistic Fuzzy Sets. Fuzzy Sets Syst., 1986, 20(1), 87-96.
[http://dx.doi.org/10.1016/S0165-0114(86)80034-3]
[45]
Torra, V. Hesitant Fuzzy sets. International Journal of Intelligent Systems, 25(6), 529-539, 20102010.
[46]
Huseyin Yigit Ersen, H.; Tas, O.; Kahraman, C. Intuitionistic Fuzzy Real-Options Theory and its Application to Solar Energy Investment Projects. Eng. Econ., 2018, 29(2), 140-150.
[47]
Xu, Z.; Zhao, N. Information fusion for intuitionistic fuzzy decision making: An overview. Inf. Fusion, 2016, 28(March), 10-23.
[http://dx.doi.org/10.1016/j.inffus.2015.07.001]
[48]
Dong, Y.; Chen, X.; Herrera, F. Minimizing adjusted simple terms in the consensus reaching process with hesitant linguistic assessments in group decision making. Inf. Sci., 2015, 297, 95-117.
[http://dx.doi.org/10.1016/j.ins.2014.11.011]
[49]
Dong, M-G. Li, Shou-Yi (2016) Project investment decision making with fuzzy information: A literature review of methodologies based on taxonomy. J. Intell. Fuzzy Syst., 2016, 30(6), 3239-3252.
[http://dx.doi.org/10.3233/IFS-152068]
[50]
Zhang, H.; Dong, Y.; Francisco, C.; Yu, S. Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design. Eur. J. Oper. Res., 2019, 275(2), 580-598.
[http://dx.doi.org/10.1016/j.ejor.2018.11.052]
[51]
Zhan, J.; Malik, H.M.; Akram, M. Novel decision-making algorithms based on intuitionistic fuzzy rough environment. International Journal of Machine Learning and Cybernetics, 2018, 10(6), 1459-1485.
[52]
Mezei, J.; Collan, M.; Luukka, P. Real options analysis with interval-valued fuzzy numbers and the fuzzy pay-off method Proceedings of the Conference of the European Society for Fuzzy Logic and Technology International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets: Advances in Fuzzy Logic and Technology, 6412017, , pp. 509-520.
[53]
Yeni, F.B.; Özçelik, G. Interval-valued atanassov intuitionistic fuzzy codas method for multi-criteria group decision making problems. Group Decis. Negot., 2018, 28(2), 433-452.
[http://dx.doi.org/10.1007/s10726-018-9603-9]
[54]
Garg, H.; Rani, D. Some generalized complex intuitionistic fuzzy aggregation operators and their application to multicriteria decision-making process. Arab. J. Sci. Eng., 2019, 44(3), 2679-2698.
[http://dx.doi.org/10.1007/s13369-018-3413-x]
[55]
Castillo, O.; Melin, P.; Tsvetkov, R.; Atanassov, K.T. short remark on fuzzy sets, interval type-2 fuzzy sets, general type-2 fuzzy sets, and intuitionistic fuzzy sets In: Intelligent Systems’2014. Advances in Intelligent Systems and Computing; Springer: Cham, 2015; 322, .
[http://dx.doi.org/10.1007/978-3-319-11313-5_18]
[56]
Castillo, O.; Atanassov, K. Comments on fuzzy sets, interval type-2 fuzzy sets, general type-2 fuzzy sets, and intuitionistic fuzzy sets. Recent Advances in Intuitionistic Fuzzy Logic Systems. Studies in Fuzziness and Soft Computing; Springer: Cham, 2019, 372, .
[http://dx.doi.org/10.1007/978-3-030-02155-9_3]
[57]
Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst., 2014, 22(4), 958-965.
[http://dx.doi.org/10.1109/TFUZZ.2013.2278989]
[58]
Zhang, X.; Xu, Z. Extension of TOPSIS to Multiple CriteriaDecision Making with Pythagorean Fuzzy Sets. Int. J. Intell. Syst., 2014, 29, 1061-1078.
[http://dx.doi.org/10.1002/int.21676]
[59]
Garg, H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. J. Intell. Fuzzy Syst., 2016, 31(1), 529-540.
[http://dx.doi.org/10.3233/IFS-162165]
[60]
Mao, L.; Guiwu, W. Alsaadi, Fuad E., Tasawar, H., Alsaedi, A. (2017) Hesitant Pythagorean fuzzy Hamacher aggregation operators and their application to multiple attribute decision-making. J. Intell. Fuzzy Syst., 2017, 33(2), 1105-1117.
[http://dx.doi.org/10.3233/JIFS-16554]
[61]
Onar, S.C.; Oztaysi, B.; Kahraman, C. “Multicriteria evaluation of cloud service providers using pythagorean fuzzy TOPSIS”, J. Multiple-Valued Log. Soft Comput., 2018, 30(2-3), 263-283.
[62]
Kahraman, C.; Onar, S.C.; Oztaysi, B. Present worth analysis using pythagorean fuzzy sets Proceedings of the Conference of the European Society for Fuzzy Logic and Technology International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets EUSFLAT 2017, IWIFSGN 2017: Advances in Fuzzy Logic and Technology, 2017, pp. 336-342.
[63]
Peng, X. Pythagorean fuzzy set: State of the art and future directions. Artificial Intelligence Review, 2017, 1-55.
[http://dx.doi.org/10.1007/s10462-017-9596-9]
[64]
Ilbahar, E.; Karaşan, A.; Cebi, S.; Kahraman, C. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf. Sci., 2018, 103(March), 124-136.
[http://dx.doi.org/10.1016/j.ssci.2017.10.025]
[65]
Sharma, H. A hybrid pythagorean group decision making model for website selection; Multi-Criteria Decision-Making Models for Website Evaluation, 2019.
[http://dx.doi.org/10.4018/978-1-5225-8238-0.ch004]
[66]
Dorfeshan, Y.; Mousavi, S.M. A group TOPSIS-COPRAS methodology with Pythagorean fuzzy sets considering weights of experts for project critical path problem. J. Intell. Fuzzy Syst., 2019, 36(2), 1375-1387.
[http://dx.doi.org/10.3233/JIFS-172252]
[67]
Smarandache, F. Neutrosophy: Neutrosophic probability, set, and logic; Amer. Res. Press: Rehoboth, USA, 1998, pp. 1-105.
[68]
Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F. An Isolated Interval Valued Neutrosophic Graph. Crit. Rev., 2016, 13, 67-80.
[69]
Kutlu Gündoğdu, F.; Kahraman, C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst., 2019, 36(1), 337-352.
[http://dx.doi.org/10.3233/JIFS-181401]
[70]
Zhang, W.R. Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis Fuzzy Information Processing Society Biannual Conference, 1994.
[71]
Molodtsov, D.A. Soft set theory-_rst results, computers and mathematics with applications. Computers and Mathematics with Applications, 1999, 37(4-5), 19-31.
[72]
Maji, P.K.; Roy, A.R.; Biswas, R. Fuzzy soft sets. J. Fuzzy Math., 2001, 9(3), 589-602.
[73]
Singh, P.K.; Kumar, A.Ch. A note on a bipolar fuzzy graph representation of concept lattice. Int. J. Comput. Sci. Math., 2014, 5(4), 381-393.
[http://dx.doi.org/10.1504/IJCSM.2014.066426]
[74]
Rashmanlou, H.; Samanta, S.; Pal, M.; Borzooei, R.A. Bipolar fuzzy graphs with categorical properties. Int. J. Computat. Intell. Syst., 2015, 8(5), 808-818.
[http://dx.doi.org/10.1080/18756891.2015.1063243]
[75]
Shahzadi, S.; Akram, M. Edge regular intuitionistic fuzzy soft graphs. J. Intell. Fuzzy Syst., 2016, 31(3), 1881-1895.
[http://dx.doi.org/10.3233/JIFS-16120]
[76]
Sarwar, M.; Akram, M. Novel concepts bipolar fuzzy competition graphs. J. Appl. Math. Comput., 2017, 54(1-2), 511-547.
[http://dx.doi.org/10.1007/s12190-016-1021-z]
[77]
Akram, M.; Nawaz, S. Fuzzy soft graphs with applications. Journal of intelligent and fuzzy systems, 30, 3619-3632, 20162016.
[78]
Kaufman, A. Introduction a la Theorie des Sous-ensembles Flous; Masson et Cie, 1973.
[79]
Akram, M.; Feng, F.; Borumand Saeid, A.; And Leoreanu-Fotea, V. “New Multiple Criteria Decision-Making Method Based On Bipolar Fuzzy Soft Graphs”, Iran. J. Fuzzy Syst., 2018, 15(4), 73-92.
[80]
Kouatli, I. “Fuzzimetric Sets: An Integrated Platform for Both Types of Interval Fuzzy Sets”, Frontiers in Artificial Intelligence and Applications, Vol. Fuzzy Systems and Data Mining, 2018, IV, 150-163.
[81]
Kouatli, I. Fuzziness Control of Fuzzimetric sets, FUZZ-IEEE 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), , pp. 1-5. 2019
[82]
Kouatli, I. Fuzzimetric employee evaluations system (FEES): A multivariable-modular approach. J. Intell. Fuzzy Syst., 2018, 35, 4717-4729.
[http://dx.doi.org/10.3233/JIFS-181202]
[83]
Kouatli, I. The Use of Fuzzy Logic as Augmentation to Quantitative Analysis to Unleash Knowledge of Participants’ Uncertainty when Filling a Survey: Case of cloud computing. IEEE Transactions on Knowledge and Data Engineering, 2020.
[http://dx.doi.org/10.1109/TKDE.2020.2993326]
[84]
Kouatli, I Modeling fuzzimetric cognition of technical analysis decisions: Reducing emotional trading J. Fuzzy Ext. Appl., 2022.