AZD4547 and the Alleviation of Hepatoma Cell Sorafenib Resistance via the Promotion of Autophagy

Page: [3107 - 3113] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: This study is part of a larger research effort to explore the molecular mechanism of hepatocellular carcinoma, reduce drug resistance and seek new targets.

Objective: The objective of this study is to investigate the effect and mechanism of fibroblast growth factor receptor inhibitor AZD4547 on Sorafenib-resistant hepatoma cells.

Methods: First, we constructed a Sorafenib-resistant hepatoma cell line Huh7R. Different groups of Huh7R cells were treated with Sorafenib, AZD4547, Sorafenib combined with AZD4547, and normal saline. The cell viability was detected by Cell Counting Kit-8. Then Fibroblast growth factor receptor and Toll-like receptor 4 were detected by Western blot, as well as the LC3 II/I, Beclin1, and P62. In addition, we used the autophagy inhibitor 3-methyladenine to identify the mechanism of AZD4547 combined with Sorafenib for inducing Sorafenib-resistant hepatoma cell death.

Results: We find that AZD4547 combined with Sorafenib significantly inhibited the viability of Sorafenib-resistant hepatoma cell Huh7R. As for its mechanism, AZD4547 was able to inhibit fibroblast growth factor receptor activity, promote autophagy and regulate immunity. AZD4547 increased LC3 II/I, Beclin1, and Toll-like receptor 4 proteins, and decreased P62 protein level in Huh7R cells significantly when given in combination with sorafenib. Furthermore, 3-methyladenine inhibited autophagy and reversed the killing effect of the combination of AZD4547 and Sorafenib on Huh7R cells.

Conclusion: The inhibition of fibroblast growth factor receptor activity by AZD4547 can significantly enhance autophagy and immune response, as well as promote the death of Sorafenib-resistant hepatoma cells.

Keywords: Hepatoma, fibroblast growth factor receptor, Sorafenib, drug resistance, autophagy, Toll-like receptor 4.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN esti-mates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Chen, W.; Sun, K.; Zheng, R.; Zeng, H.; Zhang, S.; Xia, C.; Yang, Z.; Li, H.; Zou, X.; He, J. Cancer incidence and mortality in China, 2014. Chin. J. Cancer Res., 2018, 30(1), 1-12.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2018.01.01] [PMID: 29545714]
[3]
Keating, G.M. Sorafenib: A review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253.
[http://dx.doi.org/10.1007/s11523-017-0484-7] [PMID: 28299600]
[4]
Marrero, J.A.; Kudo, M.; Venook, A.P.; Ye, S.L.; Bronowicki, J.P.; Chen, X.P.; Dagher, L.; Furuse, J.; Geschwind, J.H.; de Guevara, L.L.; Papandreou, C.; Takayama, T.; Sanyal, A.J.; Yoon, S.K.; Nakajima, K.; Lehr, R.; Heldner, S.; Lencioni, R. Observational registry of soraf-enib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J. Hepatol., 2016, 65(6), 1140-1147.
[http://dx.doi.org/10.1016/j.jhep.2016.07.020] [PMID: 27469901]
[5]
Chen, J.; Jin, R.; Zhao, J.; Liu, J.; Ying, H.; Yan, H.; Zhou, S.; Liang, Y.; Huang, D.; Liang, X.; Yu, H.; Lin, H.; Cai, X. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett., 2015, 367(1), 1-11.
[http://dx.doi.org/10.1016/j.canlet.2015.06.019] [PMID: 26170167]
[6]
Zhang, H.; Wang, Q.; Liu, J.; Cao, H. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib-derived chemo-resistance in hepato-cellular carcinoma. Oncol. Lett., 2018, 15(6), 9377-9384.
[http://dx.doi.org/10.3892/ol.2018.8536] [PMID: 29928334]
[7]
Katoh, M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int. J. Mol. Med., 2016, 38(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2016.2620] [PMID: 27245147]
[8]
Mak, L.Y.; Cruz-Ramón, V.; Chinchilla-López, P.; Torres, H.A.; LoConte, N.K.; Rice, J.P.; Foxhall, L.E.; Sturgis, E.M.; Merrill, J.K.; Bai-ley, H.H.; Méndez-Sánchez, N.; Yuen, M.F.; Hwang, J.P. Global epidemiology, prevention, and management of hepatocellular carcinoma. Am. Soc. Clin. Oncol. Educ. Book, 2018, 38(38), 262-279.
[http://dx.doi.org/10.1200/EDBK_200939] [PMID: 30231359]
[9]
Kudo, M. Systemic therapy for hepatocellular carcinoma: Latest advances. Cancers (Basel), 2018, 10(11), E412.
[http://dx.doi.org/10.3390/cancers10110412] [PMID: 30380773]
[10]
von Felden, J.; Schulze, K.; Gil-Ibanez, I.; Werner, T.; Wege, H. First- and second-line targeted systemic therapy in hepatocellular carci-noma-an update on patient selection and response evaluation. Diagnostics (Basel), 2016, 6(4), E44.
[http://dx.doi.org/10.3390/diagnostics6040044] [PMID: 27916795]
[11]
Ray, E.M.; Sanoff, H.K. Optimal therapy for patients with hepatocellular carcinoma and resistance or intolerance to sorafenib: Challenges and solutions. J. Hepatocell. Carcinoma, 2017, 4, 131-138.
[http://dx.doi.org/10.2147/JHC.S124366] [PMID: 29184856]
[12]
Nishida, N.; Kitano, M.; Sakurai, T.; Kudo, M. Molecular mechanism and prediction of sorafenib chemoresistance in human hepatocellu-lar carcinoma. Dig. Dis., 2015, 33(6), 771-779.
[http://dx.doi.org/10.1159/000439102] [PMID: 26488287]
[13]
Zhang, H.; Zhang, Y.; Zhu, X.; Chen, C.; Zhang, C.; Xia, Y.; Zhao, Y.; Andrisani, O.; Kong, L. DEAD box protein 5 inhibits liver tumor-igenesis by stimulating autophagy via interaction with p62/SQSTM1. Hepatology, 2019, 69(3), 1046-1063.
[http://dx.doi.org/10.1002/hep.30300] [PMID: 30281815]
[14]
He, J.D.; Wang, Z.; Li, S.P.; Xu, Y.J.; Yu, Y.; Ding, Y.J.; Yu, W.L.; Zhang, R.X.; Zhang, H.M.; Du, H.Y. Vitexin suppresses autophagy to induce apoptosis in hepatocellular carcinoma via activation of the JNK signaling pathway. Oncotarget, 2016, 7(51), 84520-84532.
[http://dx.doi.org/10.18632/oncotarget.11731] [PMID: 27588401]
[15]
Akkoç, Y.; Gözüaçık, D. Autophagy and liver cancer. Turk. J. Gastroenterol., 2018, 29(3), 270-282.
[http://dx.doi.org/10.5152/tjg.2018.150318] [PMID: 29755011]
[16]
Han, R.; Li, S. Regorafenib delays the proliferation of hepatocellular carcinoma by inducing autophagy. Pharmazie, 2018, 73(4), 218-222.
[http://dx.doi.org/10.1691/ph.2018.7988] [PMID: 29609689]
[17]
Heqing, Y.; Bin, L.; Xuemei, Y.; Linfa, L. The role and mechanism of autophagy in sorafenib targeted cancer therapy. Crit. Rev. Oncol. Hematol., 2016, 100, 137-140.
[http://dx.doi.org/10.1016/j.critrevonc.2016.02.006] [PMID: 26920575]
[18]
Niu, L.; Liu, L.; Yang, S.; Ren, J.; Lai, P.B.S.; Chen, G.G. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(2), 564-570.
[http://dx.doi.org/10.1016/j.bbcan.2017.10.002] [PMID: 29054475]
[19]
He, C.; Dong, X.; Zhai, B.; Jiang, X.; Dong, D.; Li, B.; Jiang, H.; Xu, S.; Sun, X. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget, 2015, 6(30), 28867-28881.
[http://dx.doi.org/10.18632/oncotarget.4814] [PMID: 26311740]
[20]
Jo, J.C.; Choi, E.K.; Shin, J.S.; Moon, J.H.; Hong, S.W.; Lee, H.R.; Kim, S.M.; Jung, S.A.; Lee, D.H.; Jung, S.H.; Lee, S.H.; Kim, J.E.; Kim, K.P.; Hong, Y.S.; Suh, Y.A.; Jang, S.J.; Choi, E.K.; Lee, J.S.; Jin, D.H.; Kim, T.W. Targeting FGFR pathway in human hepatocellular carci-noma: Expressing pFGFR and pMET for antitumor activity. Mol. Cancer Ther., 2015, 14(11), 2613-2622.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0780] [PMID: 26351320]
[21]
Chio, C.C.; Chen, K.Y.; Chang, C.K.; Chuang, J.Y.; Liu, C.C.; Liu, S.H.; Chen, R.M. Improved effects of honokiol on temozolomide-induced autophagy and apoptosis of drug-sensitive and -tolerant glioma cells. BMC Cancer, 2018, 18(1), 379.
[http://dx.doi.org/10.1186/s12885-018-4267-z] [PMID: 29614990]
[22]
Tam, S.Y.; Wu, V.W.; Law, H.K. Influence of autophagy on the efficacy of radiotherapy. Radiat. Oncol., 2017, 12(1), 57.
[http://dx.doi.org/10.1186/s13014-017-0795-y] [PMID: 28320471]
[23]
Zhai, B.; Hu, F.; Jiang, X.; Xu, J.; Zhao, D.; Liu, B.; Pan, S.; Dong, X.; Tan, G.; Wei, Z.; Qiao, H.; Jiang, H.; Sun, X. Inhibition of Akt re-verses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther., 2014, 13(6), 1589-1598.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1043] [PMID: 24705351]
[24]
Helsten, T.; Elkin, S.; Arthur, E.; Tomson, B.N.; Carter, J.; Kurzrock, R. The FGFR landscape in cancer: Analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res., 2016, 22(1), 259-267.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3212] [PMID: 26373574]
[25]
Lee, H.J.; Kang, H.J.; Kim, K.M.; Yu, E.S.; Kim, K.H.; Kim, S.M.; Kim, T.W.; Shim, J.H.; Lim, Y.S.; Lee, H.C.; Chung, Y.H.; Lee, Y.S. Fibroblast growth factor receptor isotype expression and its association with overall survival in patients with hepatocellular carcinoma. Clin. Mol. Hepatol., 2015, 21(1), 60-70.
[http://dx.doi.org/10.3350/cmh.2015.21.1.60] [PMID: 25834803]
[26]
Tovar, V.; Cornella, H.; Moeini, A.; Vidal, S.; Hoshida, Y.; Sia, D.; Peix, J.; Cabellos, L.; Alsinet, C.; Torrecilla, S.; Martinez-Quetglas, I.; Lozano, J.J.; Desbois-Mouthon, C.; Solé, M.; Domingo-Domenech, J.; Villanueva, A.; Llovet, J.M. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut, 2017, 66(3), 530-540.
[http://dx.doi.org/10.1136/gutjnl-2015-309501] [PMID: 26658144]
[27]
Cen, X.; Liu, S.; Cheng, K. The role of Toll-like receptor in inflammation and tumor immunity. Front. Pharmacol., 2018, 9, 878.
[http://dx.doi.org/10.3389/fphar.2018.00878] [PMID: 30127747]