NEAT1: A Novel Long Non-coding RNA Involved in Mediating Type 2 Diabetes and its Various Complications

Page: [1342 - 1350] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Nuclear‐enriched abundant transcript 1 (abbreviated as NEAT1) is a long-chain noncoding RNA involved in various physiological and pathological processes. This study aimed to clarify the effect and molecule system of NEAT1 within non-alcoholic fatty liver disease (NAFLD) as well as type 2 diabetes (T2DM).

Methods: In this review, current studies concerning mechanisms of NEAT1l, in the development of type 2 diabetes and its complications have been summarized and analyzed. Also, we searched the papers based on NEAT1 related to NAFLD. The related studies were obtained through a systematic search of Pubmed.

Results: NEAT1 displays a close correlation with how T2DM occurs and develops, and it was confirmed to be significantly up-regulated in T2DM and its various complications (e.g., diabetics nephropathy, diabetics cardiomyopathy, diabetics retinopathy as well as diabetic neuropathy). Besides, NEAT1 is capable of impacting the occurrence, development and prognosis of NAFLD and T2DM.

Conclusion: LncRNA NEAT1 is likely to act as a novel therapeutic target for T2DM and its complications. Moreover, non-alcoholic fatty liver disease is also correlated with NEAT1.

Keywords: Long non-coding RNA (LncRNA), NEAT1, diabetes biomarker, molecular mechanism, therapeutic target, fatty liver disease (NAFLD).

[1]
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: LncRNA localization and function. J Cell Biol 2021; 220(2): 220.
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[2]
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[3]
Yu X, Li Z, Zheng H, Chan MT, Wu WK. NEAT1: A novel cancer-related long non-coding RNA. Cell Prolif 2017; 50(2): 50.
[http://dx.doi.org/10.1111/cpr.12329] [PMID: 28105699]
[4]
Zhang TN, Wang W, Yang N, Huang XM, Liu CF. Regulation of glucose and lipid metabolism by long non-coding RNAs: Facts and research progress. Front Endocrinol (Lausanne) 2020; 11: 457.
[http://dx.doi.org/10.3389/fendo.2020.00457] [PMID: 32765426]
[5]
Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes 2020; 11(3): 253-64.
[http://dx.doi.org/10.1080/19490976.2020.1717719] [PMID: 32005089]
[6]
Tanase DM, Gosav EM, Costea CF, et al. The intricate relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J Diabetes Res 2020; 2020: 3920196.
[http://dx.doi.org/10.1155/2020/3920196] [PMID: 32832560]
[7]
Lin Z, Li X, Zhan X, et al. Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in type 2 diabetes mellitus. J Cell Mol Med 2017; 21(12): 3204-13.
[http://dx.doi.org/10.1111/jcmm.13224] [PMID: 28643459]
[8]
Yang F, Qin Y, Wang Y, et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci 2019; 15(5): 1010-9.
[http://dx.doi.org/10.7150/ijbs.29680] [PMID: 31182921]
[9]
Massier L, Chakaroun R, Tabei S, et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 2020; 69(10): 1796-806.
[http://dx.doi.org/10.1136/gutjnl-2019-320118] [PMID: 32317332]
[10]
Yu S, Cheng Y, Zhang L, et al. Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Res Ther 2019; 10(1): 333.
[http://dx.doi.org/10.1186/s13287-019-1474-8] [PMID: 31747961]
[11]
Drareni K, Gautier JF, Venteclef N, Alzaid F. Transcriptional control of macrophage polarisation in type 2 diabetes. Semin Immunopathol 2019; 41(4): 515-29.
[http://dx.doi.org/10.1007/s00281-019-00748-1] [PMID: 31049647]
[12]
Appari M, Channon KM, McNeill E. Metabolic regulation of adipose tissue macrophage function in obesity and diabetes. Antioxid Redox Signal 2018; 29(3): 297-312.
[http://dx.doi.org/10.1089/ars.2017.7060] [PMID: 28661198]
[13]
Oya A, Katsuyama E, Morita M, et al. Tumor necrosis factor receptor-associated factor 6 is required to inhibit foreign body giant cell formation and activate osteoclasts under inflammatory and infectious conditions. J Bone Miner Metab 2018; 36(6): 679-90.
[http://dx.doi.org/10.1007/s00774-017-0890-z] [PMID: 29273889]
[14]
Yamada H, Umemoto T, Kakei M, et al. Eicosapentaenoic acid shows anti-inflammatory effect via GPR120 in 3T3-L1 adipocytes and attenuates adipose tissue inflammation in diet-induced obese mice. Nutr Metab (Lond) 2017; 14(1): 33.
[http://dx.doi.org/10.1186/s12986-017-0188-0] [PMID: 28503189]
[15]
Wang W, Guo ZH. Downregulation of lncRNA NEAT1 ameliorates LPS-induced inflammatory responses by promoting macrophage M2 polarization via miR-125a-5p/TRAF6/TAK1 axis. Inflammation 2020; 43(4): 1548-60.
[http://dx.doi.org/10.1007/s10753-020-01231-y] [PMID: 32388658]
[16]
Callaghan BC, Gallagher G, Fridman V, Feldman EL. Diabetic neuropathy: What does the future hold? Diabetologia 2020; 63(5): 891-7.
[http://dx.doi.org/10.1007/s00125-020-05085-9] [PMID: 31974731]
[17]
Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: A position statement by the American diabetes association. Diabetes Care 2017; 40(1): 136-54.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[18]
Asadi G, Rezaei Varmaziar F, Karimi M, et al. Determination of the transcriptional level of long non-coding RNA NEAT-1, downstream target microRNAs, and genes targeted by microRNAs in diabetic neuropathy patients. Immunol Lett 2021; 232: 20-6.
[http://dx.doi.org/10.1016/j.imlet.2021.01.007] [PMID: 33508370]
[19]
Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: New perspectives and challenges. Lancet Diabetes Endocrinol 2020; 8(4): 337-47.
[http://dx.doi.org/10.1016/S2213-8587(19)30411-5] [PMID: 32113513]
[20]
Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: A position statement by the American diabetes association. Diabetes Care 2017; 40(3): 412-8.
[http://dx.doi.org/10.2337/dc16-2641] [PMID: 28223445]
[21]
Fu SH, Lai MC, Zheng YY, et al. miR-195 inhibits the ubiquitination and degradation of YY1 by Smurf2, and induces EMT and cell permeability of retinal pigment epithelial cells. Cell Death Dis 2021; 12(7): 708.
[http://dx.doi.org/10.1038/s41419-021-03956-6] [PMID: 34267179]
[22]
Shukal D, Bhadresha K, Shastri B, Mehta D, Vasavada A, Johar K Sr. Dichloroacetate prevents TGFβ-induced epithelial-mesenchymal transition of retinal pigment epithelial cells. Exp Eye Res 2020; 197: 108072.
[http://dx.doi.org/10.1016/j.exer.2020.108072] [PMID: 32473169]
[23]
Wang X, Xu Y, Zhu YC, et al. LncRNA NEAT1 promotes extracellular matrix accumulation and epithelial-to-mesenchymal transition by targeting miR-27b-3p and ZEB1 in diabetic nephropathy. J Cell Physiol 2019; 234(8): 12926-33.
[http://dx.doi.org/10.1002/jcp.27959] [PMID: 30549040]
[24]
Yang Y, Zhou J, Li WH, Zhou ZX, Xia XB. LncRNA NEAT1 regulated diabetic retinal epithelial-mesenchymal transition through regulating miR-204/SOX4 axis. PeerJ 2021; 9: e11817.
[http://dx.doi.org/10.7717/peerj.11817] [PMID: 34386303]
[25]
Qi B, He L, Zhao Y, et al. Akap1 deficiency exacerbates diabetic cardiomyopathy in mice by NDUFS1-mediated mitochondrial dysfunction and apoptosis. Diabetologia 2020; 63(5): 1072-87.
[http://dx.doi.org/10.1007/s00125-020-05103-w] [PMID: 32072193]
[26]
Wang Y, Luo W, Han J, et al. MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy. Nat Commun 2020; 11(1): 2148.
[http://dx.doi.org/10.1038/s41467-020-15978-3] [PMID: 32358497]
[27]
Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res 2020; 126(11): 1501-25.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315913] [PMID: 32437308]
[28]
Yin Z, Zhao Y, He M, et al. MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα. Cardiovasc Diabetol 2019; 18(1): 7.
[http://dx.doi.org/10.1186/s12933-019-0811-7] [PMID: 30635067]
[29]
Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. Int J Mol Sci 2021; 22(10): 22.
[http://dx.doi.org/10.3390/ijms22105094] [PMID: 34065781]
[30]
Ma M, Hui J, Zhang QY, Zhu Y, He Y, Liu XJ. Long non-coding RNA nuclear-enriched abundant transcript 1 inhibition blunts myocardial ischemia reperfusion injury via autophagic flux arrest and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 2018; 277: 113-22.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.08.031] [PMID: 30205319]
[31]
Yang S, Li H, Chen L. MicroRNA-140 attenuates myocardial ischemia-reperfusion injury through suppressing mitochondria-mediated apoptosis by targeting YES1. J Cell Biochem 2019; 120(3): 3813-21.
[http://dx.doi.org/10.1002/jcb.27663] [PMID: 30259997]
[32]
Zou G, Zhong W, Wu F, Wang X, Liu L. Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis. Biochimie 2019; 165: 90-9.
[http://dx.doi.org/10.1016/j.biochi.2019.05.005] [PMID: 31078585]
[33]
Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci 2020; 21(11): 21.
[http://dx.doi.org/10.3390/ijms21113798] [PMID: 32471207]
[34]
Lv J, Wu Y, Mai Y, Bu S. Noncoding RNAs in diabetic nephropathy: Pathogenesis, biomarkers, and therapy. J Diabetes Res 2020; 2020: 3960857.
[http://dx.doi.org/10.1155/2020/3960857] [PMID: 32656264]
[35]
Wang W, Sun W, Cheng Y, Xu Z, Cai L. Management of diabetic nephropathy: The role of sirtuin-1. Future Med Chem 2019; 11(17): 2241-5.
[http://dx.doi.org/10.4155/fmc-2019-0153] [PMID: 31581918]
[36]
Tsai YC, Kuo MC, Hung WW, et al. High glucose induces mesangial cell apoptosis through miR-15b-5p and promotes diabetic nephropathy by extracellular vesicle delivery. Mol Ther 2020; 28(3): 963-74.
[http://dx.doi.org/10.1016/j.ymthe.2020.01.014] [PMID: 31991106]
[37]
Ge X, Xu B, Xu W, et al. Long noncoding RNA GAS5 inhibits cell proliferation and fibrosis in diabetic nephropathy by sponging miR-221 and modulating SIRT1 expression. Aging (Albany NY) 2019; 11(20): 8745-59.
[http://dx.doi.org/10.18632/aging.102249] [PMID: 31631065]
[38]
Huang S, Xu Y, Ge X, et al. Long noncoding RNA NEAT1 accelerates the proliferation and fibrosis in diabetic nephropathy through activating Akt/mTOR signaling pathway. J Cell Physiol 2019; 234(7): 11200-7.
[http://dx.doi.org/10.1002/jcp.27770] [PMID: 30515796]
[39]
Jiang D, Chen S, Sun R, Zhang X, Wang D. The NLRP3 inflammasome: Role in metabolic disorders and regulation by metabolic pathways. Cancer Lett 2018; 419: 8-19.
[http://dx.doi.org/10.1016/j.canlet.2018.01.034] [PMID: 29339210]
[40]
Shahzad K, Bock F, Al-Dabet MM, et al. Caspase-1, but not caspase-3, promotes diabetic nephropathy. J Am Soc Nephrol 2016; 27(8): 2270-5.
[http://dx.doi.org/10.1681/ASN.2015060676] [PMID: 26832955]
[41]
Zhang P, Cao L, Zhou R, Yang X, Wu M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun 2019; 10(1): 1495.
[http://dx.doi.org/10.1038/s41467-019-09482-6] [PMID: 30940803]
[42]
Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M. Identification of candidate microRNA biomarkers in diabetic nephropathy: A meta-analysis of profiling studies. J Nephrol 2018; 31(6): 813-31.
[http://dx.doi.org/10.1007/s40620-018-0511-5] [PMID: 30019103]
[43]
Shahzad K, Bock F, Dong W, et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 2015; 87(1): 74-84.
[http://dx.doi.org/10.1038/ki.2014.271] [PMID: 25075770]
[44]
Zhan JF, Huang HW, Huang C, Hu LL, Xu WW. Long non-coding RNA NEAT1 regulates pyroptosis in diabetic nephropathy via mediating the miR-34c/NLRP3 Axis. Kidney Blood Press Res 2020; 45(4): 589-602.
[http://dx.doi.org/10.1159/000508372] [PMID: 32721950]
[45]
Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J Am Soc Nephrol 2017; 28(4): 1023-39.
[http://dx.doi.org/10.1681/ASN.2016060666] [PMID: 28143897]
[46]
Hostetter TH. Hypertrophy and hyperfunction of the diabetic kidney. J Clin Invest 2001; 107(2): 161-2.
[http://dx.doi.org/10.1172/JCI12066] [PMID: 11160131]
[47]
Young BA, Johnson RJ, Alpers CE, et al. Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int 1995; 47(3): 935-44.
[http://dx.doi.org/10.1038/ki.1995.139] [PMID: 7752595]
[48]
Li T, Yang GM, Zhu Y, et al. Diabetes and hyperlipidemia induce dysfunction of VSMCs: Contribution of the metabolic inflammation/miRNA pathway. Am J Physiol Endocrinol Metab 2015; 308(4): E257-69.
[http://dx.doi.org/10.1152/ajpendo.00348.2014] [PMID: 25425000]
[49]
Liao L, Chen J, Zhang C, et al. LncRNA NEAT1 promotes high glucose-induced mesangial cell hypertrophy by targeting miR-222-3p/CDKN1B axis. Front Mol Biosci 2021; 7: 627827.
[http://dx.doi.org/10.3389/fmolb.2020.627827] [PMID: 33585566]
[50]
Jiang XS, Xiang XY, Chen XM, et al. Inhibition of soluble epoxide hydrolase attenuates renal tubular mitochondrial dysfunction and ER stress by restoring autophagic flux in diabetic nephropathy. Cell Death Dis 2020; 11(5): 385.
[http://dx.doi.org/10.1038/s41419-020-2594-x] [PMID: 32439839]
[51]
Su J, Ren J, Chen H, Liu B. microRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells. Biosci Rep 2020; 40(3): 40.
[http://dx.doi.org/10.1042/BSR20192384] [PMID: 32073611]
[52]
Wu X, Cui W, Guo W, et al. Acrolein aggravates secondary brain injury after intracerebral hemorrhage through Drp1-mediated mitochondrial oxidative damage in mice. Neurosci Bull 2020; 36(10): 1158-70.
[http://dx.doi.org/10.1007/s12264-020-00505-7] [PMID: 32436179]
[53]
Yu Z, Li Q, Wang Y, Li P. A potent protective effect of baicalein on liver injury by regulating mitochondria-related apoptosis. Apoptosis 2020; 25(5-6): 412-25.
[http://dx.doi.org/10.1007/s10495-020-01608-2] [PMID: 32409930]
[54]
Zhang L, Ji L, Tang X, et al. Inhibition to DRP1 translocation can mitigate p38 MAPK-signaling pathway activation in GMC induced by hyperglycemia. Ren Fail 2015; 37(5): 903-10.
[http://dx.doi.org/10.3109/0886022X.2015.1034607] [PMID: 25857570]
[55]
Zuo W, Yan F, Liu Z, Zhang B. miR-330 regulates Drp-1 mediated mitophagy by targeting PGAM5 in a rat model of permanent focal cerebral ischemia. Eur J Pharmacol 2020; 880: 173143.
[http://dx.doi.org/10.1016/j.ejphar.2020.173143] [PMID: 32360974]
[56]
Yang DY, Zhou X, Liu ZW, Xu XQ, Liu C. LncRNA NEAT1 accelerates renal tubular epithelial cell damage by modulating mitophagy via miR-150-5p-DRP1 axis in diabetic nephropathy. Exp Physiol 2021; 106(7): 1631-42.
[http://dx.doi.org/10.1113/EP089547] [PMID: 33914383]
[57]
Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcoholic steatohepatitis: A review. JAMA 2020; 323(12): 1175-83.
[http://dx.doi.org/10.1001/jama.2020.2298] [PMID: 32207804]
[58]
Brouwers MCGJ, Simons N, Stehouwer CDA, Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: Assessing the evidence for causality. Diabetologia 2020; 63(2): 253-60.
[http://dx.doi.org/10.1007/s00125-019-05024-3] [PMID: 31713012]
[59]
Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol 2019; 71(4): 793-801.
[http://dx.doi.org/10.1016/j.jhep.2019.06.021] [PMID: 31279902]
[60]
Fujii H, Kawada N. Japan Study Group Of Nafld J-N. The role of insulin resistance and diabetes in nonalcoholic fatty liver disease. Int J Mol Sci 2020; 21.
[61]
Wang X. Down-regulation of lncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway. J Cell Biochem 2018; 119(2): 1567-74.
[http://dx.doi.org/10.1002/jcb.26317] [PMID: 28771824]
[62]
Du J, Niu X, Wang Y, et al. miR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep 2015; 5(1): 16163.
[http://dx.doi.org/10.1038/srep16163] [PMID: 26537990]
[63]
Huang H, Lee SH, Sousa-Lima I, et al. Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. J Clin Invest 2018; 128(12): 5335-50.
[http://dx.doi.org/10.1172/JCI63562] [PMID: 30226474]
[64]
Chen X, Tan XR, Li SJ, Zhang XX. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sci 2019; 235: 116829.
[http://dx.doi.org/10.1016/j.lfs.2019.116829] [PMID: 31484042]
[65]
Chen Y, Ou Y, Dong J, et al. Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Exp Cell Res 2018; 362(2): 343-8.
[http://dx.doi.org/10.1016/j.yexcr.2017.11.035] [PMID: 29196165]
[66]
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[67]
Zhang Z, Wen H, Peng B, Weng J, Zeng F. Downregulated microRNA-129-5p by long non-coding RNA NEAT1 upregulates PEG3 expression to aggravate non-alcoholic steatohepatitis. Front Genet 2021; 11: 563265.
[http://dx.doi.org/10.3389/fgene.2020.563265] [PMID: 33574830]