Mechanistic Insights and Docking Studies of Phytomolecules as Potential Candidates in the Management of Cancer

Page: [2704 - 2724] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer is a leading risk of death globally. According to the World Health Organization, it is presently the second most important disease that causes death in both developing and developed countries. Remarkable progress has been made in the war against cancer with the development of numerous novel chemotherapy agents. However, it remains an immense challenge to discover new efficient therapeutic potential candidates to combat cancer.

Objectives: The majority of the currently used anticancer drugs are of natural origins, such as curcumin, colchicine, vinca alkaloid, paclitaxel, bergenin, taxols, and combretastatin. Concerning this, this review article presents the structure of the most potent molecules along with IC50 values, structure-activity relationships, mechanistic studies, docking studies, in silico studies of phytomolecules, and important key findings on human cancer cell lines.

Methods: A viewpoint of drug design and development of antiproliferative agents from natural phytomolecules has been established by searching peer-reviewed literature from Google Scholar, PubMed, Scopus, Springer, Science Direct, and Web of Science over the past few years.

Results: Our analysis revealed that this article would assist chemical biologists and medicinal chemists in industry and academia in gaining insights into the anticancer potential of phytomolecules.

Conclusion: In vitro and in silico studies present phytomolecules, such as curcumin, colchicine, vinca alkaloids, colchicine, bergenin, combretastatin, and taxol encompassing anticancer agents, offerings abundant sanguinity and capacity in the arena of drug discovery to inspire the investigators towards the continual investigations on these phytomolecules. It is extremely expected that efforts in this track will strengthen and grant some budding cancer therapeutics candidates in the near future.

Keywords: Phytomolecules, cancer, curcumin, vincristine, mechanistic insights, molecular docking studies.

[1]
Suryanarayana R, Kumar TNVG, Mathew J, Kandale A, Singla RK. Synthesis & biological evaluation of 1, 3, 4- oxadiazoles as anticancer agents. Indo Golbal J Pharm Sci 2015; 5(1): 1-5.
[http://dx.doi.org/10.35652/IGJPS.2015.17]
[2]
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10(1): 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[3]
Kumar D, Sharma P, Singh H, et al. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Advances 2017; 7(59): 36977-99.
[http://dx.doi.org/10.1039/C7RA05441F]
[4]
Kingston DGI. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 2011; 74(3): 496-511.
[http://dx.doi.org/10.1021/np100550t] [PMID: 21138324]
[5]
Kumar D, Singh O, Nepali K, et al. Naphthoflavones as antiproliferative agents: Design, synthesis and biological evaluation. Anticancer Agents Med Chem 2016; 16(7): 881-90.
[http://dx.doi.org/10.2174/1871520616666160204113536] [PMID: 26845133]
[6]
Sharma P, Sharma R, Rao HS, Kumar D. Phytochemistry and medicinal attributes of A. scholaris: A review. Int J Pharm Sci Res 2015; 6(12): 505-13.
[7]
Kumar D, Nepali K, Bedi PMS, Kumar S, Malik F, Jain S. 4,6-diaryl pyrimidones as constrained chalcone analogues: Design, synthesis and evaluation as anti-proliferative agents. Anticancer Agents Med Chem 2015; 15(6): 793-803.
[http://dx.doi.org/10.2174/1871520615666150318101436] [PMID: 25783964]
[8]
Kaur T, Sharma P, Gupta G, Ntie-Kang F, Kumar D. Treatment of tuberculosis by natural drugs: A review. Plant Archieves 2019; 19(2): 2168-76.
[9]
Kumar D, Sharma P, Nepali K, et al. Antitumour, acute toxicity and molecular modelling studies of 4-(pyridine-4-yl)-6-(thiophen-2-yl)pyrimidin-2(1H)-one against Ehrlich ascites Carcinoma and sarcoma-180. Heliyon 2018; 4(6): e0061.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00661]
[10]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[11]
Deutsch E, Maggiorella L, Eschwege P, Bourhis J, Soria JC, Abdulkarim B. Environmental, genetic, and molecular features of prostate cancer. Lancet Oncol 2004; 5(5): 303-13.
[http://dx.doi.org/10.1016/S1470-2045(04)01468-8] [PMID: 15120667]
[12]
Kumar D, Singh G, Sharma P, et al. 4-aryl/heteroaryl-4H-fused pyrans as anti-proliferative agents: Design, synthesis and biological evaluation. Anticancer Agents Med Chem 2018; 18(1): 57-73.
[http://dx.doi.org/10.2174/1871520617666170918143911] [PMID: 28925877]
[13]
Sharma P, Shri R, Ntie-Kang F, Kumar S. Phytochemical and ethnopharmacological perspectives of Ehretia laevis. Molecules 2021; 26(12): 3489.
[http://dx.doi.org/10.3390/molecules26123489] [PMID: 34201193]
[14]
Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chem Rev 2009; 109(7): 2859-61.
[http://dx.doi.org/10.1021/cr900208x] [PMID: 19583428]
[15]
Dua R, Shrivastava S, Sonwane SK, Srivastava SK. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv Biol Res 2011; 5: 120-44.
[16]
Boye O, Brossi A. Tropolonic colchicum alkaloids and allo congeners. Alkaloids Chem Pharmacol 1992; 41: 125-76.
[http://dx.doi.org/10.1016/S0099-9598(08)60106-6]
[17]
Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poisoning: The dark side of an ancient drug. Clin Toxicol (Phila) 2010; 48(5): 407-14.
[http://dx.doi.org/10.3109/15563650.2010.495348] [PMID: 20586571]
[18]
von Angerer E. Tubulin as a target for anticancer drugs. Curr Opin Drug Discov Devel 2000; 3(5): 575-84.
[PMID: 19649885]
[19]
Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 2008; 28(1): 155-83.
[http://dx.doi.org/10.1002/med.20097] [PMID: 17464966]
[20]
Kumar D, Jain SK. A Comprehensive review of N-heterocycles as cytotoxic agents. Curr Med Chem 2016; 23(38): 4338-94.
[http://dx.doi.org/10.2174/0929867323666160809093930] [PMID: 27516198]
[21]
Wade RH. On and around microtubules: An overview. Mol Biotechnol 2009; 43(2): 177-91.
[http://dx.doi.org/10.1007/s12033-009-9193-5] [PMID: 19565362]
[22]
Kumar B, Kumar R, Skvortsova I, Kumar V. Mechanisms of tubulin binding ligands to target cancer cells: Updates on their therapeutic potential and clinical trials. Curr Cancer Drug Targets 2017; 17(4): 357-75.
[http://dx.doi.org/10.2174/1568009616666160928110818] [PMID: 27697026]
[23]
Katsetos CD, Dráber P. Tubulins as therapeutic targets in cancer: From bench to bedside. Curr Pharm Des 2012; 18(19): 2778-92.
[http://dx.doi.org/10.2174/138161212800626193] [PMID: 22390762]
[24]
Aryapour H, Dehdab M, Sohraby F, Bargahi A. Prediction of new chromene-based inhibitors of tubulin using structure-based virtual screening and molecular dynamics simulation methods. Comput Biol Chem 2017; 71: 89-97.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.09.007] [PMID: 28992456]
[25]
Berendsen HJC, Postma JPM, Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81(8): 3684-90.
[http://dx.doi.org/10.1063/1.448118]
[26]
Jordan MA, Wilson L. Microtubules and actin filaments: Dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 1998; 10(1): 123-30.
[http://dx.doi.org/10.1016/S0955-0674(98)80095-1] [PMID: 9484604]
[27]
Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253(5016): 164-70.
[http://dx.doi.org/10.1126/science.1853201] [PMID: 1853201]
[28]
Brogi S. Computational approaches for drug discovery. Molecules 2019; 24(17): 3061-70.
[http://dx.doi.org/10.3390/molecules24173061] [PMID: 31443558]
[29]
Bueno O, Estévez Gallego J, Martins S, et al. High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Sci Rep 2018; 8(1): 4242-60.
[http://dx.doi.org/10.1038/s41598-018-22382-x] [PMID: 29523799]
[30]
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007; 126(1): 014101.
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[31]
Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci 1993; 2(9): 1511-9.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[32]
Darden T, York D, Pedersen L. Particle mesh ewald: An N log(N) method for ewald sums in large systems. J Chem Phys 1993; 98(12): 10089-95.
[http://dx.doi.org/10.1063/1.464397]
[33]
Deriu MA, Enemark S, Soncini M, Montevecchi FM, Redaelli A. Tubulin: From atomistic structure to supramolecular mechanical properties. J Mater Sci 2007; 42(21): 8864-72.
[http://dx.doi.org/10.1007/s10853-007-1784-6]
[34]
Derry WB, Wilson L, Khan IA, Luduena RF, Jordan MA. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified β-tubulin isotypes. Biochemistry 1997; 36(12): 3554-62.
[http://dx.doi.org/10.1021/bi962724m] [PMID: 9132006]
[35]
Krzywik J, Mozga W, Aminpour M, et al. Synthesis, antiproliferative activity and molecular docking studies of novel doublymodified colchicine amides and sulfonamides as anticancer agents. Molecules 2020; 25(8): 1789.
[http://dx.doi.org/10.3390/molecules25081789]
[36]
Pallante L, Rocca A, Klejborowska G, et al. In silico investigations of the mode of action of novel colchicine derivatives targeting β-tubulin isotypes: A search for a selective and specific β-iii tubulin ligand. Front Chem 2020; 8: 108.
[http://dx.doi.org/10.3389/fchem.2020.00108] [PMID: 32154219]
[37]
Klejborowska G, Urbaniak A, Maj E, et al. Synthesis, anticancer activity and molecular docking studies of N-deacetylthiocolchicine and 4-iodo-N-deacetylthiocolchicine derivatives. Bioorg Med Chem 2021; 32: 116014.
[http://dx.doi.org/10.1016/j.bmc.2021.116014] [PMID: 33465696]
[38]
Klejborowska G, Urbaniak A, Maj E, et al. Synthesis, biological evaluation and molecular docking studies of new amides of 4-chlorothiocolchicine as anticancer agents. Bioorg Chem 2020; 97: 103664.
[http://dx.doi.org/10.1016/j.bioorg.2020.103664] [PMID: 32106039]
[39]
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol 2007; 595: 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[40]
Strimpakos AS, Sharma RA. Curcumin: Preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 2008; 10(3): 511-45.
[http://dx.doi.org/10.1089/ars.2007.1769] [PMID: 18370854]
[41]
Kanai M. Therapeutic applications of curcumin for patients with pancreatic cancer. World J Gastroenterol 2014; 20(28): 9384-91.
[PMID: 25071333]
[42]
Pattanayak R, Basak P, Sen S, Bhattacharyya M. Interaction of KRAS G-quadruplex with natural polyphenols: A spectroscopic analysis with molecular modeling. Int J Biol Macromol 2016; 89: 228-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.074] [PMID: 27130653]
[43]
Perrone D, Ardito F, Giannatempo G, et al. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 2015; 10(5): 1615-23.
[http://dx.doi.org/10.3892/etm.2015.2749] [PMID: 26640527]
[44]
Singla RK, Sharma P, Dubey AK, et al. Natural product-based studies for the management of castration-resistant prostate cancer: Computational to clinical studies. Front Pharmacol 2021; 12: 732266.
[http://dx.doi.org/10.3389/fphar.2021.732266] [PMID: 34737700]
[45]
Kumar D, Sharma P, Shabu , et al. In search of therapeutic candidates for HIV/AIDS: Rational approaches, design strategies, structure–activity relationship and mechanistic insights. RSC Advances 2021; 11(29): 17936-64.
[http://dx.doi.org/10.1039/D0RA10655K]
[46]
Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules 2020; 25(9): 2070.
[http://dx.doi.org/10.3390/molecules25092070] [PMID: 32365518]
[47]
Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br J Pharmacol 2017; 174(11): 1325-48.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[48]
Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 2007; 67(8): 3853-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4257] [PMID: 17440100]
[49]
Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14(14): 4491-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[50]
Kanai M, Yoshimura K, Asada M, et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 2011; 68(1): 157-64.
[http://dx.doi.org/10.1007/s00280-010-1470-2] [PMID: 20859741]
[51]
Epelbaum R, Schaffer M, Vizel B, Badmaev V, Bar-Sela G. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer 2010; 62(8): 1137-41.
[http://dx.doi.org/10.1080/01635581.2010.513802] [PMID: 21058202]
[52]
Gupta AP, Khan S, Manzoor MM, et al. Chapter 10-anticancer curcumin: Natural analogues and structure-activity relationship. In: Atta ur R , Ed. Studies in Natural Products Chemistry. 2017; 54: pp. 355-401.
[53]
Koo HJ, Shin S, Choi JY, Lee KH, Kim BT, Choe YS. Introduction of methyl groups at C2 and C6 positions enhances the antiangiogenesis activity of curcumin. Sci Rep 2015; 5(1): 14205.
[http://dx.doi.org/10.1038/srep14205] [PMID: 26391485]
[54]
Agrawal AK, Gupta CM. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv Drug Deliv Rev 2000; 41(2): 135-46.
[http://dx.doi.org/10.1016/S0169-409X(99)00061-7] [PMID: 10699310]
[55]
Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci 2019; 20(5): 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[56]
Bimonte S, Barbieri A, Leongito M, et al. Curcumin anticancer studies in pancreatic cancer. Nutrients 2016; 8(7): 433.
[http://dx.doi.org/10.3390/nu8070433] [PMID: 27438851]
[57]
Pushpalatha R, Kumar SS, Kilimozhi D. Comparative in silico docking analysis of curcumin and resveratrol on breast cancer proteins and their synergistic effect on MCF-7 cell line. J Young Pharm 2017; 9(4): 480-5.
[http://dx.doi.org/10.5530/jyp.2017.9.94]
[58]
Heble NK, Mavillapalli RC, Selvaraj R, Jeyabalan S. Molecular docking studies of phytoconstituents identified in Crocus sativus, Curcuma longa, Cassia occidentalis and Moringa oleifera on thymidylate synthase – an enzyme target for anti-cancer activity. J Appl Pharm Sci 2016; 6(12): 131-5.
[http://dx.doi.org/10.7324/JAPS.2016.601218]
[59]
Mahajanakatti AB, Murthy G, Sharma N, Skariyachan S, Skariyachan S. Exploring inhibitory potential of Curcumin against various cancer targets by in silico virtual screening. Interdiscip Sci 2014; 6(1): 13-24.
[http://dx.doi.org/10.1007/s12539-014-0170-8] [PMID: 24464700]
[60]
Nasir S, Bukhari A, Jantan I, et al. Biological activity and molecular docking studies of curcumin 1 related α, β-unsaturated carbonyl based synthetic compounds as anticancer agents and mushroom. J Agric Food Chem 2014; 2: 1-37.
[61]
Borik RM, Fawzy NM, Abu-Bakr SM, Aly MS, Magdy S. Design, synthesis, anticancer evaluation and docking studies of novel heterocyclic derivatives obtained via reactions involving curcumin. Molecules 2018; 23(6): 1398.
[http://dx.doi.org/10.3390/molecules23061398] [PMID: 29890691]
[62]
Shi Y, Zhou CH. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 2011; 21(3): 956-60.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.059] [PMID: 21215620]
[63]
Whang WK, Park HS, Ham I, et al. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Exp Mol Med 2005; 37(5): 436-46.
[http://dx.doi.org/10.1038/emm.2005.54] [PMID: 16264268]
[64]
Devji T, Reddy C, Woo C, Awale S, Kadota S, Carrico-Moniz D. Pancreatic anticancer activity of a novel geranylgeranylated coumarin derivative. Bioorg Med Chem Lett 2011; 21(19): 5770-3.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.005] [PMID: 21880488]
[65]
Reddy NS, Mallireddigari MR, Cosenza S, et al. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg Med Chem Lett 2004; 14(15): 4093-7.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.016] [PMID: 15225733]
[66]
Xue H, Lu X, Zheng P, et al. Highly suppressing wild-type HIV-1 and Y181C mutant HIV-1 strains by 10-chloromethyl-11-demethyl-12-oxo-calanolide A with druggable profile. J Med Chem 2010; 53(3): 1397-401.
[http://dx.doi.org/10.1021/jm901653e] [PMID: 20050672]
[67]
Manvar A, Bavishi A, Radadiya A, et al. Diversity oriented design of various hydrazides and their in vitro evaluation against Mycobacterium tuberculosis H37Rv strains. Bioorg Med Chem Lett 2011; 21(16): 4728-31.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.074] [PMID: 21752642]
[68]
Yeh JY, Coumar MS, Horng JT, et al. Anti-influenza drug discovery: Structure-activity relationship and mechanistic insight into novel angelicin derivatives. J Med Chem 2010; 53(4): 1519-33.
[http://dx.doi.org/10.1021/jm901570x] [PMID: 20092255]
[69]
Anand P, Singh B, Singh N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 2012; 20(3): 1175-80.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[70]
Piazzi L, Cavalli A, Colizzi F, et al. Multi-target-directed coumarin derivatives: HAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 2008; 18(1): 423-6.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.100] [PMID: 17998161]
[71]
Lin CM, Huang ST, Lee FW, Kuo HS, Lin MH. 6-Acyl-4-aryl/alkyl-5,7-dihydroxycoumarins as anti-inflammatory agents. Bioorg Med Chem 2006; 14(13): 4402-9.
[http://dx.doi.org/10.1016/j.bmc.2006.02.042] [PMID: 16540334]
[72]
Curini M, Epifano F, Maltese F, Marcotullio MC, Gonzales SP, Rodriguez JC. Synthesis of collinin, an antiviral coumarin. Aust J Chem 2003; 56(1): 59-60.
[http://dx.doi.org/10.1071/CH02177]
[73]
Hung WL, Suh JH, Wang Y. Chemistry and health effects of furanocoumarins in grapefruit. J Food Drug Analysis 2017; 71-83.
[74]
De Amicis F, Aquila S, Morelli C, et al. Bergapten drives autophagy through the up-regulation of PTEN expression in breast cancer cells. Mol Cancer 2015; 14(1): 130-8.
[http://dx.doi.org/10.1186/s12943-015-0403-4] [PMID: 26148846]
[75]
Jiang J, Wang X, Cheng K, et al. Psoralen reverses the P-glycoprotein-mediated multidrug resistance in human breast cancer MCF-7/ADR cells. Mol Med Rep 2016; 13(6): 4745-50.
[http://dx.doi.org/10.3892/mmr.2016.5098] [PMID: 27082231]
[76]
Autore G, Marzocco S, Formisano C, et al. Cytotoxic activity and composition of petroleum ether extract from Magydaris tomentosa (Desf.) W. D. J. Koch (Apiaceae). Molecules 2015; 20(1): 1571-8.
[http://dx.doi.org/10.3390/molecules20011571] [PMID: 25603502]
[77]
Musa MA, Cooperwood JS, Khan MO. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 2008; 15(26): 2664-79.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[78]
Acharya R, Chacko S, Bose P, Lapenna A, Pattanayak SP. Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci Rep 2019; 9(1): 15743.
[http://dx.doi.org/10.1038/s41598-019-52162-0] [PMID: 31673107]
[79]
Bagdi AK, Majee A, Hajra A. Regioselective synthesis of pyrano[3,2-c]coumarins via Cu(II)-catalyzed tandem reaction. Tetrahedron Lett 2013; 54(29): 3892-5.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.061]
[80]
Kumar D, Malik F, Bedi PMS, Jain S. 2,4-diarylpyrano[3,2-c]chromen-5(4H)-ones as coumarin-chalcone conjugates: Design, synthesis and biological evaluation as apoptosis inducing agents. Chem Pharm Bull (Tokyo) 2016; 64: 399-409.
[http://dx.doi.org/10.1248/cpb.c15-00958] [PMID: 27150472]
[81]
Hussain MK, Ansari MI, Yadav N, et al. Design and synthesis of ERα/ERβ selective coumarin and chromene derivatives as potential anti-breast cancer and anti-osteoporotic agents. RSC Advances 2014; 4(17): 8828-45.
[http://dx.doi.org/10.1039/C3RA45749D]
[82]
Pettit GR, Cragg GM, Singh SB. Antineoplastic agents, 122. Constituents of Combretum caffrum. J Nat Prod 1987; 50(3): 386-91.
[http://dx.doi.org/10.1021/np50051a008] [PMID: 3668557]
[83]
Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendall D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia 1989; 45(2): 209-11.
[http://dx.doi.org/10.1007/BF01954881] [PMID: 2920809]
[84]
Nabha SM, Mohammad RM, Wall NR, et al. Evaluation of combretastatin A-4 prodrug in a non-Hodgkin’s lymphoma xenograft model: Preclinical efficacy. Anticancer Drugs 2001; 12(1): 57-63.
[http://dx.doi.org/10.1097/00001813-200101000-00008] [PMID: 11272287]
[85]
McGown AT, Fox BW. Differential cytotoxicity of combretastatins A1 and A4 in two daunorubicin-resistant P388 cell lines. Cancer Chemother Pharmacol 1990; 26(1): 79-81.
[http://dx.doi.org/10.1007/BF02940301] [PMID: 2322992]
[86]
Dorr RT, Dvorakova K, Snead K, Alberts DS, Salmon SE, Pettit GR. Antitumor activity of combretastatin-A4 phosphate, a natural product tubulin inhibitor. Invest New Drugs 1996; 14(2): 131-7.
[http://dx.doi.org/10.1007/BF00210783] [PMID: 8913833]
[87]
Ohsumi K, Nakagawa R, Fukuda Y, et al. Novel combretastatin analogues effective against murine solid tumors: Design and structure-activity relationships. J Med Chem 1998; 41(16): 3022-32.
[http://dx.doi.org/10.1021/jm980101w] [PMID: 9685242]
[88]
Chaplin DJ, Pettit GR, Hill SA. Anti-vascular approaches to solid tumour therapy: Evaluation of combretastatin A4 phosphate. Anticancer Res 1999; 19(1A): 189-95.
[PMID: 10226542]
[89]
West CM, Price P. Combretastatin A4 phosphate. Anticancer Drugs 2004; 15(3): 179-87.
[http://dx.doi.org/10.1097/00001813-200403000-00001] [PMID: 15014350]
[90]
Odlo K, Chabert J, Ducki S, Gani OA, Sylte I, Hansen TV. 1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogs of combretastatin A-4: Tubulin. Bioorg Med Chem 2008; 16: 4829-38.
[http://dx.doi.org/10.1016/j.bmc.2008.03.049] [PMID: 18396050]
[91]
Carr M, Greene LM, Knox AJS, Lloyd DG, Zisterer DM, Meegan MJ. Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. Eur J Med Chem 2010; 45(12): 5752-66.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.033] [PMID: 20933304]
[92]
Liou JP, Chang YL, Kuo FM, et al. Concise synthesis and structure-activity relationships of combretastatin A-4 analogues, 1-aroylindoles and 3-aroylindoles, as novel classes of potent antitubulin agents. J Med Chem 2004; 47(17): 4247-57.
[http://dx.doi.org/10.1021/jm049802l] [PMID: 15293996]
[93]
Lin CM, Ho HH, Pettit GR, Hamel E. Antimitotic natural products combretastatin A-4 and combretastatin A-2: Studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry 1989; 28(17): 6984-91.
[http://dx.doi.org/10.1021/bi00443a031] [PMID: 2819042]
[94]
Siebert A, Gensicka M, Cholewinski G, Dzierzbicka K. Synthesis of combretastatin A-4 analogs and their biological activities. Anticancer Agents Med Chem 2016; 16(8): 942-60.
[http://dx.doi.org/10.2174/1871520616666160204111832] [PMID: 26845138]
[95]
Nikolay AZ, Zefirova ON. Heterocycles as classical and nonclassical ring B isosters in combretastatin A-4. Chem Heterocycl Compd 2017; 53(3): 273-80.
[http://dx.doi.org/10.1007/s10593-017-2049-1]
[96]
Arora S, Gonzalez AF, Solanki K. Combretastatin A-4 and its analogs in cancer therapy. Int J Pharm Sci Rev Res 2013; 22: 168-74.
[97]
Tarade D, Ma D, Pignanelli C, et al. Structurally simplified biphenyl combretastatin A4 derivatives retain in vitro anti-cancer activity dependent on mitotic arrest. PLoS One 2017; 12(3): e0171806.
[http://dx.doi.org/10.1371/journal.pone.0171806] [PMID: 28253265]
[98]
Jie C, Jun Y, Jin HH, Yan QP, Lin H, Xing SL. Synthesis, biological evaluation and mechanism study of chalcone analogues as novel anti-cancer agents. RSC Advances 2015; 5(83): 68128-35.
[http://dx.doi.org/10.1039/C5RA14888J]
[99]
Sessa C, Lorusso P, Tolcher A, et al. Phase I safety, pharmacokinetic and pharmacodynamic evaluation of the vascular disrupting agent ombrabulin (AVE8062) in patients with advanced solid tumors. Clin Cancer Res 2013; 19(17): 4832-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0427] [PMID: 23833302]
[100]
Eskens FALM, Tresca P, Tosi D, et al. A phase I pharmacokinetic study of the vascular disrupting agent ombrabulin (AVE8062) and docetaxel in advanced solid tumours. Br J Cancer 2014; 110(9): 2170-7.
[http://dx.doi.org/10.1038/bjc.2014.137] [PMID: 24714750]
[101]
Bahleda R, Sessa C, Del Conte G, et al. Phase I clinical and pharmacokinetic study of ombrabulin (AVE8062) combined with cisplatin/docetaxel or carboplatin/paclitaxel in patients with advanced solid tumors. Invest New Drugs 2014; 32(6): 1188-96.
[http://dx.doi.org/10.1007/s10637-014-0119-0] [PMID: 24898305]
[102]
Garon EB, Neidhart JD, Gabrail NY, de Oliveira MR, Balkissoon J, Kabbinavar F. A randomized Phase II trial of the tumor vascular disrupting agent CA4P (fosbretabulin tromethamine) with carboplatin, paclitaxel, and bevacizumab in advanced nonsquamous non-small-cell lung cancer. OncoTargets Ther 2016; 9: 7275-83.
[http://dx.doi.org/10.2147/OTT.S109186] [PMID: 27942221]
[103]
Monk BJ, Sill MW, Walker JL, et al. Randomized phase II evaluation of bevacizumab versus bevacizumab plus fosbretabulin in recurrent ovarian, tubal, or peritoneal carcinoma: An NRG oncology/gynecologic oncology group study. J Clin Oncol 2016; 34(19): 2279-86.
[http://dx.doi.org/10.1200/JCO.2015.65.8153] [PMID: 27217446]
[104]
Ma ZL, Yan XJ, Zhao L, et al. Combretastatin A-4 and their derivatives: Potential fungicides targeting fungal tubulin. J Agric Food Chem 2016; 64(4): 746-51.
[http://dx.doi.org/10.1021/acs.jafc.5b05119] [PMID: 26711170]
[105]
Zhao L, Zhou JJ, Huang XY, et al. Design, synthesis and antiproliferative effects in tumor cells of new new combretastatin A-4 analogs. Chin Chem Lett 2015; 26(8): 993-9.
[http://dx.doi.org/10.1016/j.cclet.2015.05.003]
[106]
Zhang SW, Li T, Pang W, et al. Synthesis, biological evaluation and molecular docking studies of Combretastatin A-4 phosphoramidates as novel anticancer prodrugs. Med Chem Res 2020; 29(12): 2192-202.
[http://dx.doi.org/10.1007/s00044-020-02632-2]
[107]
Huang L, Huang J, Nie H, Li Y, Song L, Wu F. Design, synthesis and biological evaluation of combretastatin A-4 sulfamate derivatives as potential anti-cancer agents. RSC Med Chem 2020.
[108]
Koul B, Kumar A, Yadav D, Jin JO. Bergenia Genus: Traditional uses, phytochemistry and pharmacology. Molecules 2020; 25(23): 5555.
[http://dx.doi.org/10.3390/molecules25235555] [PMID: 33256153]
[109]
Nazir N, Koul S, Qurishi MA, Najar MH, Zargar MI. Evaluation of antioxidant and antimicrobial activities of Bergenin and its derivatives obtained by chemoenzymatic synthesis. Eur J Med Chem 2011; 46(6): 2415-20.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.025] [PMID: 21474216]
[110]
De Abreu HA, Aparecida Dos S. Lago I, Souza GP, Piló-Veloso D, Duarte HA, de C Alcântara AF. Antioxidant activity of (+)-bergenin: A phytoconstituent isolated from the bark of Sacoglottis uchi Huber (Humireaceae). Org Biomol Chem 2008; 6(15): 2713-8.
[http://dx.doi.org/10.1039/b804385j] [PMID: 18633529]
[111]
Srivastava N, Verma S, Pragyadeep S, Srivastava S, Rawat AKS. Evaluation of successive fractions for optimum quantification of bergenin and gallic acid in three industrially important bergenia species by high-performance thin-layer chromatography. J Planar Chromatogr Mod TLC 2014; 27(1): 69-71.
[http://dx.doi.org/10.1556/JPC.27.2014.1.13]
[112]
Dhalwal K, Shinde VM, Biradar YS, Mahadik KR. Simultaneous quantification of bergenin, catechin, and gallic acid from bergenia ciliata and bergenia ligulata by using thin-layer chromatography. J Food Compos Anal 2008; 21(6): 496-500.
[http://dx.doi.org/10.1016/j.jfca.2008.02.008]
[113]
Bharate SB, Kumar V, Bharate SS, et al. Discovery and preclinical development of IIIM-160, a Bergenia ciliata-based anti-inflammatory and anti-arthritic botanical drug candidate. J Integr Med 2019; 17(3): 192-204.
[http://dx.doi.org/10.1016/j.joim.2019.03.001] [PMID: 30898582]
[114]
Khan H, Amin H, Ullah A, et al. Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from Mallotus philippensis. Oxid Med Cell Longev 2016; 2016: 1051925.
[http://dx.doi.org/10.1155/2016/1051925] [PMID: 26998192]
[115]
Jayakody RS, Wijewardhane P, Herath C, Perera S. Bergenin: A computationally proven promising scaffold for novel galectin-3 inhibitors. J Mol Model 2018; 24(10): 302.
[http://dx.doi.org/10.1007/s00894-018-3831-4] [PMID: 30276553]
[116]
Pavan Kumar P, Siva B, Venkateswara Rao B, et al. Synthesis and biological evaluation of bergenin-1,2,3-triazole hybrids as novel class of anti-mitotic agents. Bioorg Chem 2019; 91: 103161-8.
[http://dx.doi.org/10.1016/j.bioorg.2019.103161] [PMID: 31387060]
[117]
Madaan R, Singla RK, Kumar S, et al. Bergenin – a biologically active scaffold: Nanotechnological perspectives. Curr Top Med Chem 2022; 22(2): 132-49.
[PMID: 34649489]
[118]
Podowyssotzki V. Pharmacological studies of Podophyllum peltatum. Naunyn Schmiedebergs Arch Pharmacol 1880; 13(1-2): 29-52.
[http://dx.doi.org/10.1007/BF01833268]
[119]
O’Dwyer PJ, Leyland-Jones B, Alonso MT, Marsoni S, Wittes RE. Etoposide (VP-16-213). Current status of an active anticancer drug. N Engl J Med 1985; 312(11): 692-700.
[http://dx.doi.org/10.1056/NEJM198503143121106] [PMID: 2983208]
[120]
Jin Y, Chen SW, Tian X. Synthesis and biological evaluation of new spin-labeled derivatives of podophyllotoxin. Bioorg Med Chem 2006; 14(9): 3062-8.
[http://dx.doi.org/10.1016/j.bmc.2005.12.025] [PMID: 16406792]
[121]
Zhang JQ, Zhang ZW, Hui L, Chen SW, Tian X. Novel semisynthetic spin-labeled derivatives of podophyllotoxin with cytotoxic and antioxidative activity. Bioorg Med Chem Lett 2010; 20(3): 983-6.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.048] [PMID: 20053564]
[122]
Yadav M, Dhagat S, Eswari JS. Structure based drug design and molecular docking studies of anticancer molecules paclitaxel, etoposide and topotecan using novel ligands. Curr Drug Discov Technol 2020; 17(2): 183-90.
[http://dx.doi.org/10.2174/1570163816666190307102033] [PMID: 30848204]
[123]
Downing KH, Nogales E. Tubulin structure: Insights into microtubule properties and functions. Curr Opin Struct Biol 1998; 8(6): 785-91.
[http://dx.doi.org/10.1016/S0959-440X(98)80099-7] [PMID: 9914260]
[124]
Schmidt M, Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Updat 2007; 10(4-5): 162-81.
[http://dx.doi.org/10.1016/j.drup.2007.06.003] [PMID: 17669681]
[125]
Georg GI, Harriman GCB, Himes RH, Mejillano MR. 7(p- Azidobenzoyl)-taxol synthesis and biological evaluation. Bioorg Med Chem Lett 1992; 2(7): 735-8.
[http://dx.doi.org/10.1016/S0960-894X(00)80402-3]
[126]
Georg GI, Cheruvallath ZS, Himes RH, Mejillano MR. Semi synthesis and biological activity of taxol analogs: Baccatin III 13-(Nbenzoyl-(2'R,3'S)-3'-(p-tolyl)isoserinate), Baccatin III 13-(N-ptoluoyl)-(2'R,3'S)-3'-phenylisoserinate), Baccatin III 13-(N-benzoyl- (2'R,3'S)-3'-(p- trifluoromethylphenyl)isoserinate), and Baccatin III 13-(N-(ptrifluoromethylbenzoyl)-(2'R,3'S)-3' phenylisoserinate). Bioorg Med Chem Lett 1992; 2: 1751-64.
[http://dx.doi.org/10.1016/S0960-894X(01)80203-1]
[127]
Wall ME. Camptothecin and taxol: Discovery to clinic. Med Res Rev 1998; 18(5): 299-314.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199809)18:5<299::AID-MED2>3.0.CO;2-O] [PMID: 9735871]
[128]
Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. N Engl J Med 2000; 343(13): 905-14.
[http://dx.doi.org/10.1056/NEJM200009283431302] [PMID: 11006366]
[129]
Gore M, ten Bokkel Huinink W, Carmichael J, et al. Clinical evidence for topotecan-paclitaxel non--cross-resistance in ovarian cancer. J Clin Oncol 2001; 19(7): 1893-900.
[http://dx.doi.org/10.1200/JCO.2001.19.7.1893] [PMID: 11283120]
[130]
Hadfield JA, Ducki S, Hirst N, McGown AT. Tubulin and microtubules as targets for anticancer drugs. Prog Cell Cycle Res 2003; 5: 309-25.
[PMID: 14593726]
[131]
Neuss N, Neuss MN, Suffness M. The Alkaloids. San Diego Academic 1990; 37: 229.
[132]
Fahy J, Thillaye du Boullay V, Bigg DCH. New method of synthesis of Vinca alkaloid derivatives. Bioorg Med Chem Lett 2002; 12(3): 505-7.
[http://dx.doi.org/10.1016/S0960-894X(01)00784-3] [PMID: 11814829]
[133]
Shao Y, Ding H, Tang W, Lou L, Hu L. Synthesis and structure-activity relationships study of novel anti-tumor carbamate anhydrovinblastine analogues. Bioorg Med Chem 2007; 15(15): 5061-75.
[http://dx.doi.org/10.1016/j.bmc.2007.05.045] [PMID: 17544278]
[134]
Sertel S, Fu Y, Zu Y, et al. Molecular docking and pharmacogenomics of vinca alkaloids and their monomeric precursors, vindoline and catharanthine. Biochem Pharmacol 2011; 81(6): 723-35.
[http://dx.doi.org/10.1016/j.bcp.2010.12.026] [PMID: 21219884]
[135]
Quan PM, Binh VN, Ngan VT, Trung NT, Anh NQ. Molecular docking studies of Vinca alkaloid derivatives on Tubulin. Vietnam J Chem 2019; 57(6): 702-6.
[http://dx.doi.org/10.1002/vjch.201900087]