Mesenchymal Stromal Cells and their EVs as Potential Leads for SARSCoV2 Treatment

Page: [35 - 53] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

In December 2019, a betacoronavirus was isolated from pneumonia cases in China and rapidly turned into a pandemic of COVID-19. The virus is an enveloped positive-sense ssRNA and causes a severe respiratory syndrome along with a cytokine storm, which is the main cause of most complications. Therefore, treatments that can effectively control the inflammatory reactions are necessary. Mesenchymal Stromal Cells and their EVs are well-known for their immunomodulatory effects, inflammation reduction, and regenerative potentials. These effects are exerted through paracrine secretion of various factors. Their EVs also transport various molecules such as microRNAs to other cells and affect recipient cells' behavior. Scores of research and clinical trials have indicated the therapeutic potential of EVs in various diseases. EVs also seem to be a promising approach for severe COVID-19 treatment. EVs have also been used to develop vaccines since EVs are biocompatible nanoparticles that can be easily isolated and engineered. In this review, we have focused on the use of Mesenchymal Stromal Cells and their EVs for the treatment of COVID-19, their therapeutic capabilities, and vaccine development.

Keywords: Betacoronavirus, mesenchymal stromal cells, COVID-19, nanoparticles, SARS-CoV-2, therapeutic capabilities

[1]
Zhu N, Zhang D, Wang W, et al. China novel coronavirus I RT. A novel coronavirus from patients with pneumonia in China 2019. NEJM 2020; 382: 727-33.
[2]
Zhao L. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10.1016): S0140-6736.
[3]
Woo PC, Lau SK, Huang Y, Yuen K-Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood) 2009; 234(10): 1117-27.
[http://dx.doi.org/10.3181/0903-MR-94] [PMID: 19546349]
[4]
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol 2020; 215: 108448.
[http://dx.doi.org/10.1016/j.clim.2020.108448] [PMID: 32353634]
[5]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[6]
Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[7]
Hancock AS, Stairiker CJ, Boesteanu AC, et al. Transcriptome analysis of infected and bystander type 2 alveolar epithelial cells during influenza A virus infection reveals in vivo Wnt pathway downregulation. J Virol 2018; 92(21): e01325-18.
[http://dx.doi.org/10.1128/JVI.01325-18] [PMID: 30111569]
[8]
Tang NL-S, Chan PK-S, Wong C-K, et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem 2005; 51(12): 2333-40.
[http://dx.doi.org/10.1373/clinchem.2005.054460] [PMID: 16195357]
[9]
Mossel EC, Wang J, Jeffers S, et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology 2008; 372(1): 127-35.
[http://dx.doi.org/10.1016/j.virol.2007.09.045] [PMID: 18022664]
[10]
Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 2013; 48(6): 742-8.
[http://dx.doi.org/10.1165/rcmb.2012-0339OC] [PMID: 23418343]
[11]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[12]
Fischer W, Eron JJ, Holman W, et al. Molnupiravir, an Oral Antiviral Treatment for COVID-19. medRxiv 2021; 2021; 21258639.
[http://dx.doi.org/10.1101/2021.06.17.21258639]
[13]
Kozlov M. Merck’s COVID pill loses its lustre: What that means for the pandemic. Nature 2021. Epub ahead of print
[http://dx.doi.org/10.1038/d41586-021-03667-0] [PMID: 34903873]
[14]
Mahase E. Covid-19: UK stockpiles two unapproved antiviral drugs for treatment at home. BMJ 2021; 375(2602): n2602.
[http://dx.doi.org/10.1136/bmj.n2602] [PMID: 34697079]
[15]
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011; 335(1): 2-13.
[http://dx.doi.org/10.1016/j.mce.2010.04.005] [PMID: 20398732]
[16]
Tay SL, Scott JM, Craw D. Natural rehabilitation of arsenic-rich historical tailings at the Alexander mine, Reefton, New Zealand. N Z J Geol Geophys 2020; 2020: 1-12.
[17]
Mohammadi N, Mardomi A, Hassannia H, et al. Mouse bone marrow-derived mesenchymal stem cells acquire immunogenicity concurrent with differentiation to insulin-producing cells. Immunobiology 2020; 225(5): 151994.
[http://dx.doi.org/10.1016/j.imbio.2020.151994] [PMID: 32962814]
[18]
Enderami SE, Soleimani M, Mortazavi Y, Nadri S, Salimi A. Generation of insulin-producing cells from human adipose-derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. J Cell Physiol 2018; 233(5): 4327-37.
[http://dx.doi.org/10.1002/jcp.26266] [PMID: 29150935]
[19]
Piran M, Enderami SE, Piran M, Sedeh HS, Seyedjafari E, Ardeshirylajimi A. Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals 2017; 46: 23-8.
[http://dx.doi.org/10.1016/j.biologicals.2016.12.004] [PMID: 28017506]
[20]
Deng K, Lin DL, Hanzlicek B, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol Renal Physiol 2015; 308(2): F92-F100.
[http://dx.doi.org/10.1152/ajprenal.00510.2014] [PMID: 25377914]
[21]
Wang Z, Wang Y, Wang Z, et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells 2015; 33(2): 456-67.
[http://dx.doi.org/10.1002/stem.1878] [PMID: 25346537]
[22]
Saburi E, Abazari MF, Hassannia H, et al. The use of mesenchymal stem cells in the process of treatment and tissue regeneration after recovery in patients with Covid-19. Gene 2021; 777(145471.10):1016.
[http://dx.doi.org/10.1016/j.gene.2021.145471]
[23]
Wang S, Guo L, Ge J, et al. Excess integrins cause lung entrapment of mesenchymal stem cells. Stem Cells 2015; 33(11): 3315-26.
[http://dx.doi.org/10.1002/stem.2087] [PMID: 26148841]
[24]
Fennema EM, Tchang LAH, Yuan H, et al. Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. J Tissue Eng Regen Med 2018; 12(1): e150-8.
[http://dx.doi.org/10.1002/term.2453] [PMID: 28485099]
[25]
Kusuma GD, Menicanin D, Gronthos S, et al. Ectopic bone formation by mesenchymal stem cells derived from human term placenta and the decidua. PLoS One 2015; 10(10): e0141246.
[http://dx.doi.org/10.1371/journal.pone.0141246] [PMID: 26484666]
[26]
Jeong J-O, Han JW, Kim J-M, et al. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 2011; 108(11): 1340-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.239848] [PMID: 21493893]
[27]
Heldring N. Mäger I, Wood MJ, Le Blanc K, Andaloussi SE. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther 2015; 26(8): 506-17.
[http://dx.doi.org/10.1089/hum.2015.072] [PMID: 26153722]
[28]
Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018; 3(8): 99263.
[http://dx.doi.org/10.1172/jci.insight.99263] [PMID: 29669940]
[29]
Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017; 49(6): e346.
[http://dx.doi.org/10.1038/emm.2017.63]
[30]
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal stem cell-based therapy for cardiovascular disease: Progress and challenges. Mol Ther 2018; 26(7): 1610-23.
[http://dx.doi.org/10.1016/j.ymthe.2018.05.009] [PMID: 29807782]
[31]
Yang Y, Hong Y, Cho E, Kim GB, Kim I-S. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J Extracell Vesicles 2018; 7(1): 1440131.
[http://dx.doi.org/10.1080/20013078.2018.1440131] [PMID: 29535849]
[32]
Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J Extracell Vesicles 2016; 5(1): 32945.
[http://dx.doi.org/10.3402/jev.v5.32945] [PMID: 27802845]
[33]
Gao J, Dong X, Wang Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods 2020; 177: 114-25.
[http://dx.doi.org/10.1016/j.ymeth.2019.11.012] [PMID: 31790730]
[34]
Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Proteomic Profiling 2015; 2015: 179-209.
[35]
Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 2015; 4(1): 27031.
[http://dx.doi.org/10.3402/jev.v4.27031] [PMID: 26194179]
[36]
Zeringer E, Barta T, Li M, Vlassov AV. Strategies for isolation of exosomes. Cold Spring Harb Protoc 2015; 2015(4): 074476.
[http://dx.doi.org/10.1101/pdb.top074476]
[37]
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159: 62-77.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.051] [PMID: 28780462]
[38]
Whitford W, Ludlow JW, Cadwell JJ. Continuous production of exosomes: Utilizing the technical advantages of hollow-fiber bioreactor technology. Genet Eng Biotechnol News 2015; 35(16): 34.
[http://dx.doi.org/10.1089/gen.35.16.15]
[39]
Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing exosomes: A promising therapeutic platform. Trends Mol Med 2018; 24(3): 242-56.
[http://dx.doi.org/10.1016/j.molmed.2018.01.006] [PMID: 29449149]
[40]
Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther 2018; 26(12): 2838-47.
[http://dx.doi.org/10.1016/j.ymthe.2018.09.015] [PMID: 30341012]
[41]
Thippabhotla S, Zhong C, He M. 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep 2019; 9(1): 13012.
[http://dx.doi.org/10.1038/s41598-019-49671-3] [PMID: 31506601]
[42]
Tang Y-T, Huang Y-Y, Zheng L, et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 2017; 40(3): 834-44.
[http://dx.doi.org/10.3892/ijmm.2017.3080] [PMID: 28737826]
[43]
Stranska R, Gysbrechts L, Wouters J, et al. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med 2018; 16(1): 1-9.
[http://dx.doi.org/10.1186/s12967-017-1374-6] [PMID: 29316942]
[44]
Mol EA, Goumans M-J, Doevendans PA, Sluijter JPG, Vader P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine 2017; 13(6): 2061-5.
[http://dx.doi.org/10.1016/j.nano.2017.03.011] [PMID: 28365418]
[45]
Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S, Borràs FE. Extracellular vesicle isolation methods: Rising impact of size-exclusion chromatography. Cell Mol Life Sci 2019; 76(12): 2369-82.
[http://dx.doi.org/10.1007/s00018-019-03071-y] [PMID: 30891621]
[46]
Rekker K, Saare M, Roost AM, et al. Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 2014; 47(1-2): 135-8.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.10.020] [PMID: 24183884]
[47]
Ding M, Wang C, Lu X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal Bioanal Chem 2018; 410(16): 3805-14.
[http://dx.doi.org/10.1007/s00216-018-1052-4] [PMID: 29671027]
[48]
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[49]
L Ramos T, Sánchez-Abarca LI, Muntión S, et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal 2016; 14(1): 2.
[http://dx.doi.org/10.1186/s12964-015-0124-8] [PMID: 26754424]
[50]
Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 2010; 38(1): 215-24.
[http://dx.doi.org/10.1093/nar/gkp857] [PMID: 19850715]
[51]
Lai RC, Tan SS, Teh BJ, et al. Proteolytic potential of the MSC exosome proteome: Implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012; 2012: 971907.
[http://dx.doi.org/10.1155/2012/971907]
[52]
Kim H-S, Choi D-Y, Yun SJ, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 2012; 11(2): 839-49.
[http://dx.doi.org/10.1021/pr200682z] [PMID: 22148876]
[53]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[54]
Williams AE, Chambers RC. The mercurial nature of neutrophils: Still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 2014; 306(3): L217-30.
[http://dx.doi.org/10.1152/ajplung.00311.2013] [PMID: 24318116]
[55]
Channappanavar R, Perlman S. Eds. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[56]
Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res 2008; 133(1): 13-9.
[http://dx.doi.org/10.1016/j.virusres.2007.02.014] [PMID: 17374415]
[57]
Abreu SC, Lopes-Pacheco M, Weiss DJ, Rocco PRM. Mesenchymal stromal cell-derived extracellular vesicles in lung diseases: Current status and perspectives. Front Cell Dev Biol 2021; 9: 600711.
[http://dx.doi.org/10.3389/fcell.2021.600711] [PMID: 33659247]
[58]
Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: Soldier in the fight against respiratory viruses. Clin Microbiol Rev 2011; 24(1): 210-29.
[http://dx.doi.org/10.1128/CMR.00014-10] [PMID: 21233513]
[59]
Li JW, Wei L, Han Z, Chen Z. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol 2019; 852: 68-76.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.022] [PMID: 30682335]
[60]
Bari E, Ferrarotti I, Di Silvestre D, et al. Adipose mesenchymal extracellular vesicles as Alpha-1-Antitrypsin physiological delivery systems for lung regeneration. Cells 2019; 8(9): 965.
[http://dx.doi.org/10.3390/cells8090965] [PMID: 31450843]
[61]
Kim Y-S, Kim J-Y, Cho R, Shin D-M, Lee SW, Oh Y-M. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med 2017; 49(1): e284-e.
[http://dx.doi.org/10.1038/emm.2016.127]
[62]
Zhu YG, Feng XM, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 2014; 32(1): 116-25.
[http://dx.doi.org/10.1002/stem.1504] [PMID: 23939814]
[63]
Park J, Kim S, Lim H, et al. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax 2019; 74(1): 43-50.
[http://dx.doi.org/10.1136/thoraxjnl-2018-211576] [PMID: 30076187]
[64]
Zeng SL, Wang LH, Li P, Wang W, Yang J. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Mol Med Rep 2015; 12(2): 2511-20.
[http://dx.doi.org/10.3892/mmr.2015.3706] [PMID: 25936350]
[65]
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. Ann Transl Med 2018; 6(2): 32.
[http://dx.doi.org/10.21037/atm.2017.12.18] [PMID: 29430449]
[66]
Gennai S, Monsel A, Hao Q, Park J, Matthay MA, Lee JW. Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Transplant 2015; 15(9): 2404-12.
[http://dx.doi.org/10.1111/ajt.13271] [PMID: 25847030]
[67]
Zhou X, Jiang X, Qu M, et al. Engineering antiviral vaccines. ACS Nano 2020; 14(10): 12370-89.
[http://dx.doi.org/10.1021/acsnano.0c06109] [PMID: 33001626]
[68]
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54 (Suppl. 2): 789-92.
[http://dx.doi.org/10.1038/s41409-019-0616-z] [PMID: 31431712]
[69]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[70]
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020; 181(5): 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[71]
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. Nano Today 2021; 36: 101031.
[http://dx.doi.org/10.1016/j.nantod.2020.101031] [PMID: 33519948]
[72]
Zhang Y, Chen Y, Lo C, et al. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew Chem Int Ed Engl 2019; 58(33): 11404-8.
[http://dx.doi.org/10.1002/anie.201906280] [PMID: 31206942]
[73]
Rao L, Xia S, Xu W, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci USA 2020; 117(44): 27141-7.
[http://dx.doi.org/10.1073/pnas.2014352117] [PMID: 33024017]
[74]
Rao L, Tian R, Chen X. Cell-membrane-mimicking nanodecoys against infectious diseases. ACS Nano 2020; 14(3): 2569-74.
[http://dx.doi.org/10.1021/acsnano.0c01665] [PMID: 32129977]
[75]
de Carvalho JV, de Castro RO, da Silva EZ, et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One 2014; 9(11): e113691.
[http://dx.doi.org/10.1371/journal.pone.0113691] [PMID: 25423108]
[76]
Liu M, Lutz H, Zhu D, et al. Bispecific antibody inhalation therapy for redirecting stem cells from the lungs to repair heart injury. Adv Sci (Weinh) 2020; 8(1): 2002127.
[http://dx.doi.org/10.1002/advs.202002127] [PMID: 33437573]
[77]
Wei X, Zhang G, Ran D, et al. T-Cell-mimicking nanoparticles can neutralize HIV infectivity. Adv Mater 2018; 30(45): e1802233.
[http://dx.doi.org/10.1002/adma.201802233] [PMID: 30252965]
[78]
Ezquer F, Ezquer M, Contador D, Ricca M, Simon V, Conget P. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells 2012; 30(8): 1664-74.
[http://dx.doi.org/10.1002/stem.1132] [PMID: 22644660]
[79]
Nassar W, El-Ansary M, Sabry D, et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 2016; 20(1): 21.
[http://dx.doi.org/10.1186/s40824-016-0068-0] [PMID: 27499886]
[80]
Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 2017; 7: 278-87.
[http://dx.doi.org/10.1016/j.omtn.2017.04.010] [PMID: 28624203]
[81]
Jiang Y, Zhang Y, Zhang L, Wang M, Zhang X, Li X. Therapeutic effect of bone marrow mesenchymal stem cells on laser-induced retinal injury in mice. Int J Mol Sci 2014; 15(6): 9372-85.
[http://dx.doi.org/10.3390/ijms15069372] [PMID: 24871366]
[82]
Yu B, Shao H, Su C, et al. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep 2016; 6(1): 34562.
[http://dx.doi.org/10.1038/srep34562] [PMID: 27686625]
[83]
Taghavi-Farahabadi M, Mahmoudi M, Soudi S, Hashemi SM. Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Med Hypotheses 2020; 144: 109865.
[http://dx.doi.org/10.1016/j.mehy.2020.109865] [PMID: 32562911]
[84]
Chang C-L, Chen H-H, Chen K-H, et al. Adipose-derived mesenchymal stem cell-derived exosomes markedly protected the brain against sepsis syndrome induced injury in rat. Am J Transl Res 2019; 11(7): 3955-71.
[PMID: 31396312]
[85]
Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev 2020; 29(12): 747-54.
[http://dx.doi.org/10.1089/scd.2020.0080] [PMID: 32380908]
[86]
Kuate S, Cinatl J, Doerr HW, Uberla K. Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology 2007; 362(1): 26-37.
[http://dx.doi.org/10.1016/j.virol.2006.12.011] [PMID: 17258782]
[87]
Bari E, Ferrarotti I, Saracino L, Perteghella S, Torre ML, Corsico AG. Mesenchymal stromal cell secretome for severe COVID-19 infections: Premises for the therapeutic use. Cells 2020; 9(4): E924.
[http://dx.doi.org/10.3390/cells9040924] [PMID: 32283815]
[88]
Suptawiwat O, Ruangrung K, Boonarkart C, et al. Microparticle and anti-influenza activity in human respiratory secretion. PLoS One 2017; 12(8): e0183717.
[http://dx.doi.org/10.1371/journal.pone.0183717] [PMID: 28832645]
[89]
Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 vaccines. JAMA 2021; 325(13): 1318-20.
[http://dx.doi.org/10.1001/jama.2021.3199] [PMID: 33635317]
[90]
Tsai SJ, Guo C, Sedgwick A, et al. Exosome-mediated mRNA delivery for SARS-CoV-2 vaccination. bioRxiv 2021; 2021; 371419.
[91]
Polak K, Greze N, Lachat M, Merle D, Chiumento S, Bertrand-Gaday C. Extracellular vesicle-based vaccine platform displaying native viral envelope proteins elicits a robust anti-SARS-CoV-2 response in mice. bioRxiv 2020; 2020; 357137.
[http://dx.doi.org/10.1101/2020.10.28.357137]
[92]
Dooley K, McConnell RE, Xu K, et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol Ther 2021; 29(5): 1729-43.
[http://dx.doi.org/10.1016/j.ymthe.2021.01.020] [PMID: 33484965]
[93]
Inc. ABaP. COVID-19 Available from: https://www.allelebiotech.com/covid19
[94]
Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell-derived exosomes: Opportunities and challenges in cellfree therapy. Stem Cells Int 2017; 2017
[http://dx.doi.org/10.1155/2017/6305295]
[95]
Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull 2018; 41(6): 835-42.
[http://dx.doi.org/10.1248/bpb.b18-00133] [PMID: 29863072]
[96]
Hood JL. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (Lond) 2016; 11(13): 1745-56.
[http://dx.doi.org/10.2217/nnm-2016-0102] [PMID: 27348448]
[97]
Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J 2017; 20(1): 1-7.
[http://dx.doi.org/10.1208/s12248-017-0160-y] [PMID: 29181730]
[98]
Pinky Gupta S, Krishnakumar V, Sharma Y, Dinda AK, Mohanty S. Mesenchymal stem cell derived exosomes: A nano platform for therapeutics and drug delivery in combating COVID-19. Stem Cell Rev Rep 2021; 17(1): 33-43.
[http://dx.doi.org/10.1007/s12015-020-10002-z] [PMID: 32661867]
[99]
Bosch S, de Beaurepaire L, Allard M, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 2016; 6(1): 36162.
[http://dx.doi.org/10.1038/srep36162] [PMID: 27824088]
[100]
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. 2016; 106(Pt A): 148-56.
[http://dx.doi.org/10.1016/j.addr.2016.02.006]
[101]
Akao Y, Iio A, Itoh T, et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther 2011; 19(2): 395-9.
[http://dx.doi.org/10.1038/mt.2010.254] [PMID: 21102562]
[102]
Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013; 21(1): 185-91.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[103]
Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010; 18(9): 1606-14.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[104]
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016; 12(3): 655-64.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[105]
Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35(7): 2383-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[106]
Pachler K, Lener T, Streif D, et al. A good manufacturing practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy 2017; 19(4): 458-72.
[http://dx.doi.org/10.1016/j.jcyt.2017.01.001] [PMID: 28188071]