Selenium and Platinum Compounds in Cancer Therapy: Potentiality of their Progeny as Future Chemotherapeutics

Page: [1 - 11] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Compounds based on two different elements, selenium and platinum, have been attracting researchers to deploy them in chemotherapy of human cancers. Selenium, as a micronutrient, plays many important roles in human biology. Different research groups have been developing both inorganic and organoselenium compounds for potential use in the treatment of diseases, including cancer. New synthetic designs are emerging to develop selenium compounds either as chemopreventive or chemotherapeutic agents. Platinum is another important element in cancer therapy. Platinum-based drugs are the first line of treatment for many cancers. Attracted by the fact that chalcogens are excellent ligands for platinum, new ideas are emerging to develop selenium-bound platinum compounds as cancer therapeutics. In this direction, our group has made an effort to develop stable seleno-platinum compounds to explore their anti-cancer potential.

Keywords: Selenium, platinum, cisplatin, anti-cancer drugs, radioprotectors, chemotherapeutics.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[3]
Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid. Redox Signal., 2007, 9(7), 775-806.
[http://dx.doi.org/10.1089/ars.2007.1528] [PMID: 17508906]
[4]
Schwarz, K.; Foltz, C.M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 1957, 79(12), 3292-3293.
[http://dx.doi.org/10.1021/ja01569a087]
[5]
Kunwar, A.; Priyadarsini, K.I. Free radicals, oxidative stress and importance of antioxidants in human health. J. Med. Appl. Sci., 2011, 1, 53-60.
[6]
Jacob, C.; Giles, G.I.; Giles, N.M.; Sies, H. Sulfur and selenium: The role of oxidation state in protein structure and function. Angew. Chem. Int. Ed., 2003, 42(39), 4742-4758.
[http://dx.doi.org/10.1002/anie.200300573] [PMID: 14562341]
[7]
Wessjohann, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem., 2007, 388(10), 997-1006.
[http://dx.doi.org/10.1515/BC.2007.138] [PMID: 17937613]
[8]
Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants, 2018, 7(5), 66-92.
[http://dx.doi.org/10.3390/antiox7050066] [PMID: 29758013]
[9]
Misra, S.; Boylan, M.; Selvam, A.; Spallholz, J.E.; Björnstedt, M. Redox-active selenium compounds--from toxicity and cell death to cancer treatment. Nutrients, 2015, 7(5), 3536-3556.
[http://dx.doi.org/10.3390/nu7053536] [PMID: 25984742]
[10]
Micke, O.; Schomburg, L.; Buentzel, J.; Kisters, K.; Muecke, R. Selenium in oncology: From chemistry to clinics. Molecules, 2009, 14(10), 3975-3988.
[http://dx.doi.org/10.3390/molecules14103975] [PMID: 19924043]
[11]
Fernandes, A.P.; Gandin, V. Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta, 2015, 1850(8), 1642-1660.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.008] [PMID: 25459512]
[12]
Hatfield, D.L.; Gladyshev, V.N. The outcome of selenium and vitamin E cancer prevention trial (SELECT) reveals the need for better understanding of selenium biology. Mol. Interv., 2009, 9(1), 18-21.
[http://dx.doi.org/10.1124/mi.9.1.6] [PMID: 19299660]
[13]
Singh, F.V.; Wirth, T. Synthesis of organoselenium compounds with potential biological activities. In: Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Jain, V.K.; Priyadarsini, K.I., Eds.; RSC, 2018, pp. 77-121.
[http://dx.doi.org/10.1039/9781788011907-00077]
[14]
Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol., 2021, 95(4), 1179-1226.
[http://dx.doi.org/10.1007/s00204-021-03003-5] [PMID: 33792762]
[15]
Rocha, J.B.T.; Oliveira, C.S.; Nogara, P.A. Toxicology and Anticancer Activity of Synthetic Organoselenium Compounds. In: Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Jain, V.K.; Priyadarsini, K.I., Eds.; RSC, 2018, pp. 342-376.
[http://dx.doi.org/10.1039/9781788011907-00342]
[16]
Diamond, A.M. Cancer Prevention by Different Forms of Selenium. In: Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Jain, V.K.; Priyadarsini, K.I., Eds.; RSC, 2018, pp. 436-451.
[http://dx.doi.org/10.1039/9781788011907-00436]
[17]
Selenase® 100 micrograms, solution Selenase® 500 micrograms, solution for injection by biosyn Arzneimittel GmbH Schorndorfer Strasse 32, 70734 Fellbach, Germany.
[18]
Kunwar, A.; Priyadarsini, K.I. History and development of selenium-based radioprotectors: Distinctions between the inorganic and organic forms. In: Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Jain, V.K.; Priyadarsini, K.I., Eds.; RSC, 2018, pp. 317-341.
[http://dx.doi.org/10.1039/9781788011907-00317]
[19]
Badiello, R.; Di Maggio, D.; Quintiliani, M.; Sapora, O. The influence of selenourea and of colloidal selenium on the survival of E. coli B-r after x-irradiation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1971, 20(1), 61-68.
[http://dx.doi.org/10.1080/09553007114550871] [PMID: 4936810]
[20]
Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med., 2018, 127, 80-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.001] [PMID: 29746900]
[21]
Nayak, V.; Singh, K.R.B.; Singh, A.K.; Singh, R.P. Potentialities of selenium nanoparticles in biomedical science. New J. Chem., 2021, 45(6), 2849-2878.
[http://dx.doi.org/10.1039/D0NJ05884J]
[22]
Prabhu, P.; Bag, P.P.; Singh, B.G.; Hodage, A.; Jain, V.K.; Iwaoka, M.; Priyadarsini, K.I. The influence of selenourea and of colloidal selenium on the survival of E. coli B-r after x-irradiation. Free Radic. Res., 2011, 45, 461-468.
[http://dx.doi.org/10.3109/10715762.2010.543678] [PMID: 21235282]
[23]
(a) Mishra, B.; Barik, A.; Kunwar, A.; Kumbhare, L.; Priyadarsini, K.I.; Jain, V.K. Correlating the GPx activity of selenocystine derivatives with one electron redox reactions. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183, 1018-1025.
(b) Mishra, B.; Kumbhare, L.B.; Jain, V.K.; Priyadarsini, K.I. Pulse radiolysis studies on reactions of hydroxyl radicals with selenocystine derivatives. J. Phys. Chem. B, 2008, 112, 4441-4446.
[http://dx.doi.org/10.1021/jp709880b] [PMID: 18341323]
[24]
Kumar, B.S.; Kunwar, A.; Ahmad, A.; Kumbhare, L.B.; Jain, V.K.; Priyadarsini, K.I. In vitro radioprotection studies of organoselenium compounds: Differences between mono- and diselenides. Radiat. Environ. Biophys., 2009, 48(4), 379-384.
[http://dx.doi.org/10.1007/s00411-009-0240-1] [PMID: 19756688]
[25]
Kunwar, A.; Mishra, B.; Barik, A.; Kumbhare, L.B.; Pandey, R.; Jain, V.K.; Priyadarsini, K.I. 3,3′-diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Chem. Res. Toxicol., 2007, 20(10), 1482-1487.
[http://dx.doi.org/10.1021/tx700137a] [PMID: 17900173]
[26]
Kunwar, A.; Bansal, P.; Kumar, S.J.; Bag, P.P.; Paul, P.; Reddy, N.D.; Kumbhare, L.B.; Jain, V.K.; Chaubey, R.C.; Unnikrishnan, M.K.; Priyadarsini, K.I. In vivo radioprotection studies of 3,3′-diselenodipropionic acid, a selenocystine derivative. Free Radic. Biol. Med., 2010, 48(3), 399-410.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.009] [PMID: 19931386]
[27]
Kunwar, A.; Bag, P.P.; Chattopadhyay, S.; Jain, V.K.; Priyadarsini, K.I. Anti-apoptotic, anti-inflammatory, and immunomodulatory activities of 3,3′-diselenodipropionic acid in mice exposed to whole body γ-radiation. Arch. Toxicol., 2011, 85(11), 1395-1405.
[http://dx.doi.org/10.1007/s00204-011-0687-0] [PMID: 21380500]
[28]
Chaurasia, R.K.; Balakrishnan, S.; Kunwar, A.; Yadav, U.; Bhat, N.; Anjaria, K.; Nairy, R.; Sapra, B.K.; Jain, V.K.; Priyadarsini, K.I. Cyto-genotoxicity assessment of potential radioprotector, 3,3′-diselenodipropionic acid (DSePA) in Chinese Hamster Ovary (CHO) cells and human peripheral blood lymphocytes. Mutat. Res., 2014, 774, 8-16.
[http://dx.doi.org/10.1016/j.mrgentox.2014.08.007] [PMID: 25440905]
[29]
Kunwar, A.; Priyadarsini, K.I.; Jain, V.K. 3,3′-Diselenodipropionic acid (DSePA) induces reductive stress in A549 cells triggering p53-independent apoptosis: A novel mechanism for diselenides. Biochim. Biophys. Acta, 2021, 1865, 129768.
[http://dx.doi.org/10.1016/j.bbagen.2020.129768]
[30]
Gandhi, K.A.; Goda, J.S.; Gandhi, V.V.; Sadanpurwala, A.; Jain, V.K.; Joshi, K.; Epari, S.; Rane, S.; Mohanty, B.; Chaudhari, P.; Kembhavi, S.; Kunwar, A.; Gota, V.; Priyadarsini, K.I. Oral administration of 3,3′-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-kB/IL-17/G-CSF/neutrophil axis. Free Radic. Biol. Med., 2019, 145, 8-19.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.009] [PMID: 31521664]
[31]
Gandhi, V.V.; Gandhi, K.A.; Kumbhare, L.B.; Goda, J.S.; Gota, V.; Priyadarsini, K.I.; Kunwar, A. Oral administration of 3,3′-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-kB/IL-17/G-CSF/neutrophil axis. Free Radic. Biol. Med., 2021, 175, 1-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.08.017] [PMID: 34425189]
[32]
Li, X.; Zhang, H.; Chan, L.; Liu, C.; Chen, T. Nutritionally available selenocysteine derivative antagonizes cisplatin-induced toxicity in renal epithelial cells through inhibition of reactive oxygen species-mediated signaling pathways. J. Agric. Food Chem., 2018, 66(23), 5860-5870.
[http://dx.doi.org/10.1021/acs.jafc.8b01876] [PMID: 29779385]
[33]
Rosenberg, B.; van Camp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode; Nature, 1965, 205, 698-799; Rosenberg, B.; Some biological effects of platinum compounds. Platin. Met. Rev., 1971, 15, 42-51.
[34]
Wiltshaw, E. Cisplatin in the treatment of cancer. Platin. Met. Rev., 1979, 23, 90-98.
[35]
Hoeschele, J.D.; Hall, M.D.; Lippert, B. Pt anticancer drugs and their chemistry-Special issue to commemorate the 40th anniversary cisplatin celebration and cancer research symposium. Inorg. Chim. Acta, 2019, 498, 119139.
[http://dx.doi.org/10.1016/j.ica.2019.119139]
[36]
van Zutphen, S.; Reedijk, J. Targeting platinum anti-tumour drugs: Overview of strategies employed to reduce systemic toxicity. Coord. Chem. Rev., 2005, 249(24), 2845-2853.
[http://dx.doi.org/10.1016/j.ccr.2005.03.005]
[37]
Gibson, D. The mechanism of action of platinum anticancer agents--what do we really know about it? Dalton Trans., 2009, (48), 10681-10689.
[http://dx.doi.org/10.1039/b918871c] [PMID: 20023895]
[38]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[39]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[40]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[41]
Lakomska, I. Molecular structure and antitumor activity of platinum(II) complexes containing purine analogs. Inorg. Chim. Acta, 2009, 362(3), 669-681.
[http://dx.doi.org/10.1016/j.ica.2008.02.030]
[42]
Cutillas, N.; Yellol, G.S.; de Haro, C.; Vicente, C.; Rodrigue, V.; Ruiz, J. Anticancer cyclometalated complexes of platinum group metals and gold. Coord. Chem. Rev., 2013, 257(19-20), 2784-2797.
[http://dx.doi.org/10.1016/j.ccr.2013.03.024]
[43]
(a) Kenny, R.G.; Chuah, S.W.; Crawford, A.; Marmion, C.J. Platinum(IV) prodrugs – A step closer to Ehrlich’s vision? Eur. J. Inorg. Chem., 2017, 1596-1612.
(b) Xu, Z.; Wang, Z.; Deng, Z.; Zhu, G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord. Chem. Rev., 2021, 442, 213991.
[44]
Gou, Y.; Huang, G.; Li, J.; Yang, F.; Liang, H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord. Chem. Rev., 2021, 441, 213975.
[http://dx.doi.org/10.1016/j.ccr.2021.213975]
[45]
Bartolini, D.; Sancineto, L.; Fabro de Bem, A.; Tew, K.D.; Santi, C.; Radi, R.; Toquato, P.; Galli, F. Selenocompounds in cancer therapy: An overview. Adv. Cancer Res., 2017, 136, 259-302.
[http://dx.doi.org/10.1016/bs.acr.2017.07.007] [PMID: 29054421]
[46]
Wang, Z.; Deng, Z.; Zhu, G. Emerging platinum(IV) prodrugs to combat cisplatin resistance: From isolated cancer cells to tumor microenvironment. Dalton Trans., 2019, 48(8), 2536-2544.
[http://dx.doi.org/10.1039/C8DT03923B] [PMID: 30633263]
[47]
Weijl, N.I.; Elsendoorn, T.J.; Lentjes, E.G.W.M.; Hopman, G.D.; Wipkink-Bakker, A.; Zwinderman, A.H.; Cleton, F.J.; Osanto, S. Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: A randomised, double-blind, placebo-controlled study. Eur. J. Cancer, 2004, 40(11), 1713-1723.
[http://dx.doi.org/10.1016/j.ejca.2004.02.029] [PMID: 15251161]
[48]
Kasherman, Y.; Sturup, S.; Gibson, D. Is glutathione the major cellular target of cisplatin? A study of the interactions of cisplatin with cancer cell extracts. J. Med. Chem., 2009, 52(14), 4319-4328.
[http://dx.doi.org/10.1021/jm900138u] [PMID: 19537717]
[49]
De Martinis, B.S.; Bianchi, M.; De, L.P. Cisplatin-associated nephrotoxicity and pathological events. Pharmacol. Res., 2001, 44, 317-320.
[http://dx.doi.org/10.1006/phrs.2001.0860] [PMID: 11592867]
[50]
Sar, D.G.; Montes-Bayon, M.; Gonzalez, E.B.; Zapico, L.M.S.; Sanz-Medel, A. L-selenomethionine reduces platinum(IV) anticancer model compounds at strikingly faster rates than L-methionine. Chem. Res. Toxc, 2011, 24, 896-904.
[51]
(a) Norman, R.E.; Ranford, J.D.; Sadler, P.J. Studies of platinum (II) methionine complexes: Metabolites of cisplatin. Inorg. Chem., 1992, 31, 877-888.
(b) Barnham, K.J.; Djuran, M.I.; Murdoch, P.S.; Ranford, J.D.; Sadler, P.J. L-Methionine increases the rate of reaction of 5′-guanosine monophosphate with the anticancer drug cisplatin: Mixed-ligand adducts and reversible methionine binding. J. Chem. Soc., Dalton Trans., 1995, 22, 3721-3726.
[52]
(a) Vrana, O.; Brabec, V. L-Methionine inhibits reaction of DNA with anticancer cis- diamminedichloroplatinum(II). Biochem., 2002, 41(36), 10994-10999.
(b) Reedijk, J. Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem. Rev., 1999, 99, 2499-2510.
[53]
(a) Marverti, G.; Cusumano, M.; Ligabue, A.; Di Pietro, M.L.; Vainiglia, P.A.; Ferrari, A.; Bergomi, M.; Moruzzi, M.S.; Frassineti, C. Studies on the anti-proliferative effects of novel DNA-intercalating bipyridyl-thiourea-Pt(II) complexes against cisplatin-sensitive and -resistant human ovarian cancer cells. J. Inorg. Biochem., 2008, 102(4), 699-712.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.10.015] [PMID: 18082268]
(b) Fuks, L.; Anuszewska, E.; Kruszewska, H.; Krowczynski, A.; Dudek, J.; Nadlej-Sosnowska, N. Platinum(II) complexes with thiourea derivatives containing oxygen, sulfur or selenium in a heterocyclic ring: Computational studies and cytotoxic properties. Trans. Met. Chem. (Weinh.), 2010, 35(6), 639-647.
[http://dx.doi.org/10.1007/s11243-010-9375-9]
(c) Jomma, M.Y.; Ahmad, S.; Seliman, A.A.A.; Popoola, S.A.; Shaikh, A.R.; AlSaadi, A.A.; Bhatia, G.; Singh, J.; Asab, A.A. Synthesis, spectroscopic characterization and in vitro cytotoxic as well as docking studies of cis-diammine platinum(II) complexes of thiones. Inorg. Chim. Acta, 2019, 484, 347-351.
[http://dx.doi.org/10.1016/j.ica.2018.09.070]
[54]
Divsalar, A.; Razmi, M.; Saboury, A.A.; Mansouri-Torshizi, H.; Ahmad, F. Biological evaluation of a new synthesized Pt(II) complex by cytotoxic and spectroscopic studies. Cell Biochem. Biophys., 2015, 71(3), 1415-1424.
[http://dx.doi.org/10.1007/s12013-014-0364-z] [PMID: 25403161]
[55]
Ali, A.Q.; Teoh, S.G.; Salhim, A.; Eltayeb, N.E.; Khadeer Ahamed, M.B.; Majid, A.M.S.A. Synthesis of platinum(II) complexes of isatin thiosemicarbazones derivatives: In vitro anti-cancer and deoxyribose nucleic acid binding activities. Inorg. Chim. Acta, 2014, 416, 235-244.
[http://dx.doi.org/10.1016/j.ica.2014.03.029]
[56]
Yadav, A.A.; Patel, D.; Wu, X.; Hasinoff, B.B. Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II). J. Inorg. Biochem., 2013, 126, 1-6.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.04.013] [PMID: 23707906]
[57]
Hambley, T.W.; Webster, L.K. The preparation and in vivo activity of L- and D-O-methyl-methioninedichloroplatinum(II). The crystal structure of the L-enantiomer. J. Inorg. Biochem., 1994, 55(3), 175-181.
[http://dx.doi.org/10.1016/0162-0134(94)85018-6] [PMID: 8057088]
[58]
Aseman, M.D.; Aryamanesh, S.; Shojaeifard, Z.; Hemmateenejad, B.; Nabavizadeh, S.M. Cycloplatinated(II) derivatives of mercaptopurine capable of binding interactions with HSA/DNA. Inorg. Chem., 2019, 58(23), 16154-16170.
[http://dx.doi.org/10.1021/acs.inorgchem.9b02696] [PMID: 31721562]
[59]
(a) Baldev, G.S.; van den Hamer, C.J.A.; Los, G.; Vermeulen, N.P.E.; de Goeij, J.J.M.; McVie, J.G. Selenium-induced protection against cis-diamminedichloroplatinum(II) nephrotoxicity in mice and rats. Cancer Res., 1989, 49(11), 3020-3023.
(b) Francescato, H.D.C.; Costa, R.S.; Camargo, S.M.R.; Zanetti, M.A.; Lavrandor, M.A.; Bianchi, M.L.P. Effect of oral selenium administration on cisplatin-induced nephrotoxicity in rats. Pharmacol. Res., 2001, 43, 77-82.
[60]
Lynch, E.D.; Gu, R.; Pierce, C.; Kil, J. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear. Res., 2005, 201(1-2), 81-89.
[http://dx.doi.org/10.1016/j.heares.2004.08.002] [PMID: 15721563]
[61]
(a) Rao, M.; Kamath, R.; Rao, M.N.A. Protective effect of selenomethionine against cisplatin-induced nephrotoxicity in C57BL/6J mice bearing B16F1 melanoma without reducing antitumour activity. J. Pharm. Pharmacol. Commun., 1998, 4, 549-552.
(b) Rao, M.; Rao, M.N.A. Protective effects of selenomethionine against cisplatin-induced renal toxicity in mice and rats. J. Pharm. Pharmacol., 1998, 50, 687-691.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06906.x] [PMID: 9680082]
[62]
Liu, Q.; Zhang, J.; Ke, X.; Me, Y.; Zhu, L.; Guo, L. Towards the rational design of platinum(II) and gold(III) complexes as antitumour agents. J. Chem. Soc., Dalton Trans., 2001, 911-916.
[http://dx.doi.org/10.1039/b008611h]
[63]
Liu, Q.; Lin, J.; Jiang, P.; Zhang, J.; Zhu, L.; Guo, Z. Monitoring the reactions of the anticancer drug carboplatin with the chemopreventive agent selenomethionine by electrospray mass spectrometry and [1H,15N] HSQC NMR spectroscopy. Eur. J. Inorg. Chem., 2002, 2002(8), 2170-2178.
[http://dx.doi.org/10.1002/1099-0682(200208)2002:8<2170:AID-EJIC2170>3.0.CO;2-K]
[64]
Rothenburger, C.; Galanski, M.; Arion, V.B.; Görls, H.; Weigand, W.; Keppler, B.K. Synthesis and characterization of [(1R, 2R)-trans-diaminocyclohexane]platinum(II) coordinated to sulfur and selenium amino acids. Eur. J. Inorg. Chem., 2006, 2006(18), 3746-3752.
[http://dx.doi.org/10.1002/ejic.200600453]
[65]
Williams, K.M.; Dudgeon, R.P.; Chmely, S.C.; Robey, S.R. Reaction of platinum(II) diamine and triamine complexes with selenomethionine. Inorg. Chim. Acta, 2011, 368(1), 187-193.
[http://dx.doi.org/10.1016/j.ica.2011.01.002] [PMID: 21516209]
[66]
Huo, S.; Dong, J.; Shen, S.; Ren, Y.; Song, C.; Xu, J.; Shi, T. L-selenomethionine reduces platinum(IV) anticancer model compounds at strikingly faster rates than L-methionine. Dalton Trans., 2014, 43(41), 15328-15336.
[http://dx.doi.org/10.1039/C4DT01528B] [PMID: 25075569]
[67]
Carland, M.; Abrahams, B.F.; Rede, T.; Stephenson, J.; Murray, V.; Denny, W.A.; McFadyen, W.D. Synthesis of new Pt(II) complex bearing organoselenium ligands and evaluation of cytotoxic activity of some structurally related Pd(II) complexes. Inorg. Chim. Acta, 2006, 359, 3252-3256.
[http://dx.doi.org/10.1016/j.ica.2006.03.008]
[68]
Altoum, A.O.S.; Alhoshani, A.; Alhosaini, K.; Altaf, M.; Ahmad, S.; Popoola, S.A.; Al-Saadi, A.A.; Sulaiman, A.A.; Isab, A.A. Synthesis, characterization and in vitro cytotoxicity of platinum(II) complexes of selenones. J. Coord. Chem., 2017, 70(6), 1020-1031.
[http://dx.doi.org/10.1080/00958972.2017.1287355]
[69]
Alhoshani, A.; Sulaiman, A.A.A.; Altoum, A.O.S.; Abuelizz, H.A.; Ahmad, S.; Altaf, M.; Omer, K.H.; Sohail, M.; Isab, A.A. Synthesis, X-ray structure and in vitro cytotoxicity of trans-diammineplatinum(II) complexes of selenones, trans-[Pt(NH3)2(selenone)2](NO3)2. Polyhedron, 2019, 158, 234-240.
[http://dx.doi.org/10.1016/j.poly.2018.09.010]
[70]
Altoum, A.O.S.; Vanco, J.; Krikavova, R.; Travnicek, Z.; Dvorak, Z.; Altaf, M.; Ahmad, S.; Sulaiman, A.A.A.; Isab, A.A. Synthesis, X-ray structure and in vitro cytotoxicity of trans-diammineplatinum(II) complexes of some selenones, trans-[Pt(NH3)2(Selenone)2](NO3)2. Polyhedron, 2017, 128, 2-8.
[http://dx.doi.org/10.1016/j.poly.2017.02.027]
[71]
Ahmad, S.; Altoum, A.O.S.; Vanco, J.; Krikavova, R.; Travnicek, Z.; Dvorak, Z.; Altaf, M.; Sohail, M.; Isab, A.A. Synthesis, crystal structure and anticancer activity of tetrakis(N-isopropylimidazolidine-2-selenone)platinum(II) chloride. J. Mol. Struct., 2018, 1152, 232-236.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.068]
[72]
Sobeai, H.M.A.; Sulaiman, A.A.A.; Ahmad, S.; Shaikh, A.R.; Sulaimon, R.; Alotiabi, M.R.; Alzoghaibi, F.; Altoum, A.O.S.; Isab, A.A.; Alhoshani, A.R. Synthesis, characterization, and miRNA-mediated P13K suppressing activity of novel cisplatin–derived complexes of selenones. Arab. J. Chem., 2021, 14(7), 103245.
[http://dx.doi.org/10.1016/j.arabjc.2021.103245]
[73]
Chopade, S.M.; Phadnis, P.P.; Wadawale, A.; Hodage, A.S.; Jain, V.K. Synthesis and characterization of ethylenediamine/(diammine)platinum(II) coordinated to seleno ligands containing carboxylic acid functionality. Inorg. Chim. Acta, 2012, 385, 185-189.
[http://dx.doi.org/10.1016/j.ica.2012.01.055]
[74]
Chopade, S.M.; Phadnis, P.P.; Hodage, A.S.; Wadawale, A.; Jain, V.K. Synthesis, characterization, structures and antitumor activity of platinum(II) complexes(II) containing dimethylpyroazole based selenium ligands. Inorg. Chim. Acta, 2015, 427, 72-80.
[http://dx.doi.org/10.1016/j.ica.2014.11.017]
[75]
Chaudhari, K.R.; Kunwar, A.; Bhuvnesh, N.; Dey, S. Synthesis and anti-proliferative activities of amine capped Pd and Pt macrocycles of 4,4′-dipyridylselenides. New J. Chem., 2020, 44(18), 7329-7337.
[http://dx.doi.org/10.1039/C9NJ06052A]
[76]
Zeng, L.; Li, Y.; Li, T.; Cao, W.; Yi, Y.; Geng, W.; Sun, Z.; Xu, H. Selenium-platinum coordination compounds as novel anticancer drugs: Selectively killing cancer cells via a reactive oxygen species (ROS)-mediated apoptosis route. Chem. Asian J., 2014, 9(8), 2295-2302.
[http://dx.doi.org/10.1002/asia.201402256] [PMID: 24844800]