Nucleic Acid-conjugated Carbohydrate Nanobiosensors: A Multimodal Tool for Disease Diagnosis

Page: [2461 - 2477] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Nucleic acid-based carbohydrate sensors (NAbCSs) constitute a strategy involving nucleic acids as recognition elements for the development of a unique, stable, sensitive, mono- or multimodal detection system in the field of nanomedicine, gas sensing, and gene therapy. Thus, this advanced platform for next-generation investigation compromises cost-effective, wearable, and noninvasive sensing devices as diagnostics in healthcare.

Objective: This review article highlights the importance of NAbCSs and explores the novel applications of sensors fabricated via the conjugation of nucleic acids and carbohydrates. Additionally, advances in smart portable devices, like smartphones, printers, and digital multimeters, are summarized, followed by the challenges involved in the development of futuristic sensing tools.

Methods: A novel platform has been unfolded for the detection of different chemical toxins (like aflatoxin B1, ochratoxin A) and biomarkers (like miRNA in cancer) present in biosamples, food and biowarfare agents. The potential applications of biosensing in the areas of miniaturization, reusability, rapid, point-of-care or portable for home analysis techniques, cost-effective, eco-friendly, high throughput and personalized sensors for qualitative analysis of target analyte/s in bio-fluids and food have been explored.

Conclusion: NAbCSs provide real-time monitoring of biosamples qualitatively and semi-quantitatively (luminometer, fluorimeter, etc.) in the absence of trained personnel. Explorations of NAbCSs encompass advantages in remote resource-limited access areas with simultaneous monitoring via smart devices for multiple analytes with greater precision, sensitivity, and selectivity.

Keywords: Nucleic acids, carbohydrates, biosensors, paper-based portable devices, aptasensors, semi-quantitatively.

[1]
Ertl P, Mikkelsen SR. Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal Chem 2001; 73(17): 4241-8.
[http://dx.doi.org/10.1021/ac010324l] [PMID: 11569815]
[2]
Ren W, Ahmad S, Irudayaraj J. 16S rRNA monitoring point-of-care magnetic focus lateral flow sensor. ACS Omega 2021; 6(16): 11095-102.
[http://dx.doi.org/10.1021/acsomega.1c01307] [PMID: 34056264]
[3]
Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon JY. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Advances 2014; 4(22): 11103-10.
[http://dx.doi.org/10.1039/c3ra47688j]
[4]
Liu CC, Yeung CY, Chen PH, Yeh MK, Hou SY. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay. Food Chem 2013; 141(3): 2526-32.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.089] [PMID: 23870991]
[5]
Tammam SN, Khalil MAF, Abdul Gawad E, Althani A, Zaghloul H, Azzazy HME. Chitosan gold nanoparticles for detection of amplified nucleic acids isolated from sputum. Carbohydr Polym 2017; 164: 57-63.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.051] [PMID: 28325344]
[6]
Yoon J, Shin M, Lee T, Choi JW. Highly sensitive biosensors based on biomolecules and functional nanomaterials depending on the types of nanomaterials: A perspective review. Materials 2020; 13(2): 1-21.
[http://dx.doi.org/10.3390/ma13020299] [PMID: 31936530]
[7]
Gao X, Xu L-P, Zhou S-F, Liu G, Zhang X. Recent advances in nanoparticles-based lateral flow biosensors. Am J Biomed Sci 2014; 6: 41-57.
[http://dx.doi.org/10.5099/aj140100041]
[8]
Kalogianni DP, Goura S, Aletras AJ, et al. Dry reagent dipstick test combined with 23S rRNA PCR for molecular diagnosis of bacterial infection in arthroplasty. Anal Biochem 2007; 361(2): 169-75.
[http://dx.doi.org/10.1016/j.ab.2006.11.013] [PMID: 17196544]
[9]
Guo L, Lu B, Dong Q, Tang Y, Du Y, Li B. One-tube smart genetic testing via coupling isothermal amplification and three-way nucleic acid circuit to glucometers. Anal Chim Acta 2020; 1106: 191-8.
[http://dx.doi.org/10.1016/j.aca.2020.01.068] [PMID: 32145848]
[10]
Gan W, Gu Y, Han J, Li CX, Sun J, Liu P. Chitosan-modified filter paper for nucleic acid extraction and “in situ PCR” on a thermoplastic microchip. Anal Chem 2017; 89(6): 3568-75.
[http://dx.doi.org/10.1021/acs.analchem.6b04882] [PMID: 28230980]
[11]
Rohrman BA, Richards-Kortum RR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip 2012; 12(17): 3082-8.
[http://dx.doi.org/10.1039/c2lc40423k] [PMID: 22733333]
[12]
Wittung P, Nielsen PE, Buchardt O, Egholm M, Nordén B. DNA-like double helix formed by peptide nucleic acid. Nature 1994; 368(6471): 561-3.
[http://dx.doi.org/10.1038/368561a0] [PMID: 8139692]
[13]
Zatsepin TS, Oretskaya TS. Synthesis and applications of oligonucleotide-carbohydrate conjugates. Chem Biodivers 2004; 1(10): 1401-17.
[http://dx.doi.org/10.1002/cbdv.200490104] [PMID: 17191787]
[14]
Navani NK, Li Y. Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 2006; 10(3): 272-81.
[http://dx.doi.org/10.1016/j.cbpa.2006.04.003] [PMID: 16678470]
[15]
Li D, Song S, Fan C. Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 2010; 43(5): 631-41.
[http://dx.doi.org/10.1021/ar900245u] [PMID: 20222738]
[16]
Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev 2009; 109(5): 1948-98.
[http://dx.doi.org/10.1021/cr030183i] [PMID: 19301873]
[17]
Palchetti I, Mascini M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008; 133(7): 846-54.
[http://dx.doi.org/10.1039/b802920m] [PMID: 18575633]
[18]
Liu R, McConnell EM, Li J, Li Y. Advances in functional nucleic acid based paper sensors. J Mater Chem B Mater Biol Med 2020; 8(16): 3213-30.
[http://dx.doi.org/10.1039/C9TB02584G] [PMID: 31942914]
[19]
Mondal B, Ramlal S, Lavu PS. N B, Kingston J. Highly sensitive colorimetric biosensor for staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Front Microbiol 2018; 9: 179.
[http://dx.doi.org/10.3389/fmicb.2018.00179] [PMID: 29487580]
[20]
Bala A, Górski Ł. Application of nucleic acid analogues as receptor layers for biosensors. Anal Methods 2016; 8(2): 236-44.
[http://dx.doi.org/10.1039/C5AY02620B]
[21]
Monošík R, Streďanský M, Šturdík E. Biosensors - classification, characterization and new trends. Acta Chim Slov 2012; 5(1): 109-20.
[http://dx.doi.org/10.2478/v10188-012-0017-z]
[22]
Wu Z, Shen H, Hu J, et al. Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water samples. Anal Bioanal Chem 2017; 409(22): 5209-16.
[http://dx.doi.org/10.1007/s00216-017-0491-7] [PMID: 28730311]
[23]
Turner APF. Biosensors: Sense and sensibility. Chem Soc Rev 2013; 42(8): 3184-96.
[http://dx.doi.org/10.1039/c3cs35528d] [PMID: 23420144]
[24]
Torres-Chavolla E, Alocilja EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron 2011; 26(11): 4614-8.
[http://dx.doi.org/10.1016/j.bios.2011.04.055] [PMID: 21616654]
[25]
Sizovs A, McLendon PM, Srinivasachari S, Reineke TM. Carbohydrate polymers for nonviral nucleic acid delivery. Top Curr Chem 2010; 296: 131-90.
[http://dx.doi.org/10.1007/128_2010_68] [PMID: 21504102]
[26]
Suginta W, Khunkaewla P, Schulte A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 2013; 113(7): 5458-79.
[http://dx.doi.org/10.1021/cr300325r] [PMID: 23557137]
[27]
Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: Recommended definitions and classification. Biosens Bioelectron 2001; 16(1-2): 121-31.
[http://dx.doi.org/10.1081/AL-100103209] [PMID: 11261847]
[28]
Kamel SA, Khattab T. Recent advances in cellulose-based biosensors for medical diagnosis. Biosensors 2020; 10(6): 1-26.
[http://dx.doi.org/10.3390/bios10060067] [PMID: 32560377]
[29]
Sassolas A, Leca-Bouvier BD, Blum LJ. ChemInform Abstract: DNA Biosensors and Microarrays. ChemInform 2008; 39(17)
[http://dx.doi.org/10.1002/chin.200817270]
[30]
Cunningham S, Gerlach JQ, Kane M, Joshi L. Glyco-biosensors: Recent advances and applications for the detection of free and bound carbohydrates. Analyst 2010; 135(10): 2471-80.
[http://dx.doi.org/10.1039/c0an00276c] [PMID: 20714521]
[31]
Huang CY, Thayer DA, Chang AY, et al. Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc Natl Acad Sci 2006; 103(1): 15-20.
[http://dx.doi.org/10.1073/pnas.0509693102] [PMID: 16373501]
[32]
Huang Y, Wang W, Wu T, Xu LP, Wen Y, Zhang X. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification. Anal Bioanal Chem 2016; 408(28): 8195-202.
[http://dx.doi.org/10.1007/s00216-016-9925-x] [PMID: 27624762]
[33]
Bhattacharjee M, Bandyopadhyay D. Flexible paper touchpad for Parkinson’s hand tremor detection. Sens Actuators A Phys 2019; 294: 164-72.
[http://dx.doi.org/10.1016/j.sna.2019.05.006]
[34]
Dutta S, Mandal N, Bandyopadhyay D. Paper-based α-amylase detector for point-of-care diagnostics. Biosens Bioelectron 2016; 78: 447-53.
[http://dx.doi.org/10.1016/j.bios.2015.11.075] [PMID: 26655186]
[35]
Lee K, Povlich LK, Kim J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 2010; 135(9): 2179-89.
[http://dx.doi.org/10.1039/c0an00239a] [PMID: 20539893]
[36]
Jelinek R, Kolusheva S. Carbohydrate biosensors. Chem Rev 2004; 104(12): 5987-6015.
[http://dx.doi.org/10.1021/cr0300284] [PMID: 15584694]
[37]
Zourob M. Recognition receptors in biosensors New York, NY. Springer: Berlin 2010.
[http://dx.doi.org/10.1007/978-1-4419-0919-0]
[38]
Xu S, Zhang Y, Dong K, Wen J, Zheng C, Zhao S. Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection of Escherichia coli O157:H7. Int J Electrochem Sci 2017; 12: 3443-58.
[http://dx.doi.org/10.20964/2017.04.16]
[39]
Huang DB. A pharmacokinetic and pharmacodynamic evaluation of iclaprim activity against wild-type and corresponding thymidine kinase-deficient Staphylococcus aureus in a mouse abscess model. J Med Microbiol 2019; 68(1): 77-80.
[http://dx.doi.org/10.1099/jmm.0.000878] [PMID: 30451652]
[40]
Disney MD, Seeberger PH. Aminoglycoside microarrays to explore interactions of antibiotics with RNAs and proteins. Chemistry 2004; 10(13): 3308-14.
[http://dx.doi.org/10.1002/chem.200306017] [PMID: 15224340]
[41]
Disney MD, Seeberger PH. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 2004; 11(12): 1701-7.
[http://dx.doi.org/10.1016/j.chembiol.2004.10.011] [PMID: 15610854]
[42]
Wiese A, Brandenburg K, Ulmer AJ, Seydel U, Müller-Loennies S. The dual role of lipopolysaccharide as effector and target molecule. Biol Chem 1999; 380(7-8): 767-84.
[http://dx.doi.org/10.1515/BC.1999.097] [PMID: 10494826]
[43]
Ertl P, Wagner M, Corton E, Mikkelsen SR. Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosens Bioelectron 2003; 18(7): 907-16.
[http://dx.doi.org/10.1016/S0956-5663(02)00206-3] [PMID: 12713914]
[44]
Shende P, Prabhakar B, Patil A. Color changing sensors: A multimodal system for integrated screening. TrAC -Trends Analyt Chem 2019; 121: 115687.
[http://dx.doi.org/10.1016/j.trac.2019.115687]
[45]
Chang C, Chen C, Wu T, Yang C, Lin C, Chen C. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials 2019; 9(6): 861.
[http://dx.doi.org/10.3390/nano9060861]
[46]
Liu M, Wang J, Chang Y, et al. In vitro selection of a DNA aptamer targeting degraded protein fragments for biosensing. Angew Chem Int Ed Engl 2020; 59(20): 7706-10.
[http://dx.doi.org/10.1002/anie.202000025] [PMID: 32155319]
[47]
Kim MS, Kim DH, Lee J. Self color-changing ordered mesoporous ceria for reagent-free colorimetric biosensing. Nanoscale 2020; 12(3): 1419-24.
[http://dx.doi.org/10.1039/x0xx00000x]
[48]
Link N, Weber W, Fussenegger M. A novel generic dipstick-based technology for rapid and precise detection of tetracycline, streptogramin and macrolide antibiotics in food samples. J Biotechnol 2007; 128(3): 668-80.
[http://dx.doi.org/10.1016/j.jbiotec.2006.11.011] [PMID: 17196286]
[49]
Baetsen-Young AM, Vasher M, Matta LL, Colgan P, Alocilja EC, Day B. Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles. Biosens Bioelectron 2018; 101: 29-36.
[http://dx.doi.org/10.1016/j.bios.2017.10.011] [PMID: 29031887]
[50]
Ganguly K, Patel DK, Dutta SD, Lim KT. TEMPO-cellulose nanocrystal-capped gold nanoparticles for colorimetric detection of pathogenic DNA. ACS Omega 2021; 6(19): 12424-31.
[http://dx.doi.org/10.1021/acsomega.1c00359] [PMID: 34056393]
[51]
Sattarahmady N, Tondro GH, Gholchin M, Heli H. Gold nanoparticles biosensor of Brucella spp. genomic DNA: Visual and spectrophotometric detections. Biochem Eng J 2015; 97: 1-7.
[http://dx.doi.org/10.1016/j.bej.2015.01.010]
[52]
Liu J, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 2003; 125(22): 6642-3.
[http://dx.doi.org/10.1021/ja034775u] [PMID: 12769568]
[53]
Bosak A, Saraf N, Willenberg A, et al. Aptamer-gold nanoparticle conjugates for the colorimetric detection of arboviruses and vector mosquito species. RSC Advances 2019; 9(41): 23752-63.
[http://dx.doi.org/10.1039/C9RA02089F]
[54]
Yrad FM, Castañares JM, Alocilja EC. Visual detection of dengue-1 RNA using gold nanoparticle-based lateral flow biosensor. Diagnostics 2019; 9(3): 1-14.
[http://dx.doi.org/10.3390/diagnostics9030074] [PMID: 31336721]
[55]
Huang Y-H, Yu K-Y, Huang S-P, et al. Development of a nucleic acid lateral flow immunoassay for the detection of human polyomavirus BK. Diagnostics 2020; 10(6): 403.
[http://dx.doi.org/10.3390/diagnostics10060403] [PMID: 32545649]
[56]
Castineiras TMPP, Nascimento ÉRDS, Faffe DS, et al. Performance of an alternative RT-PCR procedure using residual sample from the Panbio™ Ag COVID-19 test. Braz J Infect Dis 2021; 25(5): 101630.
[http://dx.doi.org/10.1016/j.bjid.2021.101630] [PMID: 34648741]
[57]
Zhu Q, Wang H, Cao Y, et al. Evaluation of microfluidics-based droplet PCR combined with multiplex STR system in forensic science. Electrophoresis 2021. elps.202100239.
[http://dx.doi.org/10.1002/elps.202100239] [PMID: 34842292]
[58]
Yi H, Wu LQ, Bentley WE, et al. Biofabrication with chitosan. Biomacromolecules 2005; 6(6): 2881-94.
[http://dx.doi.org/10.1021/bm050410l] [PMID: 16283704]
[59]
Kufelt O, El-Tamer A, Sehring C, Meißner M, Schlie-Wolter S, Chichkov BN. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomater 2015; 18: 186-95.
[http://dx.doi.org/10.1016/j.actbio.2015.02.025] [PMID: 25749294]
[60]
Abu-Salah KM, Zourob MM, Mouffouk F, Alrokayan SA, Alaamery MA, Ansari AA. DNA-based nanobiosensors as an emerging platform for detection of disease. Sensors 2015; 15(6): 14539-68.
[http://dx.doi.org/10.3390/s150614539] [PMID: 26102488]
[61]
Singh R, Verma R, Kaushik A, et al. Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. Biosens Bioelectron 2011; 26(6): 2967-74.
[http://dx.doi.org/10.1016/j.bios.2010.11.047] [PMID: 21190837]
[62]
Singh R, Sumana G, Verma R, et al. Fabrication of Neisseria gonorrhoeae biosensor based on chitosan-MWCNT platform. Thin Solid Films 2010; 519(3): 1135-40.
[http://dx.doi.org/10.1016/j.tsf.2010.08.057]
[63]
Arias P, Ferreyra NF, Rivas GA, Bollo S. Glassy carbon electrodes modified with CNT dispersed in chitosan: Analytical applications for sensing DNA-methylene blue interaction. J Electroanal Chem 2009; 634(2): 123-6.
[http://dx.doi.org/10.1016/j.jelechem.2009.07.022]
[64]
Alizadeh T, Atashi F, Ganjali MR. Molecularly imprinted polymer nano-sphere/multi-walled carbon nanotube coated glassy carbon electrode as an ultra-sensitive voltammetric sensor for picomolar level determination of RDX. Talanta 2019; 194: 415-21.
[http://dx.doi.org/10.1016/j.talanta.2018.10.040] [PMID: 30609552]
[65]
Ponnaiah SK, Periakaruppan P, Vellaichamy B. New electrochemical sensor based on a silver-doped iron oxide nanocomposite coupled with polyaniline and its sensing application for picomolar-level detection of uric acid in human blood and urine samples. J Phys Chem B 2018; 122(12): 3037-46.
[http://dx.doi.org/10.1021/acs.jpcb.7b11504] [PMID: 29498856]
[66]
Aghajari R, Azadbakht A. Amplified detection of streptomycin using aptamer-conjugated palladium nanoparticles decorated on chitosan-carbon nanotube. Anal Biochem 2018; 547: 57-65.
[http://dx.doi.org/10.1016/j.ab.2018.02.005] [PMID: 29428376]
[67]
Prabhakar N, Thakur H, Bharti A, Kaur N. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion. Anal Chim Acta 2016; 939: 108-16.
[http://dx.doi.org/10.1016/j.aca.2016.08.015] [PMID: 27639149]
[68]
Cao W, Easley CJ, Ferrance JP, Landers JP. Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. Anal Chem 2006; 78(20): 7222-8.
[http://dx.doi.org/10.1021/ac060391l] [PMID: 17037925]
[69]
Ye D, Li L, Li Z, et al. Molecular threading-dependent mass transport in paper origami for single-step electrochemical DNA sensors. Nano Lett 2019; 19(1): 369-74.
[http://dx.doi.org/10.1021/acs.nanolett.8b04051] [PMID: 30511869]
[70]
Gong MM, Sinton D. Turning the page: Advancing paper-based microfluidics for broad diagnostic application. Chem Rev 2017; 117(12): 8447-80.
[http://dx.doi.org/10.1021/acs.chemrev.7b00024] [PMID: 28627178]
[71]
Chen X, Lan J, Liu Y, et al. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens Bioelectron 2018; 102: 582-8.
[http://dx.doi.org/10.1016/j.bios.2017.12.012] [PMID: 29241062]
[72]
Wang L, Zhu F, Zhu Y, et al. Intelligent platform for simultaneous detection of multiple aminoglycosides based on a ratiometric paper-based device with digital fluorescence detector readout. ACS Sens 2019; 4(12): 3283-90.
[http://dx.doi.org/10.1021/acssensors.9b01845] [PMID: 31736294]
[73]
Sizovs A, Xue L, Tolstyka ZP, et al. Poly(trehalose): Sugar-coated nanocomplexes promote stabilization and effective polyplex-mediated siRNA delivery. J Am Chem Soc 2013; 135(41): 15417-24.
[http://dx.doi.org/10.1021/ja404941p] [PMID: 24083547]
[74]
Zhu C, Zhang G, Huang Y, et al. Dual-competitive lateral flow aptasensor for detection of aflatoxin B1 in food and feedstuffs. J Hazard Mater 2018; 344: 249-57.
[http://dx.doi.org/10.1016/j.jhazmat.2017.10.026] [PMID: 29055198]
[75]
Wu S, Liu L, Duan N, Wang W, Yu Q, Wang Z. A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Mikrochim Acta 2018; 185(11): 497.
[http://dx.doi.org/10.1007/s00604-018-3022-0] [PMID: 30291459]
[76]
Wang L, Chen W, Ma W, et al. Fluorescent strip sensor for rapid determination of toxins. Chem Commun 2011; 47(5): 1574-6.
[http://dx.doi.org/10.1039/C0CC04032K] [PMID: 21116526]
[77]
Geng J, Liao L-D, Qin W, Tang BZ, Thakor N, Liu B. Fluorogens with aggregation induced emission: Ideal photoacoustic contrast reagents due to intramolecular rotation. J Nanosci Nanotechnol 2015; 15(2): 1864-8.
[http://dx.doi.org/10.1166/jnn.2015.10031] [PMID: 26353745]
[78]
Li H, Chang J, Lyu W, Li F. Aggregation induced emission fluorogen-based label-free biosensor for highly sensitive detection of carcinoembryonic antigen. Chin J Anal Chem 2020; 48(10): 1325-33.
[http://dx.doi.org/10.1016/S1872-2040(20)60051-2]
[79]
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: a trailblazing journey to the field of biomedicine. ACS Appl Bio Mater 2018; 1(6): 1768-86.
[http://dx.doi.org/10.1021/acsabm.8b00600] [PMID: 34996278]
[80]
Ali MM, Brown CL, Jahanshahi-Anbuhi S, et al. A printed multicomponent paper sensor for bacterial detection. Sci Rep 2017; 7(1): 12335.
[http://dx.doi.org/10.1038/s41598-017-12549-3] [PMID: 28951563]
[81]
He M, Li Z, Ge Y, Liu Z. Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Anal Chem 2016; 88(3): 1530-4.
[http://dx.doi.org/10.1021/acs.analchem.5b04863] [PMID: 26786499]
[82]
Zhang Y, Zuo P, Ye BC. A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 2015; 68: 14-9.
[http://dx.doi.org/10.1016/j.bios.2014.12.042] [PMID: 25558869]
[83]
Zhu X, Zhao J, Hu A, et al. A novel microfluidic device integrated with chitosan-modified capillaries for rapid ZIKV detection. Micromachines 2020; 11(2): E186.
[http://dx.doi.org/10.3390/mi11020186] [PMID: 32054007]
[84]
Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Xu Y. Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters’ fluorescence. Biosens Bioelectron 2015; 64: 345-51.
[http://dx.doi.org/10.1016/j.bios.2014.09.029] [PMID: 25259877]
[85]
Qian R-C, Cao Y, Zhao L-J, Gu Z, Long Y-T. A Two-stage dissociation system for multilayer imaging of cancer biomarker-synergic networks in single cells. Angew Chem Int Ed Engl 2017; 56(17): 4802-5.
[http://dx.doi.org/10.1002/anie.201702415] [PMID: 28371285]
[86]
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and challenges of fluorescent nanomaterials for synthesis and biomedical applications. Nanoscale Res Lett 2021; 16(1): 167.
[http://dx.doi.org/10.1186/s11671-021-03613-z] [PMID: 34837561]
[87]
Bastiat G, Pritz CO, Roider C, et al. A new tool to ensure the fluorescent dye labeling stability of nanocarriers: A real challenge for fluorescence imaging. J Control Release 2013; 170(3): 334-42.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.014] [PMID: 23792117]
[88]
Winterbourn CC. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 2014; 1840(2): 730-8.
[http://dx.doi.org/10.1016/j.bbagen.2013.05.004] [PMID: 23665586]
[89]
Liang W, Fan C, Zhuo Y, et al. Multiparameter analysis-based electrochemiluminescent assay for simultaneous detection of multiple biomarker proteins on a single interface. Anal Chem 2016; 88(9): 4940-8.
[http://dx.doi.org/10.1021/acs.analchem.6b00878] [PMID: 27064937]
[90]
Yan C, Yang L, Yao L, et al. Ingenious electrochemiluminescence bioaptasensor based on synergistic effects and enzyme-driven programmable 3D DNA nanoflowers for ultrasensitive detection of Aflatoxin B1. Anal Chem 2020; 92(20): 14122-9.
[http://dx.doi.org/10.1021/acs.analchem.0c03132] [PMID: 32954718]
[91]
Tian L, Qi J, Ma X, et al. A facile DNA strand displacement reaction sensing strategy of electrochemical biosensor based on N-carboxymethyl chitosan/molybdenum carbide nanocomposite for microRNA-21 detection. Biosens Bioelectron 2018; 122: 43-50.
[http://dx.doi.org/10.1016/j.bios.2018.09.037] [PMID: 30240965]
[92]
Sun X, Wang H, Jian Y, et al. Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Biosens Bioelectron 2018; 105: 218-25.
[http://dx.doi.org/10.1016/j.bios.2018.01.025] [PMID: 29412946]
[93]
Wang H, Zhou C, Sun X, et al. Polyhedral-AuPd nanoparticles-based dual-mode cytosensor with turn on enable signal for highly sensitive cell evalution on lab-on-paper device. Biosens Bioelectron 2018; 117: 651-8.
[http://dx.doi.org/10.1016/j.bios.2018.07.004] [PMID: 30005386]
[94]
Wang H, Jian Y, Kong Q, et al. Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks. Sens Actuators B Chem 2018; 257: 561-9.
[http://dx.doi.org/10.1016/j.snb.2017.10.188]
[95]
Liu F, Ge S, Yu J, Yan M, Song X. Electrochemical device based on a Pt nanosphere-paper working electrode for in situ and real-time determination of the flux of H2O2 releasing from SK-BR-3 cancer cells. Chem Commun (Camb) 2014; 50(71): 10315-8.
[http://dx.doi.org/10.1039/C4CC04199B] [PMID: 25058322]
[96]
Su M, Ge L, Kong Q, et al. Cyto-sensing in electrochemical lab-on-paper cyto-device for in-situ evaluation of multi-glycan expressions on cancer cells. Biosens Bioelectron 2015; 63: 232-9.
[http://dx.doi.org/10.1016/j.bios.2014.07.046] [PMID: 25104432]
[97]
Wu L, Ma C, Ge L, et al. Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels. Biosens Bioelectron 2015; 63: 450-7.
[http://dx.doi.org/10.1016/j.bios.2014.07.077] [PMID: 25128625]
[98]
Cheng N, Xu Y, Luo Y, et al. Specific and relative detection of urinary microRNA signatures in bladder cancer for point-of-care diagnostics. Chem Commun (Camb) 2017; 53(30): 4222-5.
[http://dx.doi.org/10.1039/C7CC01007A] [PMID: 28357426]
[99]
Mohammadi S, Mohammadi S, Salimi A. A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta 2021; 224: 121895.
[http://dx.doi.org/10.1016/j.talanta.2020.121895] [PMID: 33379103]
[100]
Teengam P, Siangproh W, Tontisirin S, et al. NFC-enabling smartphone-based portable amperometric immunosensor for hepatitis B virus detection. Sens Actuators B Chem 2021; 326: 128825.
[http://dx.doi.org/10.1016/j.snb.2020.128825]
[101]
Martins GV, Tavares APM, Fortunato E, Sales MGF. Paper-based sensing device for electrochemical detection of oxidative stress biomarker 8-Hydroxy-2′-deoxyguanosine (8-OHdG) in point-of-care. Sci Rep 2017; 7(1): 14558.
[http://dx.doi.org/10.1038/s41598-017-14878-9] [PMID: 29109407]
[102]
Zhang J, Perry G, Smith MA, et al. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 1999; 154(5): 1423-9.
[http://dx.doi.org/10.1016/S0002-9440(10)65396-5] [PMID: 10329595]
[103]
Zhang M, Ge L, Ge S, et al. Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens Bioelectron 2013; 41: 544-50.
[http://dx.doi.org/10.1016/j.bios.2012.09.022] [PMID: 23058662]
[104]
Nagatani N, Yamanaka K, Ushijima H, et al. Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip. Analyst 2012; 137(15): 3422-6.
[http://dx.doi.org/10.1039/c2an16294f] [PMID: 22354200]
[105]
Farzin L, Sadjadi S, Sheini A, Mohagheghpour E. A nanoscale genosensor for early detection of COVID-19 by voltammetric determination of RNA-dependent RNA polymerase (RdRP) sequence of SARS-CoV-2 virus. Mikrochim Acta 2021; 188(4): 121.
[http://dx.doi.org/10.1007/s00604-021-04773-6] [PMID: 33694010]
[106]
Mao X, Xu H, Zeng Q, Zeng L, Liu G. Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis. Chem Commun 2009; 81(21): 3065-7.
[http://dx.doi.org/10.1039/b822582f] [PMID: 19462088]
[107]
Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 2009; 81(4): 1660-8.
[http://dx.doi.org/10.1021/ac8024653] [PMID: 19159221]
[108]
Malecka K, Świętoń E, Verwilst P, et al. Ultrasensitive electrochemical genosensor for direct detection of specific RNA sequences derived from avian influenza viruses present in biological samples. Acta Biochim Pol 2019; 66(3): 299-304.
[http://dx.doi.org/10.18388/abp.2019_2774] [PMID: 31442009]
[109]
Martín-Fernández B, Manzanares-Palenzuela CL, Sánchez-Paniagua López M, de-Los-Santos-Álvarez N, López-Ruiz B. Electrochemical genosensors in food safety assessment. Crit Rev Food Sci Nutr 2017; 57(13): 2758-74.
[http://dx.doi.org/10.1080/10408398.2015.1067597] [PMID: 26565945]
[110]
Maddali H, Miles CE, Kohn J, O’Carroll DM. Optical biosensors for virus detection: Prospects for SARS-CoV-2/COVID-19. ChemBioChem 2021; 22(7): 1176-89.
[http://dx.doi.org/10.1002/cbic.202000744] [PMID: 33119960]
[111]
Zhao H, Liu F, Xie W, et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens Actuators B Chem 2021; 327: 128899.
[http://dx.doi.org/10.1016/j.snb.2020.128899] [PMID: 32952300]
[112]
Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020; 14(4): 5135-42.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[113]
Abad-Valle P, Fernández-Abedul MT, Costa-García A. Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence. Biosens Bioelectron 2005; 20(11): 2251-60.
[http://dx.doi.org/10.1016/j.bios.2004.10.019] [PMID: 15797323]
[114]
Liu J, Zeng J, Tian Y, Zhou N. An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst 2017; 143(1): 182-9.
[http://dx.doi.org/10.1039/C7AN01476G] [PMID: 29168847]
[115]
Ahmad Raston NHA, Nguyen VT, Gu MB. A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosens Bioelectron 2017; 93: 21-5.
[http://dx.doi.org/10.1016/j.bios.2016.11.061] [PMID: 27916536]
[116]
Ali M, Sajid M, Khalid MAU, et al. A fluorescent lateral flow biosensor for the quantitative detection of Vaspin using upconverting nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 2020; 226: 117610.
[http://dx.doi.org/10.1016/j.saa.2019.117610] [PMID: 31606675]
[117]
Liu H, Xiang Y, Lu Y, Crooks RM. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew Chem Int Ed Engl 2012; 51(28): 6925-8.
[http://dx.doi.org/10.1002/anie.201202929] [PMID: 22639438]
[118]
Hamad EM, Hawamdeh G, Jarrad NA, Yasin O, Al-Gharabli SI, Shadfan R. Detection of human chorionic gonadotropin (hCG) hormone using digital lateral flow immunoassay. 40th. Annu Int Conf IEEE Eng Med Biol Soc 2018; 2018: 3845-8.
[http://dx.doi.org/10.1109/EMBC.2018.8513355]
[119]
Dong T, Wang GA, Li F. Shaping up field-deployable nucleic acid testing using microfluidic paper-based analytical devices. Anal Bioanal Chem 2019; 411(19): 4401-14.
[http://dx.doi.org/10.1007/s00216-019-01595-7] [PMID: 30707267]
[120]
Cao Z, Chen P, Ma Z, et al. Near-field communication sensors. Sensors (Basel) 2019; 19(18): E3947.
[http://dx.doi.org/10.3390/s19183947] [PMID: 31547400]
[121]
Barandun G, Soprani M, Naficy S, et al. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS Sens 2019; 4(6): 1662-9.
[http://dx.doi.org/10.1021/acssensors.9b00555] [PMID: 31066550]
[122]
Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nat Electron 2018; 1(3): 160-71.
[http://dx.doi.org/10.1038/s41928-018-0043-y]
[123]
Zhao VXT, Wong TI, Zheng XT, Tan YN, Zhou X. Colorimetric biosensors for point-of-care virus detections. Mater Sci Energy Technol 2020; 3: 237-49.
[http://dx.doi.org/10.1016/j.mset.2019.10.002] [PMID: 33604529]
[124]
Flouvat B, Roux A, Leneveu A, Prinseau J, Alexandre JA. Combination of long-acting furosemide and instant-acting amiloride: Pharmacokinetics and pharmacodynamics in human subjects. Fundam Clin Pharmacol 1991; 5(8): 741-52.
[http://dx.doi.org/10.1111/j.1472-8206.1991.tb00762.x] [PMID: 1783363]
[125]
Feng X, Yang G, Liu L, et al. A convenient preparation of multi-spectral microparticles by bacteria-mediated assemblies of conjugated polymer nanoparticles for cell imaging and barcoding. Adv Mater 2012; 24(5): 637-41.
[http://dx.doi.org/10.1002/adma.201102026] [PMID: 21932281]
[126]
Xiong X, Zhang Y, Wang Y, Sha H, Jia N. One-step electrochemiluminescence immunoassay for breast cancer biomarker CA 15-3 based on Ru(bpy)62+-coated UiO-66-NH2 metal-organic framework. Sens Actuators B Chem 2019; 297: 126812.
[http://dx.doi.org/10.1016/j.snb.2019.126812]
[127]
Peng HI, Miller BL. Recent advancements in optical DNA biosensors: Exploiting the plasmonic effects of metal nanoparticles. Analyst 2011; 136(3): 436-47.
[http://dx.doi.org/10.1039/C0AN00636J] [PMID: 21049107]
[128]
Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR. Design and evaluation of an apta-nano-sensor to detect Acetamiprid in vitro and in silico. J Biomol Struct Dyn 2016; 34(11): 2505-17.
[http://dx.doi.org/10.1080/07391102.2015.1123188] [PMID: 26609886]