[1]
Gulati, S.; Singh, R.; Sangwan, S. A review on green synthesis and biological activities of nitrogen and oxygen containing heterocycles. Preprints, 2021.
[3]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947.
[4]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of heterocyclic chemistry, 3rd ed; Elsevier, 2010.
[5]
Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three to Five Membered Heterocy-cles; Elsevier, 2019.
[6]
Eicher, T.; Hauptmann, S.; Speicher, A. The chemistry of heterocycles: Structures, reactions, synthesis, and applications; John Wiley & Sons, 2013.
[9]
Sharma, V.; Kumar, P.; Pathak, D. Biological importance of the indole nucleus in recent years: A comprehensive review. J. Heterocycl. Chem., 2010, 7(3), 49502.
[11]
Biswal, S.; Sahoo, U.; Sethy, S.; Kumar, H.K.; Banerjee, M. Indole: The molecule of diverse biological activities. Asian J. Pharm. Clin. Res., 2012, (1), 1-6.
[14]
Joulain, D. Study of the fragrance given off by certain springtime flowers. InProgress in essential oil research; De Gruyter, 2019, pp. 57-68.
[21]
Nimnoi, P.; Pongsilp, N. Genetic diversity and plant-growth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well as rhizosphere, rhizoplane and root tissue of Ficus religiosa L. Leucaena leucocephala. Res. J. Agric. Biol. Sci., 2009, 5(1), 29-41.
[24]
Siddiqui, M.I.; Hussain, S.A. Effect of indole butyric acid and types of cuttings on root initiation of Ficus hawaii. Sarhad J. Agric., 2007, 23(4), 919.
[43]
Sundberg, R. The chemistry of indoles; Elsevier, 2012, p. 18.
[53]
Shahab, S.; Ahmed, N.; Khan, N.S. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr. J. Agric. Res., 2009, 4(11), 1312-1316.
[60]
Raut, J.S.; Shinde, R.B.; Karuppayil, M.S. Indole, a bacterial signaling molecule, exhibits inhibitory activity against growth, dimorphism and biofilm formation in Candida albicans. Afr. J. Microbiol. Res., 2012, 6(30), 6005-6012.
[65]
McCarter, JF Molecular approaches toward resistance to plant-parasitic nematodes; Cell. Biol. Plant Nematode Parasitism, 2008, pp. 1-29.
[79]
Huang, ZB; Xia, XJ; Huang, ZH; Xu, L; Zhang, XY; Tang, RY Selective C–H dithiocarbamation of arenes and antifungal activity evalua-tion., Org Biomol Chem, 2020, 18(7), 1369-76.2020,
[81]
Parle, N.K. Synthesis, characterization and evaluation of 3-acetylindole derivatives evaluating as potential anti-inflammatory agent. Pharma Innov., 2020, 9(6), 468-474.
[89]
Gupta, A.K.; Sharma, M. Synthesis, characterization and anti-microbial activity of indole derivatives. J. Drug Deliv. Ther., 2019, 9(4-s), 918-925.
[102]
Quazi, I.; Sastry, V.G.; Ansari, J.A. Synthesis and antimicrobial activity of indole derivative bearing the pyrazole moiety. Int. J. Pharm. Sci. Res., 2017, 8(3), 1145.
[107]
Joseph, O.B.; Sholagbade, A.T.; Olubumni, J.O. Synthesis, charactwerization and biological studies of N-Methylindole-3-thioacetic acid. J Appl Chem. Sci. Int. (Lahore), 2016, 7(2), 90-114.
[108]
Zine, B.; Jadhav, S.; Farooqui, M. Design, synthesis and biological evaluation of dihydroisoxazole of indole derivatives as anti-microbial agents. J. Chem. Pharm. Res., 2016, 8(7), 234-240.
[115]
Oh, K.; Ishigaki, M.; Hoshi, T.; Yoshizawa, Y. Synthesis of novel imidazole derivatives based on camalexin scaffold and anti-fungal activity against rice blast; Curr Appl Sci Technol, 2015, pp. 527-533.