Role of Phytoremediation in Enhancing Heavy Metals Tolerance: A Novel Biotechnological Approach

Page: [94 - 106] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Rapid global modernization, urbanization, industrialization, and frequent natural processes release toxic heavy metals into the environment such as mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As) and selenium (Se). In the present scenario, soil and water ecosystems are the main environmental alarms. The remediation of contaminated soils and water ecosystems with appropriate approaches is urgently needed. Physical remediation strategies are conventional, expensive, and nonspecific. In contrast, phytoremediation is an eco-friendly and fast-growing approach that is accomplished due to the high uptake of toxic heavy metals from the environment. Since plants are slow-growing and have low biomass they urgently need to be bioengineered for high biomass. On the other hand, biotechnology helps identify and isolate gene coding for heavy metal resistance tolerance in plants. Moreover, molecular cloning and the manifestation of heavy metal accumulator genes and other associated genes & enzymes can facilitate the remediation rates, which will make the process with a large-scale application that will improve the phytoremediation process. This review highlights the biotechnological methods and strategies for the remediation of heavy metals and metalloid containment from environments. Furthermore, this review also comprises the improvements and implications of phytoremediation as well as their operations and applications to reduce toxic pollutants from environments and to improvise phytoremediation efficiency to tolerate various heavy metal pollutants highlighting future challenges.

Keywords: Heavy metal, phytoremediation, pollutants, hyperaccumulator, molecular cloning, bioengineer.

Graphical Abstract

[1]
McNeill JR. Something New Under the Sun: An Environmental History of the Twentieth-Century World (The Global Century Series). New York, United States: WW Norton & Company 2001.
[2]
Martens P, McMichael AJ. Environmental Change, Climate and Health: Issues and Research Methods. Cambridge: Cam-bridge University Press 2009.
[3]
Tabelin CB, Igarashi T, Villacorte-Tabelin M, et al. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of en-richment, mechanisms of release, and mitigation strategies. Sci Total Environ 2018; 645: 1522-53.
[http://dx.doi.org/10.1016/j.scitotenv.2018.07.103] [PMID: 30248873]
[4]
Alloway BJ. Heavy Metals in Soils: Trace Metals and Metal-loids in Soils and their Bioavailability. Dordrecht: Springer 2012.
[5]
Fowler BA. General subcellular effects of lead, mercury, cadmium, and arsenic. Environ Health Perspect 1978; 22: 37-41.
[http://dx.doi.org/10.1289/ehp.782237] [PMID: 648490]
[6]
Sharma P, Pandey S. Status of phytoremediation in world scenario. Int J Environ Bioremediat Biodegrad 2014; 2: 178-91.
[7]
Malvi UR. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka J Agric Sci 2011; 24(1): 106-9.
[8]
Pierzynski GM, Vance GF, Sims JT. Soils and environmental quality. CRC Press 2005.
[http://dx.doi.org/10.1201/b12786]
[9]
Hanke W, Jurewicz J. The risk of adverse reproductive and developmental disorders due to occupational pesticide expo-sure: An overview of current epidemiological evidence. Int J Occup Med Environ Health 2004; 17(2): 223-43.
[PMID: 15387079]
[10]
Katole SB, Kumar P, Patil RD. Environmental pollutants and livestock health: A review. Vet Res Int 2013; 1: 1-13.
[11]
Hussain J, Husain I, Arif M, Gupta N. Studies on heavy metal contamination in Godavari river basin. Appl Water Sci 2017; 7(8): 4539-48.
[http://dx.doi.org/10.1007/s13201-017-0607-4]
[12]
He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosys-tems and impacts on the environment. J Trace Elem Med Biol 2005; 19(2-3): 125-40.
[http://dx.doi.org/10.1016/j.jtemb.2005.02.010] [PMID: 16325528]
[13]
Sharma B, Singh S, Siddiqi NJ. Biomedical implications of heavy metals induced imbalances in redox systems. BioMed Res Int 2014; 2014: 640754.
[http://dx.doi.org/10.1155/2014/640754]
[14]
Bradl H. Heavy metals in the environment: Origin, interaction and remediation. Cambridge, Massachusetts: Academic Press 2005.
[15]
Pradhan B, Patra S, Dash SR, Maharana S, Behera C, Jena M. Antioxidant responses against aluminum metal stress in Geit-lerinema amphibium. SN Applied Sciences 2020; 2(5): 800.
[http://dx.doi.org/10.1007/s42452-020-2599-1]
[16]
Pradhan B, Patra S, Maharana S, Behera C, Dash SR, Jena M. Demarcating antioxidant response against aluminum induced oxidative stress in Westiellopsis prolifica Janet 1941 2021; 23: 238- 51.
[http://dx.doi.org/10.1080/15226514.2020.1807906]
[17]
Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 2015; 16(12): 29592-630.
[http://dx.doi.org/10.3390/ijms161226183] [PMID: 26690422]
[18]
Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 2011; 159(12): 3730-8.
[http://dx.doi.org/10.1016/j.envpol.2011.07.008] [PMID: 21835516]
[19]
Alaboudi KA, Ahmed B, Brodie G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann Agric Sci 2018; 63(1): 123-7.
[http://dx.doi.org/10.1016/j.aoas.2018.05.007]
[20]
Lyu J, Park J, Kumar Pandey L, et al. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elonga-tion in Lactuca sativa L. Ecotoxicol Environ Saf 2018; 149: 225-32.
[http://dx.doi.org/10.1016/j.ecoenv.2017.11.006] [PMID: 29182968]
[21]
Eid EM, Alrumman SA, Galal TM, El-Bebany AF. Prediction models for evaluating the heavy metal uptake by spinach (Spinacia oleracea L.) from soil amended with sewage sludge. Int J Phytoremediation 2018; 20(14): 1418-26.
[http://dx.doi.org/10.1080/15226514.2018.1488815] [PMID: 30652486]
[22]
Boominathan R, Doran PM. Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 2002; 156(2): 205-15.
[http://dx.doi.org/10.1046/j.1469-8137.2002.00506.x] [PMID: 33873276]
[23]
Abou-Shanab R, Angle J, Chaney R. Bacterial inoculants af-fecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 2006; 38(9): 2882-9.
[http://dx.doi.org/10.1016/j.soilbio.2006.04.045]
[24]
Chiang H-C, Lo J-C, Yeh K-C. Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: A genomic survey with cDNA microar-ray. Environ Sci Technol 2006; 40(21): 6792-8.
[http://dx.doi.org/10.1021/es061432y] [PMID: 17144312]
[25]
Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N. Genetic basis of Cd tolerance and hyperaccu-mulation in Arabidopsis halleri. Plant Soil 2003; 249(1): 9-18.
[http://dx.doi.org/10.1023/A:1022580325301]
[26]
Ma JF, Ueno D, Zhao F-J, McGrath SP. Subcellular localisa-tion of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 2005; 220(5): 731-6.
[http://dx.doi.org/10.1007/s00425-004-1392-5] [PMID: 15517354]
[27]
Turan M, Esringu A. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ 2007; 53(1): 7-15.
[http://dx.doi.org/10.17221/3188-PSE]
[28]
Sieghardt H. Heavy-metal uptake and distribution in Silene vulgaris and Minuartia verna growing on mining-dump mate-rial containing lead and zinc. Plant Soil 1990; 123(1): 107-11.
[http://dx.doi.org/10.1007/BF00009933]
[29]
Bing H. Sedum alfredii: A new lead accumulating ecotype. J Integr Plant Biol 2002; 44: 1365.
[30]
Mohsenzadeh F, Mohammadzadeh R. Phytoremediation abil-ity of the new heavy metal accumulator plants. Environ Eng Geosci 2018; 24(4): 441-50.
[http://dx.doi.org/10.2113/EEG-2123]
[31]
Hung C-Y, Holliday BM, Kaur H, Yadav R, Kittur FS, Xie J. Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus race-mosus. Mol Biol Rep 2012; 39(7): 7635-46.
[http://dx.doi.org/10.1007/s11033-012-1598-8] [PMID: 22362314]
[32]
Hattab S, Hattab S, Flores-Casseres ML, et al. Characterisa-tion of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ Exp Bot 2016; 123: 1-12.
[http://dx.doi.org/10.1016/j.envexpbot.2015.10.005]
[33]
van der Ent A, Malaisse F, Erskine PD, et al. Abnormal con-centrations of Cu-Co in Haumaniastrum katangense, Hau-maniastrum robertii and Aeolanthus biformifolius: Contamina-tion or hyperaccumulation? Metallomics 2019; 11(3): 586-96.
[http://dx.doi.org/10.1039/c8mt00300a] [PMID: 30664146]
[34]
Redondo-Gómez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR. Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina ar-gentinensis. J Hazard Mater 2011; 185(2-3): 862-9.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.101] [PMID: 20970921]
[35]
Singh N, Ma LQ, Srivastava M, Rathinasabapathi B. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vit-tata L and Pteris ensiformis L. Plant Sci 2006; 170(2): 274-82.
[http://dx.doi.org/10.1016/j.plantsci.2005.08.013]
[36]
Wang X, Ma LQ, Rathinasabapathi B, Liu Y, Zeng G. Uptake and translocation of arsenite and arsenate by Pteris vittata L.: Effects of silicon, boron and mercury. Environ Exp Bot 2010; 68(2): 222-9.
[http://dx.doi.org/10.1016/j.envexpbot.2009.11.006]
[37]
Jaffré T, Reeves RD, Baker AJM, Schat H, van der Ent A. The discovery of nickel hyperaccumulation in the New Caledonian tree Pycnandra acuminata 40 years on: An introduction to a virtual issue. New Phytol 2018; 218(2): 397-400.
[http://dx.doi.org/10.1111/nph.15105] [PMID: 29561072]
[38]
Alaribe F, Agamuthu P. Assessment of phytoremediation potentials of Lantana camara in Pb impacted soil with organic waste additives. Ecol Eng 2015; 83: 513-20.
[http://dx.doi.org/10.1016/j.ecoleng.2015.07.001]
[39]
Mahajan P, Kaushal J. Role of phytoremediation in reducing cadmium toxicity in soil and water. J Toxicol 2018; 2018: 4864365.
[http://dx.doi.org/10.1155/2018/4864365]
[40]
Mejáre M, Bülow L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 2001; 19(2): 67-73.
[http://dx.doi.org/10.1016/S0167-7799(00)01534-1] [PMID: 11164556]
[41]
Gasic K, Korban SS. Heavy metal stress. In: Madhava Rao K, Raghavendra A, Janardhan Reddy K, Eds. Physiology and Molecular Biology of Stress Tolerance in Plants Dordrecht: Springer, 2006; pp. 219-54.
[http://dx.doi.org/10.1007/1-4020-4225-6_8]
[42]
Baghour M, Moreno DA, Villora G, Hernández J, Castilla N, Romero L. The influence of the root zone temperatures on the phytoextraction of boron and aluminium with potato plants growing in the field. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2002; 37(5): 939-53.
[http://dx.doi.org/10.1081/ESE-120003599] [PMID: 12049127]
[43]
Chen S, Wilson DB. Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg2+-contaminated environments. Appl Environ Microbiol 1997; 63(6): 2442-5.
[http://dx.doi.org/10.1128/aem.63.6.2442-2445.1997] [PMID: 9172366]
[44]
Liu G-Y, Zhang Y-X, Chai T-Y. Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 2011; 30(6): 1067-76.
[http://dx.doi.org/10.1007/s00299-011-1013-2] [PMID: 21327392]
[45]
Pilon-Smits EA, Jouanin L, Terry N, Terry N, Liang Zhu Y. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 1999; 119(1): 73-80.
[http://dx.doi.org/10.1104/pp.119.1.73] [PMID: 9880348]
[46]
Guo J, Xu W, Ma M. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 2012; 199-200: 309-13.
[http://dx.doi.org/10.1016/j.jhazmat.2011.11.008] [PMID: 22119299]
[47]
Chekroun KB, Baghour M. The role of algae in phytoremedia-tion of heavy metals: A review. J Mater Environ Sci 2013; 4: 873-80.
[48]
Saladin G. Phytoextraction of heavy metals: The potential efficiency of conifers. In: Sherameti I, Varma A, Eds. Heavy Metal Contamination of Soils Cham: Springer, 2015; pp. 333-53.
[http://dx.doi.org/10.1007/978-3-319-14526-6_18]
[49]
Xue S, Wang J, Zhou X, Liu H, Chen Y. A critical reappraisal of Phytolacca acinosa Roxb. (Phytolaccaceae)–A manganese-hyperaccumulating plant. Acta Ecol Sin 2010; 30(6): 335-8.
[http://dx.doi.org/10.1016/j.chnaes.2010.10.001]
[50]
Jambhulkar HP, Juwarkar AA. Assessment of bioaccumula-tion of heavy metals by different plant species grown on fly ash dump. Ecotoxicol Environ Saf 2009; 72(4): 1122-8.
[http://dx.doi.org/10.1016/j.ecoenv.2008.11.002] [PMID: 19171381]
[51]
Israr M, Sahi S, Datta R, Sarkar D. Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 2006; 65(4): 591-8.
[http://dx.doi.org/10.1016/j.chemosphere.2006.02.016] [PMID: 16564071]
[52]
Shukla AK, Ramesh K, Nagdev R, Srivastava S. Heavy metal toxicities in soils and their remediation. In: Minhas P, Rane J, Pasala R, Eds. Abiotic Stress Management for Resilient Agri-culture Singapore: Springer, 2017; pp. 153-76.
[http://dx.doi.org/10.1007/978-981-10-5744-1_7]
[53]
Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006; 88(11): 1707-19.
[http://dx.doi.org/10.1016/j.biochi.2006.07.003] [PMID: 16914250]
[54]
Mani D, Kumar C. Biotechnological advances in bioremedia-tion of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int J Environ Sci Technol 2014; 11(3): 843-72.
[http://dx.doi.org/10.1007/s13762-013-0299-8]
[55]
Nkansah FK. The potential of indigenous plants for use in phytoremediation of tailings dam at Chirano gold mine, Gha-na Dissertations Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2017.
[56]
Mahmoud E, Abd El‐Kader N. Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degrad Dev 2015; 26(8): 819-24.
[http://dx.doi.org/10.1002/ldr.2288]
[57]
Sarwar N, Imran M, Shaheen MR, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifica-tions and future perspectives. Chemosphere 2017; 171: 710-21.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.116] [PMID: 28061428]
[58]
Jian C, Yang Z, Su Y, Han FX, Monts DL. Phytoremediation of heavy metal/metalloid-contaminated soils. In: Steinberg RV, Ed. Contaminated soils: Environmental impact, disposal and treatment. New York: Nova Science Pub Inc., 2011.
[59]
Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals--concepts and applications. Chemosphere 2013; 91(7): 869-81.
[http://dx.doi.org/10.1016/j.chemosphere.2013.01.075] [PMID: 23466085]
[60]
Yavari S, Malakahmad A, Sapari NB. A review on phytore-mediation of crude oil spills. Water Air Soil Pollut 2015; 226(8): 279.
[http://dx.doi.org/10.1007/s11270-015-2550-z]
[61]
Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 2020; 11: 359.
[http://dx.doi.org/10.3389/fpls.2020.00359] [PMID: 32425957]
[62]
McMichael AJ. The urban environment and health in a world of increasing globalization: Issues for developing countries. Bull World Health Organ 2000; 78(9): 1117-26.
[PMID: 11019460]
[63]
Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH. Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 1995; 29(7): 318A-23A.
[http://dx.doi.org/10.1021/es00007a747] [PMID: 22667744]
[64]
Akpor O, Muchie M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and appli-cations. Int J Phys Sci 2010; 5: 1807-17.
[65]
Khanna P. Assessment of heavy metal contamination in dif-ferent vegetables grown in and around urban areas. Res J En-viron Toxicol 2011; 5(3): 162-79.
[http://dx.doi.org/10.3923/rjet.2011.162.179]
[66]
Jacob JM, Karthik C, Saratale RG, et al. Biological approaches to tackle heavy metal pollution: A survey of literature. J Environ Manage 2018; 217: 56-70.
[http://dx.doi.org/10.1016/j.jenvman.2018.03.077] [PMID: 29597108]
[67]
Rahman Z, Singh VP. The relative impact of toxic heavy met-als (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ Monit Assess 2019; 191(7): 419.
[http://dx.doi.org/10.1007/s10661-019-7528-7] [PMID: 31177337]
[68]
Bradl H. Sources and origins of heavy metals. Interface Sci Technol 2005; 6: 1-27.
[69]
Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011; 2011.
[70]
Förstner U, Wittmann GT. Metal Pollution in the Aquatic Environment. Berlin, Heidelberg: Springer Science & Busi-ness Media 2012.
[71]
David IG, Matache ML, Tudorache A, Chisamera G, Rozy-lowicz L, Radu GL. Food chain biomagnification of heavy metals in samples from the Lower Prut Floodplain Natural Park. Environ Eng Manag J 2012; 11(1): 69-73.
[http://dx.doi.org/10.30638/eemj.2012.010]
[72]
Mulligan C, Yong R, Gibbs B. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng Geol 2001; 60(1-4): 193-207.
[http://dx.doi.org/10.1016/S0013-7952(00)00101-0]
[73]
Vodyanitskii YN. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Sci 2013; 46(7): 793-801.
[http://dx.doi.org/10.1134/S1064229313050153]
[74]
Kumar SS, Kadier A, Malyan SK, Ahmad A, Bishnoi NR. Phytoremediation and rhizoremediation: Uptake, mobilization and sequestration of heavy metals by plants. In: Singh D, Singh H, Prabha R, Eds. Plant-Microbe Interactions in Agro-Ecological Perspectives Singapore: Springer, 2017; pp. 367-94.
[75]
Ovečka M, Takáč T. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnol Adv 2014; 32(1): 73-86.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.011] [PMID: 24333465]
[76]
Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A re-view. Int J Environ Res Public Health 2017; 14(12): 1504.
[http://dx.doi.org/10.3390/ijerph14121504] [PMID: 29207531]
[77]
Mleczek M, Mocek A, Magdziak Z, Gąsecka M, Mocek-Płóciniak A. Impact of metal/metalloid-contaminated areas on plant growth. In: Gupta D, Ed. Plant-Based Remediation Pro-cesses Berlin, Heidelberg: Springer, 2013; pp. 79-100..
[http://dx.doi.org/10.1007/978-3-642-35564-6_5]
[78]
Padmavathiamma PK, Li LY. Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut 2007; 184(1-4): 105-26.
[http://dx.doi.org/10.1007/s11270-007-9401-5]
[79]
Bhargava A, Carmona FF, Bhargava M, Srivastava S. Ap-proaches for enhanced phytoextraction of heavy metals. J Environ Manage 2012; 105: 103-20.
[http://dx.doi.org/10.1016/j.jenvman.2012.04.002] [PMID: 22542973]
[80]
Suresh B, Ravishankar GA. Phytoremediation-a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 2004; 24(2-3): 97-124.
[http://dx.doi.org/10.1080/07388550490493627] [PMID: 15493528]
[81]
Andrianantoandro E, Basu S, Karig DK, Weiss R. Synthetic biology: New engineering rules for an emerging discipline. Mol Syst Biol 2006; 2(1): 2006.0028.
[http://dx.doi.org/10.1038/msb4100073]
[82]
Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 2009; 27(1): 84-93.
[http://dx.doi.org/10.1016/j.biotechadv.2008.09.003] [PMID: 18950697]
[83]
Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci 2011; 180(2): 169-81.
[http://dx.doi.org/10.1016/j.plantsci.2010.08.016] [PMID: 21421358]
[84]
Krämer U, Chardonnens AN. The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 2001; 55(6): 661-72.
[http://dx.doi.org/10.1007/s002530100631] [PMID: 11525612]