Comprehensive Analysis of the Differentially Expressed Transcriptome with ceRNA Networks in a Mouse Model of Liver Cirrhosis

Page: [510 - 520] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Hepatic cirrhosis is the consequence of various chronic liver diseases for which there is no curative treatment. In this study, based on RNA sequencing (RNA-seq) and subsequent bioinformatic analysis, we aim to explore the biological function of non-coding RNAs (ncRNAs) in hepatic cirrhosis.

Methods: The hepatic cirrhosis models were induced by the intraperitoneal injection of carbon tetrachloride (CCl4). The transcriptome profile was acquired by RNA-seq, the results of which were verified by quantitative real-time PCR (qRT-PCR). The competing endogenous RNA (ceRNA) networks were visualized by Cytoscape software. The enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted.

Results: The differentially expressed transcript of liver cirrhosis consists of 2369 mRNAs, 374 lncRNAs, 91 circRNAs, and 242 miRNAs (|log2(fold change)|≥1 and P<0.05). The RNA-seq results were highly consistent with qRT-PCR validation of DEGs (four upregulated and four down-regulated, including ENSMUSG00000047517, ENSMUST00000217449, novel-circ-001366, miR-383-5p, ENSMUSG00000078683, ENSMUST00000148206, novel-circ-001986 and miR-216a-5p). Based on ceRNA theory, a circRNA-lncRNA co-regulated ceRNA network was established. Enrichment analysis revealed the potential key regulatory process during the liver cirrhosis progression.

Conclusion: In conclusion, the present study comprehensively analyzed differentially expressed transcripts in CCl4-induced liver cirrhosis. Our findings explored the gene signatures for liver cirrhosis’s diagnosis and precise treatment.

Keywords: RNA sequencing, liver cirrhosis, non-coding RNA, competing endogenous RNA, transcriptome, ceRNA Networks, mouse model

Graphical Abstract

[1]
Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014; 383(9930): 1749-61.
[http://dx.doi.org/10.1016/S0140-6736(14)60121-5] [PMID: 24480518]
[2]
GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2020; 5(3): 245-66.
[http://dx.doi.org/10.1016/S2468-1253(19)30349-8] [PMID: 31981519]
[3]
Yang JJ, Tao H, Deng ZY, Lu C, Li J. Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metabolism 2015; 64(11): 1386-94.
[http://dx.doi.org/10.1016/j.metabol.2015.08.004] [PMID: 26362725]
[4]
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67(3): 603-18.
[http://dx.doi.org/10.1016/j.jhep.2017.04.009] [PMID: 28438689]
[5]
Huebert RC, Jagavelu K, Hendrickson HI, et al. Aquaporin-1 promotes angiogenesis, fibrosis, and portal hypertension through mecha-nisms dependent on osmotically sensitive microRNAs. Am J Pathol 2011; 179(4): 1851-60.
[http://dx.doi.org/10.1016/j.ajpath.2011.06.045] [PMID: 21854740]
[6]
Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008; 322(5902): 750-6.
[http://dx.doi.org/10.1126/science.1163045] [PMID: 18974356]
[7]
Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 2008; 454(7200): 126-30.
[http://dx.doi.org/10.1038/nature06992] [PMID: 18509338]
[8]
Khandelwal A, Bacolla A, Vasquez KM, Jain A. Long non-coding RNA: A new paradigm for lung cancer. Mol Carcinog 2015; 54(11): 1235-51.
[http://dx.doi.org/10.1002/mc.22362] [PMID: 26332907]
[9]
Peng H, Wan LY, Liang JJ, Zhang YQ, Ai WB, Wu JF. The roles of lncRNA in hepatic fibrosis. Cell Biosci 2018; 8: 63.
[http://dx.doi.org/10.1186/s13578-018-0259-6] [PMID: 30534359]
[10]
Ji D, Chen GF, Wang JC, et al. Hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3. Aging (Albany NY) 2020; 12(2): 1643-55.
[http://dx.doi.org/10.18632/aging.102705] [PMID: 32003753]
[11]
Liu W, Feng R, Li X, Li D, Zhai W. TGF-β- and lipopolysaccharide-induced upregulation of circular RNA PWWP2A promotes hepatic fibrosis via sponging miR-203 and miR-223. Aging (Albany NY) 2019; 11(21): 9569-80.
[http://dx.doi.org/10.18632/aging.102405] [PMID: 31719209]
[12]
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139-40.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[13]
Endisha H, Datta P, Sharma A, et al. MicroRNA-34a-5p promotes joint destruction during osteoarthritis. Arthritis Rheumatol 2021; 73(3): 426-39.
[http://dx.doi.org/10.1002/art.41552] [PMID: 33034147]
[14]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids Res 2013; 41(Database issue): D991-5.
[PMID: 23193258]
[15]
Ashburner M, Ball CA, Blake JA, et al. The Gene Ontology Consortium. Gene ontology: Tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[16]
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[17]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[18]
Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2019; 65: 37-55.
[http://dx.doi.org/10.1016/j.mam.2018.09.002] [PMID: 30213667]
[19]
Zhang Y, Xu Y, Feng L, et al. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers. Oncotarget 2016; 7(39): 64148-67.
[http://dx.doi.org/10.18632/oncotarget.11637] [PMID: 27580177]
[20]
Han JD, Bertin N, Hao T, et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004; 430(6995): 88-93.
[http://dx.doi.org/10.1038/nature02555] [PMID: 15190252]
[21]
Tsay HC, Yuan Q, Balakrishnan A, et al. Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis. J Hepatol 2019; 70(4): 722-34.
[http://dx.doi.org/10.1016/j.jhep.2018.12.016] [PMID: 30582979]
[22]
Ogawa T, Enomoto M, Fujii H, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut 2012; 61(11): 1600-9.
[http://dx.doi.org/10.1136/gutjnl-2011-300717] [PMID: 22267590]
[23]
Roy S, Benz F, Vargas Cardenas D, et al. miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis. J Dig Dis 2015; 16(9): 513-24.
[http://dx.doi.org/10.1111/1751-2980.12266] [PMID: 26120970]
[24]
Bao S, Zheng J, Li N, et al. Serum MicroRNA levels as a noninvasive diagnostic biomarker for the early diagnosis of hepatitis B virus-related liver fibrosis. Gut Liver 2017; 11(6): 860-9.
[http://dx.doi.org/10.5009/gnl16560] [PMID: 28750488]
[25]
Du K, Hyun J, Premont RT, et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 2018; 154(5): 1465-1479.e13.
[http://dx.doi.org/10.1053/j.gastro.2017.12.022] [PMID: 29305935]
[26]
Gao L, Zhang Z, Zhang P, Yu M, Yang T. Role of canonical Hedgehog signaling pathway in liver. Int J Biol Sci 2018; 14(12): 1636-44.
[http://dx.doi.org/10.7150/ijbs.28089] [PMID: 30416378]
[27]
Hu M, Zou Y, Nambiar SM, Lee J, Yang Y, Dai G. Keap1 modulates the redox cycle and hepatocyte cell cycle in regenerating liver. Cell Cycle 2014; 13(15): 2349-58.
[http://dx.doi.org/10.4161/cc.29298] [PMID: 25483186]
[28]
Zhao XK, Yu L, Cheng ML, et al. Focal adhesion kinase regulates hepatic stellate cell activation and liver fibrosis. Sci Rep 2017; 7(1): 4032.
[http://dx.doi.org/10.1038/s41598-017-04317-0] [PMID: 28642549]
[29]
Hintermann E, Bayer M, Conti CB, et al. Junctional adhesion molecules JAM-B and JAM-C promote autoimmune-mediated liver fibrosis in mice. J Autoimmun 2018; 91: 83-96.
[http://dx.doi.org/10.1016/j.jaut.2018.05.001] [PMID: 29753567]
[30]
Jiayuan S, Junyan Y, Xiangzhen W, et al. Gant61 ameliorates CCl4-induced liver fibrosis by inhibition of Hedgehog signaling activity. Toxicol Appl Pharmacol 2020; 387: 114853.
[http://dx.doi.org/10.1016/j.taap.2019.114853] [PMID: 31816328]
[31]
Wei S, Wang Q, Zhou H, et al. miR-455-3p alleviates hepatic stellate cell activation and liver fibrosis by suppressing HSF1 expression. Mol Ther Nucleic Acids 2019; 16: 758-69.
[http://dx.doi.org/10.1016/j.omtn.2019.05.001] [PMID: 31150929]
[32]
Hu Y, Yang Z, Bao D, Ni JS, Lou J. miR-455-5p suppresses hepatocellular carcinoma cell growth and invasion via IGF-1R/AKT/GLUT1 pathway by targeting IGF-1R. Pathol Res Pract 2019; 215(12): 152674.
[http://dx.doi.org/10.1016/j.prp.2019.152674] [PMID: 31732382]
[33]
Qin L, Zhang Y, Lin J, Shentu Y, Xie X. MicroRNA-455 regulates migration and invasion of human hepatocellular carcinoma by targeting Runx2. Oncol Rep 2016; 36(6): 3325-32.
[http://dx.doi.org/10.3892/or.2016.5139] [PMID: 27748890]
[34]
Ma L, Ma J, Ou HL. MicroRNA 219 overexpression serves a protective role during liver fibrosis by targeting tumor growth factor β receptor 2. Mol Med Rep 2019; 19(3): 1543-50.
[PMID: 30592264]
[35]
Kim JH, Lee CH, Lee SW. Exosomal transmission of microRNA from HCV replicating cells stimulates transdifferentiation in hepatic stel-late cells. Mol Ther Nucleic Acids 2019; 14: 483-97.
[http://dx.doi.org/10.1016/j.omtn.2019.01.006] [PMID: 30753992]
[36]
Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014; 147(3): 577-594.e1.
[http://dx.doi.org/10.1053/j.gastro.2014.06.043] [PMID: 25066692]
[37]
Weng Y, Lieberthal TJ, Zhou VX, et al. Liver epithelial focal adhesion kinase modulates fibrogenesis and hedgehog signaling. JCI Insight 2020; 5(20): e141217.
[http://dx.doi.org/10.1172/jci.insight.141217] [PMID: 32910808]