Marine Biomaterials for Pharmaceutical Applications: A Review

Article ID: e220422203932 Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Marine ecosystem is one of the main natural sources of numerous biologically active components having rich biodiversity. Marine biomaterials obtained from fungi, algae, bacteria, and fish are considered promising candidates for various biological as well as biomedical application(s).

Objectives: The main focus of this manuscript is to highlight the recent trends utilized in several marine-based biomaterials developed for pharmaceutical applications.

Methods: The literature contains valuable and collective information on the different bioactivities of marine-based biomaterials. A total of 287 articles are cited in the present review covering a broad spectrum of marine biomaterials, and their pharmaceutical importance. Information on different marine biomaterials, along with their source, chemical nature, and pharmaceutical importance, is exhaustively compiled here in this review.

Results: Marine-based biomaterials possess a wide range of physiochemical activities, and modifications in these properties can also enhance their therapeutic and regenerative capacity. Marine biomaterials have proven to be a good source for the development of different areas of the pharmaceutical field, and still, the application of marine biomaterials is going through revitalization in the biomedical field.

Conclusion: Due to the amazing diversity of marine life, there would be more significant and remarked discoveries in the field of marine biomaterials in respect of future implementation in the pharmaceutical arena.

Keywords: Marine biomaterials, drug delivery system, gene delivery, bone regeneration, tissue engineering, wound repair, chitin, chitosan, alginate, fucoidan, carrageenan, agar

Graphical Abstract

[1]
Xiong ZQ, Wang JF, Hao YY, Wang Y. Recent advances in the discovery and development of marine microbial natural products. Mar Drugs 2013; 11(3): 700-17.
[http://dx.doi.org/10.3390/md11030700] [PMID: 23528949]
[2]
Arpicco S, Battaglia L, Brusa P, et al. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. J Drug Deliv Sci Technol 2016; 32: 298-312.
[http://dx.doi.org/10.1016/j.jddst.2015.09.004]
[3]
Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009; 4(2): 022001.
[http://dx.doi.org/10.1088/1748-6041/4/2/022001] [PMID: 19261988]
[4]
Sonaje K, Lin KJ, Tseng MT, et al. Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials 2011; 32(33): 8712-21.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.086] [PMID: 21862121]
[5]
Senel S, Kremer MJ. Kaş S, Wertz PW, Hincal AA, Squier CA. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 2000; 21(20): 2067-71.
[http://dx.doi.org/10.1016/S0142-9612(00)00134-4] [PMID: 10966016]
[6]
Dyer AM, Hinchcliffe M, Watts P, et al. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res 2002; 19(7): 998-1008.
[http://dx.doi.org/10.1023/A:1016418523014] [PMID: 12180553]
[7]
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan - A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011; 36(8): 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[8]
Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 2013; 65(9): 1148-71.
[http://dx.doi.org/10.1016/j.addr.2013.04.016] [PMID: 23639519]
[9]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[10]
Cao X, Hou D, Wang L, et al. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol Res 2016; 49(1): 32.
[http://dx.doi.org/10.1186/s40659-016-0093-4] [PMID: 27378167]
[11]
Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 2014; 193: 162-73.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.014] [PMID: 24845128]
[12]
Phillips CJ, Harrington AM, Yates TL, Simpson GL, Baker RJ. Global disease surveillance, emergent disease preparedness, and national security. Lubbock, TX, USA: Museum of Texas Tech University. 2009.
[13]
Holte Ø, Onsøyen E, Myrvold R, Karlsen J. Sustained release of water-soluble drug from directly compressed alginate tablets. Eur J Pharm Sci 2003; 20(4-5): 403-7.
[http://dx.doi.org/10.1016/j.ejps.2003.09.003] [PMID: 14659484]
[14]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[15]
Ige OO, Umoru LE, Aribo S. Natural products: A minefield of biomaterials, international scholarly research network, materials science. Int Sch Res Notices 2012; 2012: 983062.
[http://dx.doi.org/10.5402/2012/983062]
[16]
Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 2013; 65(9): 1234-70.
[http://dx.doi.org/10.1016/j.addr.2013.07.005] [PMID: 23872012]
[17]
Yang L, Wang P, Wang H, et al. Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs 2013; 11(6): 1961-76.
[http://dx.doi.org/10.3390/md11061961] [PMID: 23752353]
[18]
Kim SK, Mendis E. Bioactive compounds from marine processing byproducts - A review. Food Res Int 2006; 39(4): 383-93.
[http://dx.doi.org/10.1016/j.foodres.2005.10.010]
[19]
Olsen D, Yang C, Bodo M, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 2003; 55(12): 1547-67.
[http://dx.doi.org/10.1016/j.addr.2003.08.008] [PMID: 14623401]
[20]
Swatschek D, Schatton W, Müller W, Kreuter J. Microparticles derived from marine sponge collagen (SCMPs): Preparation, characterization and suitability for dermal delivery of all-trans retinol. Eur J Pharm Biopharm 2002; 54(2): 125-33.
[http://dx.doi.org/10.1016/S0939-6411(02)00046-2] [PMID: 12191682]
[21]
Guilherme MR, Reis AV, Paulino AT, Fajardo AR, Muniz EC, Tambourgi EB. Superabsorbent hydrogel based on modified polysaccharide for removal of Pb2+ and Cu2+ from water with excellent performance. J Appl Polym Sci 2007; 105(5): 2903-9.
[http://dx.doi.org/10.1002/app.26287]
[22]
Omidian H, Rocca JG, Park K. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate. Macromol Biosci 2006; 6(9): 703-10.
[http://dx.doi.org/10.1002/mabi.200600062] [PMID: 16967483]
[23]
Pourjavadi A, Soleyman R, Bardajee GR, Ghavami S. Novel superabsorbent hydrogel based on natural hybrid backbone: Optimized synthesis and its swelling behavior. Bull Korean Chem Soc 2009; 30(11): 2680-6.
[http://dx.doi.org/10.5012/bkcs.2009.30.11.2680]
[24]
Hoffmann B, Volkmer E, Kokott A, et al. Characterisation of a new bioadhesive system based on polysaccharides with the potential to be used as bone glue. J Mater Sci Mater Med 2009; 20(10): 2001-9.
[http://dx.doi.org/10.1007/s10856-009-3782-5] [PMID: 19466531]
[25]
Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ. Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew Chem Int Ed 2004; 43(4): 448-50.
[http://dx.doi.org/10.1002/anie.200352759] [PMID: 14735531]
[26]
Shamshina JL, Gurau G, Block LE, et al. Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. J Mater Chem B Mater Biol Med 2014; 2(25): 3924-36.
[http://dx.doi.org/10.1039/C4TB00329B] [PMID: 32261644]
[27]
Bharmoria P, Singh T, Kumar A. Complexation of chitosan with surfactant like ionic liquids: Molecular interactions and preparation of chitosan nanoparticles. J Colloid Interface Sci 2013; 407: 361-9.
[http://dx.doi.org/10.1016/j.jcis.2013.06.032] [PMID: 23895951]
[28]
Huang YC, Li RY. Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 2014; 12(8): 4379-98.
[http://dx.doi.org/10.3390/md12084379] [PMID: 25089950]
[29]
Silva SS, Duarte AR, Mano JF, Reis RL. Development of a supercritical assisted particle-agglomeration method for the preparation of bioactive chitin-based matrices. In: Proceedings of the 10th International Symposium on Supercritical Fluids San Franciscorices. San Francisco, CA, USA. 2012.
[30]
Gonçalves VSS, Gurikov P, Poejo J, et al. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm 2016; 107: 160-70.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.003] [PMID: 27393563]
[31]
Derby N, Lal M, Aravantinou M, et al. Griffithsin carrageenan fast dissolving inserts prevent SHIV HSV-2 and HPV infections in vivo. Nat Commun 2018; 9(1): 3881.
[http://dx.doi.org/10.1038/s41467-018-06349-0] [PMID: 30250170]
[32]
Russo R, Malinconico M, Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 2007; 8(10): 3193-7.
[http://dx.doi.org/10.1021/bm700565h] [PMID: 17803277]
[33]
Chen JP, Chu IM, Shiao MY, Hsu BRS, Fu SH. Microencapsulation of islets in PEG-amine modified alginate-poly(l-lysine)-alginate microcapsules for constructing bioartificial pancreas. J Ferment Bioeng 1998; 86(2): 185-90.
[http://dx.doi.org/10.1016/S0922-338X(98)80059-7]
[34]
Chandy T, Mooradian DL, Rao GHR. Chitosan/polyethylene glycol-alginate microcapsules for oral delivery of hirudin. J Appl Polym Sci 1998; 70: 2143-53.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19981212)70:11<2143:AID-APP7>3.0.CO;2-L]
[35]
Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000; 21(21): 2155-61.
[http://dx.doi.org/10.1016/S0142-9612(00)00116-2] [PMID: 10985488]
[36]
Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 2004; 96(2): 285-300.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.002] [PMID: 15081219]
[37]
Aral C. Akbuğa J. Alternative approach to the preparation of chitosan beads. Int J Pharm 1998; 168: 9-15.
[http://dx.doi.org/10.1016/S0378-5173(98)00072-6]
[38]
Duan K, Zhang X, Tang X, et al. Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin. Colloids Surf B Biointerfaces 2010; 76(2): 475-82.
[http://dx.doi.org/10.1016/j.colsurfb.2009.12.007] [PMID: 20047821]
[39]
Dias AMA, Cortez AR, Barsan MM, Santos JB, Brett CMA, de Sousa HC. Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustain Chem Eng 2013; 1(11): 1480-92.
[http://dx.doi.org/10.1021/sc4002577]
[40]
Jia X, Yang Y, Wang C, et al. Biocompatible ionic liquid-biopolymer electrolyte-enabled thin and compact magnesium-air batteries. ACS Appl Mater Interfaces 2014; 6(23): 21110-7.
[http://dx.doi.org/10.1021/am505985z] [PMID: 25380306]
[41]
Qurrat-ul-Ain. Sharma S, Khuller GK, Garg SK. Alginate-based oral drug delivery system for tuberculosis: Pharmacokinetics and therapeutic effects. J Antimicrob Chemother 2003; 51(4): 931-8.
[http://dx.doi.org/10.1093/jac/dkg165] [PMID: 12654730]
[42]
Jayant RD, McShane MJ, Srivastava R. Polyelectrolyte-coated alginate microspheres as drug delivery carriers for dexamethasone release. Drug Deliv 2009; 16(6): 331-40.
[http://dx.doi.org/10.1080/10717540903031126] [PMID: 19606947]
[43]
Kevadiya BD, Joshi GV, Patel HA, Ingole PG, Mody HM, Bajaj HC. Montmorillonite-alginate nanocomposites as a drug delivery system: Intercalation and in vitro release of vitamin B1 and vitamin B6. J Biomater Appl 2010; 25(2): 161-77.
[http://dx.doi.org/10.1177/0885328209344003] [PMID: 19737810]
[44]
Gavini E, Sanna V, Juliano C, Bonferoni MC, Giunchedi P. Mucoadhesive vaginal tablets as veterinary delivery system for the controlled release of an antimicrobial drug, acriflavine. AAPS PharmSciTech 2002; 3(3): E20.
[http://dx.doi.org/10.1208/pt030320] [PMID: 12916935]
[45]
El-Kamel A, Sokar M, Naggar V, Al Gamal S. Chitosan and sodium alginate-based bioadhesive vaginal tablets. AAPS PharmSci 2002; 4(4): E44.
[http://dx.doi.org/10.1208/ps040444] [PMID: 12646014]
[46]
Laurienzo P, Malinconico M, Mattia G, et al. Novel alginate-acrylic polymers as a platform for drug delivery. J Biomed Mater Res A 2006; 78(3): 523-31.
[http://dx.doi.org/10.1002/jbm.a.30763] [PMID: 16736482]
[47]
Mørch ÝA, Donati I, Strand BL, Skjåk-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 2006; 7(5): 1471-80.
[http://dx.doi.org/10.1021/bm060010d] [PMID: 16677028]
[48]
Dhamecha D, Movsas R, Sano U, Menon JU. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm 2019; 569: 118627.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118627] [PMID: 31421199]
[49]
Somo SI, Khanna O, Brey EM. Alginate microbeads for cell and protein delivery. Methods Mol Biol 2017; 1479: 217-24.
[http://dx.doi.org/10.1007/978-1-4939-6364-5_17] [PMID: 27738939]
[50]
Cong Z, Shi Y, Wang Y, et al. A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Biol Macromol 2018; 107(Pt A): 855-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.065] [PMID: 28935541]
[51]
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des 2019; 25(11): 1312-34.
[http://dx.doi.org/10.2174/1381612825666190425163424] [PMID: 31465282]
[52]
Hariyadi DM, Hendradi E, Purwanti T, Fadil FDGP, Ramadani CN. Effect of cross linking agent and polymer on the characteristics of ovalbumin loaded alginate microspheres. Int J Pharm Pharm Sci 2014; 6(4): 469-74.
[53]
Darrabie MD, Kendall WF Jr, Opara EC. Characteristics of Poly-L-Ornithine-coated alginate microcapsules. Biomaterials 2005; 26(34): 6846-52.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.009] [PMID: 15955558]
[54]
Chandy T, Mooradian DL, Rao GHR. Evaluation of modified alginate-chitosan-polyethylene glycol microcapsules for cell encapsulation. Artif Organs 1999; 23(10): 894-903.
[http://dx.doi.org/10.1046/j.1525-1594.1999.06244.x] [PMID: 10564287]
[55]
Ching SH, Bansal N, Bhandari B. Alginate gel particles-A review of production techniques and physical properties. Crit Rev Food Sci Nutr 2017; 57(6): 1133-52.
[http://dx.doi.org/10.1080/10408398.2014.965773] [PMID: 25976619]
[56]
Calasans-Maia MD, Barboza CAB, Soriano-Souza CA, et al. Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: Therapeutic potential and effects on bone regeneration. Int J Nanomed 2019; 14: 4559-71.
[http://dx.doi.org/10.2147/IJN.S201631]
[57]
Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci 2018; 114: 199-209.
[http://dx.doi.org/10.1016/j.ejps.2017.12.012] [PMID: 29269322]
[58]
Jain RR, Mehta MR, Bannalikar AR, Menon MD. Alginate microparticles loaded with lipopolysaccharide subunit antigen for mucosal vaccination against Klebsiella pneumoniae. Biologicals 2015; 43(3): 195-201.
[http://dx.doi.org/10.1016/j.biologicals.2015.02.001] [PMID: 25737397]
[59]
Almurisi SH, Doolaanea AA, Akkawi ME, Chatterjee B, Sarker MZI. Taste masking of paracetamol encapsulated in chitosan-coated alginate beads. J Drug Deliv Sci Technol 2020; 56: 101520.
[http://dx.doi.org/10.1016/j.jddst.2020.101520]
[60]
Kim C, Kim H, Park H, Lee KY. Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr Polym 2019; 223: 115045.
[http://dx.doi.org/10.1016/j.carbpol.2019.115045] [PMID: 31426959]
[61]
Maneewattanapinyo P, Yeesamun A, Watthana F, Panrat K, Pichayakorn W, Suksaeree J. Controlled release of lidocaine–diclofenac ionic liquid drug from freeze-thawed gelatin/poly(vinyl alcohol) transdermal patches. AAPS PharmSciTech 2019; 20(8): 322.
[http://dx.doi.org/10.1208/s12249-019-1545-2] [PMID: 31650263]
[62]
Maneewattanapinyo P, Yeesamun A, Watthana F, Panrat K, Pichayakorn W, Suksaeree J. Transdermal patches of lidocaine/aspirin ionic liquid drug-loaded gelatin/polyvinyl alcohol composite film prepared by freeze-thawed procedure. An Acad Bras Cienc 2020; 92(2): e20191073.
[http://dx.doi.org/10.1590/0001-3765202020191073] [PMID: 32696844]
[63]
Kovalchuk V, Voronkina A, Binnewerg B, et al. Naturally drug-loaded chitin: Isolation and applications. Mar Drugs 2019; 17(10): 574.
[http://dx.doi.org/10.3390/md17100574] [PMID: 31658704]
[64]
Silva SS, Duarte ARC, Mano JF, Reis RL. Design and functionalization of chitin-based microsphere scaffolds. Green Chem 2013; 15(11): 3252-8.
[http://dx.doi.org/10.1039/c3gc41060a]
[65]
Tran PHL, Duan W, Tran TTD. Fucoidan-based nanostructures: A focus on its combination with chitosan and the surface functionalization of metallic nanoparticles for drug delivery. Int J Pharm 2020; 575: 118956.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118956] [PMID: 31838176]
[66]
Huang TW, Ho YC, Tsai TN, Tseng CL, Lin C, Mi FL. Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles. Carbohydr Polym 2020; 242: 116312.
[http://dx.doi.org/10.1016/j.carbpol.2020.116312] [PMID: 32564860]
[67]
Cunha L, Rosa da Costa AM, Lourenço JP, Buttini F, Grenha A. Spray-dried fucoidan microparticles for pulmonary delivery of antitubercular drugs. J Microencapsul 2018; 35(4): 392-405.
[http://dx.doi.org/10.1080/02652048.2018.1513089] [PMID: 30112917]
[68]
Chen CH, Lin YS, Wu SJ, Mi FL. Mutlifunctional nanoparticles prepared from arginine-modified chitosan and thiolated fucoidan for oral delivery of hydrophobic and hydrophilic drugs. Carbohydr Polym 2018; 193: 163-72.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.080] [PMID: 29773368]
[69]
Pozzolini M, Scarfì S, Gallus L, et al. Production, characterization and biocompatibility evaluation of collagen membranes derived from marine sponge Chondrosia reniformis Nardo, 1847. Mar Drugs 2018; 16(4): 111.
[http://dx.doi.org/10.3390/md16040111] [PMID: 29596370]
[70]
Nicklas M, Schatton W, Heinemann S, Hanke T, Kreuter J. Enteric coating derived from marine sponge collagen. Drug Dev Ind Pharm 2009; 35(11): 1384-8.
[http://dx.doi.org/10.3109/03639040902939239] [PMID: 19832639]
[71]
Nicklas M, Schatton W, Heinemann S, Hanke T, Kreuter J. Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17beta-estradiol-hemihydrate. Drug Dev Ind Pharm 2009; 35(9): 1035-42.
[http://dx.doi.org/10.1080/03639040902755213] [PMID: 19365781]
[72]
Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008; 29(24-25): 3477-96.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.036] [PMID: 18499247]
[73]
Brown MD, Schätzlein AG, Uchegbu IF. Gene delivery with synthetic (non viral) carriers. Int J Pharm 2001; 229(1-2): 1-21.
[http://dx.doi.org/10.1016/S0378-5173(01)00861-4] [PMID: 11604253]
[74]
Köping-Höggård M, Tubulekas I, Guan H, et al. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 2001; 8(14): 1108-21.
[http://dx.doi.org/10.1038/sj.gt.3301492] [PMID: 11526458]
[75]
Ravi Kumar MNV, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004; 25(10): 1771-7.
[http://dx.doi.org/10.1016/j.biomaterials.2003.08.069] [PMID: 14738840]
[76]
Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 2006; 115(2): 216-25.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.021] [PMID: 16959358]
[77]
Wei S, Ching YC, Chuah CH. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydr Polym 2020; 231: 115744.
[http://dx.doi.org/10.1016/j.carbpol.2019.115744] [PMID: 31888854]
[78]
Chen H, Cui S, Zhao Y, Wang B, Zhang S, Peng X. O-Alkylation of chitosan for gene delivery by using ionic liquid in an in-situ reactor. Engineering (Lond) 2012; 4(10B): 114-7.
[http://dx.doi.org/10.4236/eng.2012.410B029]
[79]
Chen H, Cui S, Zhao Y, Zhang C, Zhang S, Peng X. Grafting chitosan with polyethylenimine in an ionic liquid for efficient gene delivery. PLoS One 2015; 10(4): e0121817.
[http://dx.doi.org/10.1371/journal.pone.0121817] [PMID: 25875475]
[80]
Clarke SA, Walsh P, Maggs CA, Buchanan F. Designs from the deep: Marine organisms for bone tissue engineering. Biotechnol Adv 2011; 29(6): 610-7.
[http://dx.doi.org/10.1016/j.biotechadv.2011.04.003] [PMID: 21527337]
[81]
Muzzarelli RAA, Muzzarelli C. Chitosan chemistry: Relevance to the biomedical sciences. Adv Polym Sci 2005; 186: 151-209.
[http://dx.doi.org/10.1007/b136820]
[82]
Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004; 104(12): 6017-84.
[http://dx.doi.org/10.1021/cr030441b] [PMID: 15584695]
[83]
Chow KS, Khor E. Novel fabrication of open-pore chitin matrixes. Biomacromolecules 2000; 1(1): 61-7.
[http://dx.doi.org/10.1021/bm005503b] [PMID: 11709844]
[84]
Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 2000; 21(24): 2589-98.
[http://dx.doi.org/10.1016/S0142-9612(00)00126-5] [PMID: 11071608]
[85]
Di Martino A, Sittinger M, Risbud MV. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005; 26(30): 5983-90.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.016] [PMID: 15894370]
[86]
Leroux L, Hatim Z, Frèche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone 1999; 25(2) (Suppl.): 31S-4S.
[http://dx.doi.org/10.1016/S8756-3282(99)00130-1] [PMID: 10458271]
[87]
d’Ayala GG, De Rosa A, Laurienzo P, Malinconico M. Development of a new calcium sulphate-based composite using alginate and chemically modified chitosan for bone regeneration. J Biomed Mater Res A 2007; 81(4): 811-20.
[http://dx.doi.org/10.1002/jbm.a.31009] [PMID: 17236217]
[88]
Mututuvari TM, Harkins AL, Tran CD. Facile synthesis, characterization, and antimicrobial activity of cellulose-chitosan-hydroxyapatite composite material: A potential material for bone tissue engineering. J Biomed Mater Res A 2013; 101(11): 3266-77.
[http://dx.doi.org/10.1002/jbm.a.34636] [PMID: 23595871]
[89]
Pallela R, Venkatesan J, Bhatnagar I, Shim Y, Kim S. Applications of marine collagen-based scaffolds in bone tissue engineering. In: Kim SK, Ed. Marine Biomaterials: Characterization, Isolation and Applications. Boca Raton, FL, USA: CRC Press 2013; pp. 519-28.
[http://dx.doi.org/10.1201/b14723-30]
[90]
Parisi JR, Fernandes KR, Aparecida do Vale GC, et al. Marine spongin incorporation into Biosilicate® for tissue engineering applications: An in vivo study. J Biomater Appl 2020; 35(2): 205-14.
[http://dx.doi.org/10.1177/0885328220922161] [PMID: 32362163]
[91]
Meena C, Mengi S, Deshpande S. Biomedical and industrial applications of collagen. J Chem Sci 1999; 111(2): 319-29.
[http://dx.doi.org/10.1007/BF02871912]
[92]
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Adv Mater 2014; 26(12): 1846-85.
[http://dx.doi.org/10.1002/adma.201304496] [PMID: 24677434]
[93]
Addad S, Exposito J-Y, Faye C, Ricard-Blum S, Lethias C. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 2011; 9(6): 967-83.
[http://dx.doi.org/10.3390/md9060967] [PMID: 21747742]
[94]
Svetličić V, Zutić V, Radić TM, Pletikapić G, Zimmermann AH, Urbani R. Polymer networks produced by marine diatoms in the northern Adriatic sea. Mar Drugs 2011; 9(4): 666-79.
[http://dx.doi.org/10.3390/md9040666] [PMID: 21731556]
[95]
Wysokowski M, Motylenko M, Bazhenov V, et al. Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 2013; 7: 248-60.
[http://dx.doi.org/10.1007/s11706-013-0212-x]
[96]
Venkatesan J, Kim SK. Marine biomaterials: Characterization, isolation, and applications. Boca Raton, FL, USA: Taylor & Francis 2013.
[97]
Trombelli L, Farina R. Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J Clin Periodontol 2008; 35(8) (Suppl.): 117-35.
[http://dx.doi.org/10.1111/j.1600-051X.2008.01265.x] [PMID: 18724846]
[98]
Green D, Howard D, Yang X, Kelly M, Oreffo RO. Natural marine sponge fiber skeleton: A biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng 2003; 9(6): 1159-66.
[http://dx.doi.org/10.1089/10763270360728062] [PMID: 14670103]
[99]
Green DW. Tissue bionics: Examples in biomimetic tissue engineering. Biomed Mater 2008; 3(3): 034010.
[http://dx.doi.org/10.1088/1748-6041/3/3/034010] [PMID: 18708710]
[100]
Chou J, Valenzuela SM, Santos J, et al. Strontium- and magnesium-enriched biomimetic β-TCP macrospheres with potential for bone tissue morphogenesis. J Tissue Eng Regen Med 2014; 8(10): 771-8.
[http://dx.doi.org/10.1002/term.1576] [PMID: 22837177]
[101]
Lin Z, Solomon KL, Zhang X, et al. In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci 2011; 7(7): 968-77.
[http://dx.doi.org/10.7150/ijbs.7.968] [PMID: 21850206]
[102]
Langer R. Perspectives and challenges in tissue engineering and regenerative medicine. Adv Mater 2009; 21(32-33): 3235-6.
[http://dx.doi.org/10.1002/adma.200902589] [PMID: 20882493]
[103]
104 Laurienzo, P.; Malinconico, M.; Motta, A.; Vicinanza, A. Synthesis of a novel alginate-poly (ethylene glycol) graft copolymer for cell immobilization. Carbohydr Polym 2005; 62(3): 274-82.
[http://dx.doi.org/10.1016/j.carbpol.2005.08.005]
[104]
Hu Q, Li B, Wang M, Shen J. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials 2004; 25(5): 779-85.
[http://dx.doi.org/10.1016/S0142-9612(03)00582-9] [PMID: 14609666]
[105]
Hayashi Y, Yamada S, Ikeda T, Yanagiguchi K. Fish collagen and tissue repair. In: Marine Cosmeceuticals: Trends and Prospects. Boca Raton, FL, USA: CRC Press Taylor & Francis Group 2011; pp. 133-41.
[http://dx.doi.org/10.1201/b10120-12]
[106]
Hoyer B, Bernhardt A, Heinemann S, Stachel I, Meyer M, Gelinsky M. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 2012; 13(4): 1059-66.
[http://dx.doi.org/10.1021/bm201776r] [PMID: 22364350]
[107]
Nagai N, Yunoki S, Suzuki T, Sakata M, Tajima K, Munekata M. Application of cross-linked salmon atelocollagen to the scaffold of human periodontal ligament cells. J Biosci Bioeng 2004; 97(6): 389-94.
[http://dx.doi.org/10.1016/S1389-1723(04)70224-8] [PMID: 16233648]
[108]
Pallela R, Venkatesan J, Janapala VR, Kim SK. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J Biomed Mater Res A 2012; 100(2): 486-95.
[http://dx.doi.org/10.1002/jbm.a.33292] [PMID: 22125128]
[109]
Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 2006; 27(15): 2951-61.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.015] [PMID: 16457878]
[110]
Schubert M, Binnewerg B, Voronkina A, et al. Naturally prefabricated marine biomaterials: Isolation and applications of flat chitinous 3D scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida). Int J Mol Sci 2019; 20(20): 5105.
[http://dx.doi.org/10.3390/ijms20205105] [PMID: 31618840]
[111]
112 Silva, S.S.; Gomes, J.M.; Vale, A.C.; Lu, S.; Reis, R.L.; Kundu, S.C. Green pathway for processing non-mulberry Antheraea pernyi silk fibroin/chitin-based sponges: Biophysical and biochemical characterization. Front Mater 2020; 7: 2296-8016.
[http://dx.doi.org/10.3389/fmats.2020.00135]
[112]
Chen L, Shen R, Komasa S, et al. Drug-loadable calcium alginate hydrogel system for use in oral bone tissue repair. Int J Mol Sci 2017; 18(5): 989.
[http://dx.doi.org/10.3390/ijms18050989] [PMID: 28481253]
[113]
Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C 2016; 64: 416-27.
[http://dx.doi.org/10.1016/j.msec.2016.03.060] [PMID: 27127072]
[114]
Kolanthai E, Sindu PA, Khajuria DK, et al. Graphene oxide - A tool for the preparation of chemically crosslinking free alginate-chitosan-collagen scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 2018; 10(15): 12441-52.
[http://dx.doi.org/10.1021/acsami.8b00699] [PMID: 29589895]
[115]
Luo Z, Yang Y, Deng Y, Sun Y, Yang H, Wei S. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Colloids Surf B Biointerfaces 2016; 143: 243-51.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.047] [PMID: 27022863]
[116]
Wang P, Song Y, Weir MD, et al. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Dent Mater 2016; 32(2): 252-63.
[http://dx.doi.org/10.1016/j.dental.2015.11.019] [PMID: 26743965]
[117]
Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: A review. Int J Biol Macromol 2015; 72: 269-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.008] [PMID: 25020082]
[118]
Nabavinia M, Khoshfetrat AB, Naderi-Meshkin H. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater Sci Eng C 2019; 97: 67-77.
[http://dx.doi.org/10.1016/j.msec.2018.12.033] [PMID: 30678955]
[119]
Diaz-Rodriguez P, Garcia-Triñanes P, Echezarreta López MM, Santoveña A, Landin M. Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications. Carbohydr Polym 2018; 195: 235-42.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.101] [PMID: 29804973]
[120]
Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C 2018; 83: 195-201.
[http://dx.doi.org/10.1016/j.msec.2017.09.002] [PMID: 29208279]
[121]
Li YJ, Teng BH, Zhao YH, Yang Q, Wang LY, Huang Y. [Preparation and evaluation of carboxymethyl chitosan/sodium alginate hydrogel for cartilage tissue engineering] Hua Xi Kou Qiang Yi Xue Za Zhi 2019; 37(3): 253-9.
[http://dx.doi.org/10.7518/hxkq.2019.03.005] [PMID: 31218857]
[122]
Zhu T, Jiang J, Zhao J, Chen S, Yan X. Regulating preparation of functional alginate-chitosan three-dimensional scaffold for skin tissue engineering. Int J Nanomedicine 2019; 14: 8891-903.
[http://dx.doi.org/10.2147/IJN.S210329] [PMID: 32009786]
[123]
Zhang X, Kim GJ, Kang MG, et al. Marine biomaterial-based bioinks for generating 3D printed tissue constructs. Mar Drugs 2018; 16(12): 484.
[http://dx.doi.org/10.3390/md16120484] [PMID: 30518062]
[124]
Baniasadi H, Mashayekhan S, Fadaoddini S, Haghirsharifzamini Y. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications. J Biomater Appl 2016; 31(1): 152-61.
[http://dx.doi.org/10.1177/0885328216634057] [PMID: 26916948]
[125]
Wu H, Liu J, Fang Q, Xiao B, Wan Y. Establishment of nerve growth factor gradients on aligned chitosan-polylactide/alginate fibers for neural tissue engineering applications. Colloids Surf B Biointerfaces 2017; 160: 598-609.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.017] [PMID: 29028608]
[126]
Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M. Alginate for cardiac regeneration: From seaweed to clinical trials. Glob Cardiol Sci Pract 2016; 2016(1): e201604.
[http://dx.doi.org/10.21542/gcsp.2016.4] [PMID: 29043254]
[127]
Tae Young A, Kang JH, Kang DJ, et al. Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration. Int J Biol Macromol 2016; 93: 1488-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.027]
[128]
Lu HT, Lu TW, Chen CH, Lu KY, Mi FL. Development of nanocomposite scaffolds based on biomineralization of N,O-carboxymethyl chitosan/fucoidan conjugates for bone tissue engineering. Int J Biol Macromol 2018; 120: 2335-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.179]
[129]
Lalzawmliana V, Mukherjee P, Kundu B, Nandi SK. Clinical application of biomimetic marine-derived materials for tissue engineering. In: Marine-Derived Biomaterials for Tissue Engineering Applications. Singapore: Springer 2019; pp. 329-57.
[http://dx.doi.org/10.1007/978-981-13-8855-2_15]
[130]
Rohman G, Langueh C, Ramtani S, et al. The use of platelet-rich plasma to promote cell recruitment into low-molecular-weight fucoidan-functionalized poly(ester-urea-urethane) scaffolds for soft-tissue engineering. Polymers (Basel) 2019; 11(6): 1016.
[http://dx.doi.org/10.3390/polym11061016] [PMID: 31181822]
[131]
Carvalho DN, López-Cebral R, Sousa RO, et al. Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering. Biomed Mater 2020; 15(5): 055030.
[http://dx.doi.org/10.1088/1748-605X/ab9f04] [PMID: 32570224]
[132]
Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose-based biomaterials for tissue engineering. Carbohydr Polym 2018; 187: 66-84.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.060] [PMID: 29486846]
[133]
Campos F, Bonhome-Espinosa AB, Chato-Astrain J, et al. Evaluation of fibrin-agarose tissue-like hydrogels biocompatibility for tissue engineering applications. Front Bioeng Biotechnol 2020; 8: 596.
[http://dx.doi.org/10.3389/fbioe.2020.00596] [PMID: 32612984]
[134]
Kakkar P, Verma S, Manjubala I, Madhan B. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering. Mater Sci Eng C 2014; 45: 343-7.
[http://dx.doi.org/10.1016/j.msec.2014.09.021] [PMID: 25491838]
[135]
Siew CK, Williams PA, Young NWG. New insights into the mechanism of gelation of alginate and pectin: Charge annihilation and reversal mechanism. Biomacromolecules 2005; 6(2): 963-9.
[http://dx.doi.org/10.1021/bm049341l] [PMID: 15762666]
[136]
Mallik AK, Shahruzzaman M, Zaman A, et al. 4-Fabrication of polysaccharide-based materials using ionic liquids and scope for biomedical use. In: Functional Polysaccharides for Biomedical Applications. Duxford, UK: Woodhead Publishing 2019; pp. 131-71.
[http://dx.doi.org/10.1016/B978-0-08-102555-0.00004-2]
[137]
Türe H. Characterization of hydroxyapatite-containing alginate-gelatin composite films as a potential wound dressing. Int J Biol Macromol 2019; 123: 878-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.143] [PMID: 30448494]
[138]
Rubio-Elizalde I, Bernáldez-Sarabia J, Moreno-Ulloa A, et al. Scaffolds based on alginate-PEG methyl ether methacrylate-Moringa oleifera-Aloe vera for wound healing applications. Carbohydr Polym 2019; 206: 455-67.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.027] [PMID: 30553345]
[139]
Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym 2020; 236: 116025.
[http://dx.doi.org/10.1016/j.carbpol.2020.116025] [PMID: 32172843]
[140]
Zhao WY, Fang QQ, Wang XF, et al. Chitosan-calcium alginate dressing promotes wound healing: A preliminary study. Wound Repair Regen 2020; 28(3): 326-37.
[http://dx.doi.org/10.1111/wrr.12789] [PMID: 31868976]
[141]
Johnson KA, Muzzin N, Toufanian S, et al. Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing. Acta Biomater 2020; 112: 101-11.
[http://dx.doi.org/10.1016/j.actbio.2020.06.006] [PMID: 32522716]
[142]
Salehi M, Ehterami A, Farzamfar S, Vaez A, Ebrahimi-Barough S. Accelerating healing of excisional wound with alginate hydrogel containing naringenin in rat model. Drug Deliv Transl Res 2021; 11(1): 142-53.
[http://dx.doi.org/10.1007/s13346-020-00731-6] [PMID: 32086788]
[143]
Zhao X, Liu L, An T, et al. A hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta Biomater 2020; 104: 85-94.
[http://dx.doi.org/10.1016/j.actbio.2019.12.032] [PMID: 31901456]
[144]
Segal HC, Hunt BJ, Gilding K. The effects of alginate and non-alginate wound dressings on blood coagulation and platelet activation. J Biomater Appl 1998; 12(3): 249-57.
[http://dx.doi.org/10.1177/088532829801200305] [PMID: 9493071]
[145]
Park JH, Choi SH, Park SJ, et al. Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model. Mar Drugs 2017; 15(4): 112.
[http://dx.doi.org/10.3390/md15040112] [PMID: 28387729]
[146]
Murakami K, Ishihara M, Aoki H, et al. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with hydrosheets composed of chitin/chitosan, fucoidan, and alginate as wound dressings. Wound Repair Regen 2010; 18(5): 478-85.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00606.x] [PMID: 20731799]
[147]
Carson MA, Clarke SA. Bioactive compounds from marine organisms: Potential for bone growth and healing. Mar Drugs 2018; 16(9): 340.
[http://dx.doi.org/10.3390/md16090340] [PMID: 30231464]
[148]
Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym 2000; 46(1): 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[149]
Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 2009; 76(2): 167-82.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.002]
[150]
Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006; 31(7): 603-32.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[151]
Jang MK, Kong BG, Jeong YI, Lee CH, Nah JW. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J Polym Sci A Polym Chem 2004; 42(14): 3423-32.
[http://dx.doi.org/10.1002/pola.20176]
[152]
Hu SG, Jou CH, Yang MC. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials 2003; 24(16): 2685-93.
[http://dx.doi.org/10.1016/S0142-9612(03)00079-6] [PMID: 12711514]
[153]
El Salmawi KM. Gamma-radiation-induced crosslinked PVA/chitosan blends for wound dressing. J Macromol Sci Pure Appl Chem 2007; 44(5): 541-5.
[http://dx.doi.org/10.1080/10601320701235891]
[154]
Silva SS, Santos TC, Cerqueira MT, et al. The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chem 2012; 14(5): 1463-70.
[http://dx.doi.org/10.1039/c2gc16535j]
[155]
Tran CD, Mututuvari TM. Cellulose, chitosan, and keratin composite materials. controlled drug release. Langmuir 2015; 31(4): 1516-26.
[http://dx.doi.org/10.1021/la5034367]
[156]
Mehta M, Bharmoria P, Bhayani K, Kumar A. Gelatin solubility and processing in ionic liquids: An approach towards waste to utilization. ChemistrySelect 2017; 2(31): 9895-900.
[http://dx.doi.org/10.1002/slct.201702015]
[157]
Langasco R, Cadeddu B, Formato M, et al. Natural collagenic skeleton of marine sponges in pharmaceutics: Innovative biomaterial for topical drug delivery. Mater Sci Eng C 2017; 70(Pt 1): 710-20.
[http://dx.doi.org/10.1016/j.msec.2016.09.041] [PMID: 27770946]
[158]
Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov 2009; 8(1): 69-85.
[http://dx.doi.org/10.1038/nrd2487] [PMID: 19096380]
[159]
Sarasam AR, Brown P, Khajotia SS, Dmytryk JJ, Madihally SV. Antibacterial activity of chitosan-based matrices on oral pathogens. J Mater Sci Mater Med 2008; 19(3): 1083-90.
[http://dx.doi.org/10.1007/s10856-007-3072-z] [PMID: 17701312]
[160]
Aimin C, Chunlin H, Juliang B, Tinyin Z, Zhichao D. Antibiotic loaded chitosan bar. An in vitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop Relat Res 1999; (366): 239-47.
[http://dx.doi.org/10.1097/00003086-199909000-00031] [PMID: 10627741]
[161]
Gupta KC, Ravi Kumar MNV. Drug release behavior of beads and microgranules of chitosan. Biomaterials 2000; 21(11): 1115-9.
[http://dx.doi.org/10.1016/S0142-9612(99)00263-X] [PMID: 10817263]
[162]
Kim SK, Wijesekara I. Anticoagulant effect of marine algae. Adv Food Nutr Res 2011; 64: 235-44.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00018-1] [PMID: 22054951]
[163]
Song X, Wang K, Tang CQ, Yang WW, Zhao WF, Zhao CS. Design of carrageenan-based heparin-mimetic gel beads as self-anticoagulant hemoperfusion adsorbents. Biomacromolecules 2018; 19(6): 1966-78.
[http://dx.doi.org/10.1021/acs.biomac.7b01724] [PMID: 29425448]
[164]
Sokolova EV, Byankina AO, Kalitnik AA, et al. Influence of red algal sulfated polysaccharides on blood coagulation and platelets activation in vitro. J Biomed Mater Res A 2014; 102(5): 1431-8.
[http://dx.doi.org/10.1002/jbm.a.34827] [PMID: 23765560]
[165]
Besednova NN, Zvyagintseva TN, Kuznetsova TA, et al. Marine algae metabolites as promising therapeutics for the prevention and treatment of HIV/AIDS. Metabolites 2019; 9(5): 87.
[http://dx.doi.org/10.3390/metabo9050087] [PMID: 31052506]
[166]
Diogo JV, Novo SG, González MJ, Ciancia M, Bratanich AC. Antiviral activity of lambda-carrageenan prepared from red seaweed (Gigartina skottsbergii) against BoHV-1 and SuHV-1. Res Vet Sci 2015; 98: 142-4.
[http://dx.doi.org/10.1016/j.rvsc.2014.11.010] [PMID: 25435342]
[167]
Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar Drugs 2012; 10(12): 2795-816.
[http://dx.doi.org/10.3390/md10122795] [PMID: 23235364]
[168]
Eccles R, Winther B, Johnston SL, Robinson P, Trampisch M, Koelsch S. Efficacy and safety of iota-carrageenan nasal spray versus placebo in early treatment of the common cold in adults: the ICICC trial. Respir Res 2015; 16: 121.
[http://dx.doi.org/10.1186/s12931-015-0281-8] [PMID: 26438038]
[169]
Liu Z, Gao T, Yang Y, et al. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules 2019; 24(23): 4286.
[http://dx.doi.org/10.3390/molecules24234286] [PMID: 31775255]
[170]
Yao ZA, Xu L, Wu HG. Immunomodulatory function of κ-carrageenan oligosaccharides acting on LPS-activated microglial cells. Neurochem Res 2014; 39(2): 333-43.
[http://dx.doi.org/10.1007/s11064-013-1228-4] [PMID: 24357352]
[171]
Ai L, Chung YC, Lin SY, et al. Carrageenan polysaccharides and oligosaccharides with distinct immunomodulatory activities in murine microglia BV-2 cells. Int J Biol Macromol 2018; 120(Pt A): 633-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.151] [PMID: 30170063]
[172]
Sun Y, Yang B, Wu Y, et al. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem 2015; 178: 311-8.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.105] [PMID: 25704717]
[173]
Park T-J, Jung YJ, Choi S-W, et al. Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromol Res 2011; 19: 213-5.
[http://dx.doi.org/10.1007/s13233-011-0315-0]
[174]
Silva TH, Moreira-Silva J, Marques ALP, Domingues A, Bayon Y, Reis RL. Marine origin collagens and its potential applications. Mar Drugs 2014; 12(12): 5881-901.
[http://dx.doi.org/10.3390/md12125881] [PMID: 25490254]
[175]
Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y. Potency of fish collagen as a scaffold for regenerative medicine. BioMed Res Int 2014; 2014: 302932.
[http://dx.doi.org/10.1155/2014/302932] [PMID: 24982861]
[176]
Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S. Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 2019; 17(8): 467.
[http://dx.doi.org/10.3390/md17080467] [PMID: 31405173]
[177]
Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis RL. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review. J Mater Sci Mater Med 2019; 30(3): 32.
[http://dx.doi.org/10.1007/s10856-019-6234-x] [PMID: 30840132]
[178]
Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 2001; 80(11): 2025-9.
[http://dx.doi.org/10.1177/00220345010800111501] [PMID: 11759015]
[179]
Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[180]
Joshi S, Eshwar S, Jain V. Marine polysaccharides: Biomedical and tissue engineering applications. Marine-Derived Biomaterials for Tissue Engineering Applications. Singapore: Springer 2019; pp. 443-91.
[http://dx.doi.org/10.1007/978-981-13-8855-2_19]
[181]
Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol 1990; 8(3): 71-8.
[http://dx.doi.org/10.1016/0167-7799(90)90139-O] [PMID: 1366500]
[182]
Lahaye M, Rochas C. Chemical structure and physico-chemical properties of agar. Hydrobiologia 1991; 221(1): 137-48.
[http://dx.doi.org/10.1007/BF00028370]
[183]
Praiboon J, Chirapart A, Akakabe Y, Bhumibhamon O, Kajiwara T. Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci Asia 2006; 32(s1): 11-7.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2006.32(s1).011]
[184]
Soorbaghi FP, Isanejad M, Salatin S, Ghorbani M, Jafari S, Derakhshankhah H. Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomed Pharmacother 2019; 111: 964-75.
[http://dx.doi.org/10.1016/j.biopha.2019.01.014] [PMID: 30841476]
[185]
de Lima GG, de Lima DWF, de Oliveira MJA, et al. Synthesis and in vivo behavior of PVP/CMC/Agar hydrogel membranes impregnated with silver nanoparticles for wound healing applications. ACS Appl Bio Mater 2018; 1(6): 1842-52.
[http://dx.doi.org/10.1021/acsabm.8b00369] [PMID: 34996285]
[186]
Martín-López E, Darder M, Ruiz-Hitzky E, Nieto Sampedro M. Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair. Biomed Mater Eng 2013; 23(5): 405-21.
[http://dx.doi.org/10.3233/BME-130763] [PMID: 23988711]
[187]
López-Marcial GR, Zeng AY, Osuna C, Dennis J, García JM, O’Connell GD. Agarose-based hydrogels as suitable bioprinting materials for tissue engineering. ACS Biomater Sci Eng 2018; 4(10): 3610-6.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00903] [PMID: 33450800]
[188]
Wang X, Schröder HC, Wiens M, Ushijima H, Müller WEG. Bio-silica and bio-polyphosphate: Applications in biomedicine (bone formation). Curr Opin Biotechnol 2012; 23(4): 570-8.
[http://dx.doi.org/10.1016/j.copbio.2012.01.018] [PMID: 22366413]
[189]
Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008; 60(11): 1278-88.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[190]
Slowing II, Trewyn BG, Lin VS. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 2007; 129(28): 8845-9.
[http://dx.doi.org/10.1021/ja0719780] [PMID: 17589996]
[191]
Estevez JM, Ciancia M, Cerezo AS. The system of low-molecular-weight carrageenans and agaroids from the room-temperature-extracted fraction of Kappaphycus alvarezii. Carbohydr Res 2000; 325(4): 287-99.
[http://dx.doi.org/10.1016/S0008-6215(00)00006-9] [PMID: 10839122]
[192]
Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishinari K. Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocoll 2007; 21(4): 617-29.
[http://dx.doi.org/10.1016/j.foodhyd.2006.07.013]
[193]
Zhou G, Sheng W, Yao W, Wang C. Effect of low molecular lambda-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res 2006; 53(2): 129-34.
[http://dx.doi.org/10.1016/j.phrs.2005.09.009] [PMID: 16310373]
[194]
Talarico LB, Damonte EB. Interference in dengue virus adsorption and uncoating by carrageenans. Virology 2007; 363(2): 473-85.
[http://dx.doi.org/10.1016/j.virol.2007.01.043] [PMID: 17337028]
[195]
Zia KM, Tabasum S, Nasif M, et al. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96: 282-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.095] [PMID: 27914965]
[196]
Besednova N, Zaporozhets T, Kuznetsova T, et al. Metabolites of seaweeds as potential agents for the prevention and therapy of influenza infection. Mar Drugs 2019; 17(6): 373.
[http://dx.doi.org/10.3390/md17060373] [PMID: 31234532]
[197]
Damonte EB, Matulewicz MC, Cerezo AS. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 2004; 11(18): 2399-419.
[http://dx.doi.org/10.2174/0929867043364504] [PMID: 15379705]
[198]
Shi Q, Wang A, Lu Z, Qin C, Hu J, Yin J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr Res 2017; 453-454: 1-9.
[http://dx.doi.org/10.1016/j.carres.2017.10.020] [PMID: 29102716]
[199]
Levendosky K, Mizenina O, Martinelli E, et al. Griffithsin and carrageenan combination to target Herpes simplex virus 2 and Human papillomavirus. Antimicrob Agents Chemother 2015; 59(12): 7290-8.
[http://dx.doi.org/10.1128/AAC.01816-15] [PMID: 26369967]
[200]
Perino A, Consiglio P, Maranto M, et al. Impact of a new carrageenan-based vaginal microbicide in a female population with genital HPV-infection: First experimental results. Eur Rev Med Pharmacol Sci 2019; 23(15): 6744-52.
[http://dx.doi.org/10.26355/eurrev_201908_18567] [PMID: 31378918]
[201]
Shao Q, Guo Q, Xu W, Li Z, Zhao T. Specific inhibitory effect of κ-carrageenan polysaccharide on swine pandemic 2009 H1N1 influenza virus. PLoS One 2015; 10(5): e0126577.
[http://dx.doi.org/10.1371/journal.pone.0126577] [PMID: 25969984]
[202]
Chiu YH, Chan YL, Tsai LW, Li TL, Wu CJ. Prevention of human enterovirus 71 infection by kappa carrageenan. Antiviral Res 2012; 95(2): 128-34.
[http://dx.doi.org/10.1016/j.antiviral.2012.05.009] [PMID: 22643729]
[203]
Song S, Peng H, Wang Q, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct 2020; 11(9): 7415-20.
[http://dx.doi.org/10.1039/D0FO02017F] [PMID: 32966484]
[204]
Wang FF, Yao Z, Wu HG, Zhang SX, Zhu NN, Gai X. Antibacterial activities of Kappa-carrageenan oligosaccharides. Appl Mech Mater 2011; 108: 194-9.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.108.194]
[205]
Zhu M, Ge L, Lyu Y, et al. Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydr Polym 2017; 174: 1051-8.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.029] [PMID: 28821027]
[206]
Bennett C, Ramezanpour M, Cooksley C, Vreugde S, Psaltis AJ. Kappa-carrageenan sinus rinses reduce inflammation and intracellular Staphylococcus aureus infection in airway epithelial cells. Int Forum Allergy Rhinol 2019; 9(8): 918-25.
[http://dx.doi.org/10.1002/alr.22360] [PMID: 31162892]
[207]
Madruga LYC, Sabino RM, Santos ECG, Popat KC, Balaban RC, Kipper MJ. Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities. Int J Biol Macromol 2020; 152: 483-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.274] [PMID: 32109473]
[208]
Valado A, Pereira M, Caseiro A, et al. Effect of carrageenans on vegetable jelly in humans with hypercholesterolemia. Mar Drugs 2019; 18(1): 19.
[http://dx.doi.org/10.3390/md18010019] [PMID: 31878353]
[209]
Liang W, Mao X, Peng X, Tang S. Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity. Carbohydr Polym 2014; 101: 776-85.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.010] [PMID: 24299838]
[210]
Rocha de Souza MC, Marques CT, Guerra Dore CM, Ferreira da Silva FR, Oliveira Rocha HA, Leite EL. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 2007; 19(2): 153-60.
[http://dx.doi.org/10.1007/s10811-006-9121-z] [PMID: 19396353]
[211]
Ifuku S, Saimoto H. Chitin nanofibers: Preparations, modifications, and applications. Nanoscale 2012; 4(11): 3308-18.
[http://dx.doi.org/10.1039/C2NR30383C] [PMID: 22539071]
[212]
Brondani D, Dupont J, Spinelli A, Vieira IC. Development of biosensor based on ionic liquid and corn peroxidase immobilized on chemically crosslinked chitin. Sens Actuators B Chem 2009; 138(1): 236-43.
[http://dx.doi.org/10.1016/j.snb.2008.12.021]
[213]
Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 2010; 28(1): 142-50.
[http://dx.doi.org/10.1016/j.biotechadv.2009.11.001] [PMID: 19913083]
[214]
Silva TH, Alves A, Ferreira BM, et al. Materials of marine origin: A review on polymers and ceramics of biomedical interest. Int Mater Rev 2012; 57(5): 276-306.
[http://dx.doi.org/10.1179/1743280412Y.0000000002]
[215]
Kaya M, Mujtaba M, Ehrlich H, et al. On chemistry of γ-chitin. Carbohydr Polym 2017; 176: 177-86.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.076] [PMID: 28927596]
[216]
Tsurkan MV, Voronkina A, Khrunyk Y, Wysokowski M, Petrenko I, Ehrlich H. Progress in chitin analytics. Carbohydr Polym 2021; 252: 117204.
[http://dx.doi.org/10.1016/j.carbpol.2020.117204] [PMID: 33183639]
[217]
Moussian B. Chitin: Structure, chemistry and biology. Advances in Experimental Medicine and Biology. Cham, Switzerland: Springer 2019; 1142: pp. 5-18.
[218]
Xing R, Yu H, Liu S, et al. Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorg Med Chem 2005; 13(4): 1387-92.
[http://dx.doi.org/10.1016/j.bmc.2004.11.002] [PMID: 15670946]
[219]
Saneja A, Nehate C, Alam N, Gupta PN. Recent Advances in Chitosan-Based Nanomedicines for Cancer Chemotherapy. New Delhi, India: Springer 2016.
[http://dx.doi.org/10.1007/978-81-322-2511-9_9]
[220]
Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm 2012; 81(3): 463-9.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.007] [PMID: 22561955]
[221]
Bernkop-Schnürch A. Thiomers: A new generation of mucoadhesive polymers. Adv Drug Deliv Rev 2005; 57(11): 1569-82.
[http://dx.doi.org/10.1016/j.addr.2005.07.002] [PMID: 16176846]
[222]
Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett 2018; 16(1): 101-12.
[http://dx.doi.org/10.1007/s10311-017-0670-y]
[223]
Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 2016; 10(1): 27-37.
[http://dx.doi.org/10.1016/j.als.2016.04.001]
[224]
Huang YC, Liu TJ. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater 2012; 8(3): 1048-56.
[http://dx.doi.org/10.1016/j.actbio.2011.12.009] [PMID: 22200609]
[225]
Huang YC, Yang YT. Effect of basic fibroblast growth factor released from chitosan-fucoidan nanoparticles on neurite extension. J Tissue Eng Regen Med 2016; 10(5): 418-27.
[http://dx.doi.org/10.1002/term.1752] [PMID: 23696519]
[226]
Zhou C, Mi S, Li J, Gao J, Wang X, Sang Y. Purification, characterisation and antioxidant activities of chondroitin sulphate extracted from Raja porosa cartilage. Carbohydr Polym 2020; 241: 116306.
[http://dx.doi.org/10.1016/j.carbpol.2020.116306] [PMID: 32507218]
[227]
Mucci A, Schenetti L, Volpi N. 1H and 13C Nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydr Polym 2000; 41(1): 37-45.
[http://dx.doi.org/10.1016/S0144-8617(99)00075-2]
[228]
Gilbert ME, Kirker KR, Gray SD, et al. Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 2004; 114(8): 1406-9.
[http://dx.doi.org/10.1097/00005537-200408000-00017] [PMID: 15280717]
[229]
Henrotin Y, Mathy M, Sanchez C, Lambert C. Chondroitin sulfate in the treatment of osteoarthritis: From in vitro studies to clinical recommendations. Ther Adv Musculoskelet Dis 2010; 2(6): 335-48.
[http://dx.doi.org/10.1177/1759720X10383076] [PMID: 22870459]
[230]
Silbert JE, Sugumaran G. Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 2002; 54(4): 177-86.
[http://dx.doi.org/10.1080/15216540214923] [PMID: 12512856]
[231]
Swatschek D, Schatton W, Kellermann J, Müller WEG, Kreuter J. Marine sponge collagen: Isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm 2002; 53(1): 107-13.
[http://dx.doi.org/10.1016/S0939-6411(01)00192-8] [PMID: 11777758]
[232]
Nagai T, Suzuki N. Isolation of collagen from fish waste material - Skin, bone and fins. Food Chem 2000; 68(3): 277-81.
[http://dx.doi.org/10.1016/S0308-8146(99)00188-0]
[233]
Nagai T, Worawattanamateekul W, Suzuki N, et al. Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilema asamushi). Food Chem 2000; 70(2): 205-8.
[http://dx.doi.org/10.1016/S0308-8146(00)00081-9]
[234]
Pallela R, Bojja S, Janapala VR. Biochemical and biophysical characterization of collagens of marine sponge, Ircinia fusca (Porifera: Demospongiae: Irciniidae). Int J Biol Macromol 2011; 49(1): 85-92.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.03.019] [PMID: 21501629]
[235]
Sionkowska A. Kozłowska J. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. Int J Biol Macromol 2010; 47(4): 483-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.07.002] [PMID: 20637799]
[236]
Gomez-Guillen MC, Turnay J, Fernandez-Diaz MD, Ulmo N, Lizarbe MA, Montero P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll 2002; 16(1): 25-34.
[http://dx.doi.org/10.1016/S0268-005X(01)00035-2]
[237]
Kołodziejska I. 244 Kolodziejska, I.; Sikorski, Z.E.; Niecikowska, C. Parameters affecting the isolation of collagen from squid (Illex argentinus) skins. Food Chem 1999; 66(2): 153-7.
[http://dx.doi.org/10.1016/S0308-8146(98)00251-9]
[238]
Mandal A, Panigrahi S, Zhang C. Collagen as biomaterial for medical application - Drug delivery and scaffolds for tissue regeneration: A review. Biol Eng Trans 2010; 2(2): 63-88.
[http://dx.doi.org/10.13031/2013.32719]
[239]
Li X, Fan D. Smart collagen hydrogels based on 1-Ethyl-3-methylimidazolium acetate and microbial transglutaminase for potential applications in tissue engineering and cancer therapy. ACS Biomater Sci Eng 2019; 5(7): 3523-36.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00393] [PMID: 33405735]
[240]
Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 2008; 13(8): 1671-95.
[http://dx.doi.org/10.3390/molecules13081671] [PMID: 18794778]
[241]
Singh G, Singh G, Damarla K, Sharma PK, Kumar A, Kang TS. Gelatin-based highly stretchable, self-healing, conducting, multiadhesive, and antimicrobial ionogels embedded with Ag2O nanoparticles. ACS Sustain Chem& Eng 2017; 5(8): 6568-77.
[http://dx.doi.org/10.1021/acssuschemeng.7b00719]
[242]
Kuznetsova TA, Besednova NN, Mamaev AN, Momot AP, Shevchenko NM, Zvyagintseva TN. Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the Okhotsk Sea. Bull Exp Biol Med 2003; 136(5): 471-3.
[http://dx.doi.org/10.1023/B:BEBM.0000017096.72246.1f] [PMID: 14968163]
[243]
Hitoshi K, Miki Y, Kimura T, et al. Effects of Fucoidan from Mozuku on Human stomach cell lines. Food Sci Technol Res 2006; 12(3): 218-22.
[http://dx.doi.org/10.3136/fstr.12.218]
[244]
Anastyuk SD, Shevchenko NM, Nazarenko EL, Dmitrenok PS, Zvyagintseva TN. Structural analysis of a fucoidan from the brown alga Fucus evanescens by MALDI-TOF and tandem ESI mass spectrometry. Carbohydr Res 2009; 344(6): 779-87.
[http://dx.doi.org/10.1016/j.carres.2009.01.023] [PMID: 19230864]
[245]
Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 2016; 14(3): 42.
[http://dx.doi.org/10.3390/md14030042] [PMID: 26927134]
[246]
Shiroma R, Uechi S, Taira T, Ishihara M, Tawata S, Tako M. Isolation and char-acterization of fucoidan from Hizikia fusiformis (Hijiki). J Appl Glycosci 2003; 50(3): 361-6.
[http://dx.doi.org/10.5458/jag.50.361]
[247]
Wang J, Liu L, Zhang Q, Zhang Z, Qi H, Li P. Synthesized oversulphated, acet-ylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Food Chem 2009; 114(4): 1285-90.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.082]
[248]
Wang J, Wang F, Zhang Q, Zhang Z, Shi X, Li P. Synthesized different derivatives of low molecular fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Int J Biol Macromol 2009; 44(5): 379-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.02.001] [PMID: 19428470]
[249]
Morya VK, Kim J, Kim EK. Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Appl Microbiol Biotechnol 2012; 93(1): 71-82.
[http://dx.doi.org/10.1007/s00253-011-3666-8] [PMID: 22089385]
[250]
Pomin VH, Mourão PAS. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 2008; 18(12): 1016-27.
[http://dx.doi.org/10.1093/glycob/cwn085] [PMID: 18796647]
[251]
Farias EH, Pomin VH, Valente AP, Nader HB, Rocha HA, Mourão PA. A preponderantly 4-sulfated, 3-linked galactan from the green alga Codium isthmocladum. Glycobiology 2008; 18(3): 250-9.
[http://dx.doi.org/10.1093/glycob/cwm139] [PMID: 18174311]
[252]
Talarico LB, Duarte MER, Zibetti RGM, Noseda MD, Damonte EB. An algal-derived DL-galactan hybrid is an efficient preventing agent for in vitro dengue virus infection. Planta Med 2007; 73(14): 1464-8.
[http://dx.doi.org/10.1055/s-2007-990241] [PMID: 17948168]
[253]
Talarico LB, Pujol CA, Zibetti RGM, et al. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res 2005; 66(2-3): 103-10.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.001] [PMID: 15911027]
[254]
de Oliveira AJ, Cordeiro LMC, Gonçalves RA, Ceole LF, Ueda-Nakamura T, Iacomini M. Structure and antiviral activity of arabinogalactan with (1→6)-β-D-galactan core from Stevia rebaudiana leaves. Carbohydr Polym 2013; 94(1): 179-84.
[http://dx.doi.org/10.1016/j.carbpol.2012.12.068] [PMID: 23544526]
[255]
Chattopadhyay K, Mateu CG, Mandal P, Pujol CA, Damonte EB, Ray B. Galactan sulfate of Grateloupia indica: Isolation, structural features and antiviral activity. Phytochemistry 2007; 68(10): 1428-35.
[http://dx.doi.org/10.1016/j.phytochem.2007.02.008] [PMID: 17451760]
[256]
do Nascimento GE, Corso CR, Werner MF, Baggio CH, Iacomini M, Cordeiro LMC. Structure of an arabinogalactan from the edible tropical fruit tamarillo (Solanum betaceum) and its antinociceptive activity. Carbohydr Polym 2015; 116(116): 300-6.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.032] [PMID: 25458304]
[257]
Farias WR, Valente AP, Pereira MS, Mourão PA. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J Biol Chem 2000; 275(38): 29299-307.
[http://dx.doi.org/10.1074/jbc.M002422200] [PMID: 10882718]
[258]
Fonseca RJC, Oliveira SNMCG, Melo FR, Pereira MG, Benevides NMB, Mourão PAS. Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities. Thromb Haemost 2008; 99(3): 539-45.
[http://dx.doi.org/10.1160/TH07-10-0603] [PMID: 18327402]
[259]
Lee JB, Ohta Y, Hayashi K, Hayashi T. Immunostimulating effects of a sulfated galactan from Codium fragile. Carbohydr Res 2010; 345(10): 1452-4.
[http://dx.doi.org/10.1016/j.carres.2010.02.026] [PMID: 20362278]
[260]
Silva SS, Fernandes EM, Pina S, et al. Natural-origin materials for tissue engineering and regenerative medicine. In: Ducheyne P, Ed. Comprehensive Biomaterials II. Amsterdam, The Netherlands: Elsevier 2017.
[261]
Milovanovic I, Hayes M. Marine gelatine from rest raw materials. Appl Sci (Basel) 2018; 8(12): 2407.
[http://dx.doi.org/10.3390/app8122407]
[262]
Ahmada M, Benjakul S, Prodpranb T, Augustin WT. Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll 2012; 28(1): 189-92.
[http://dx.doi.org/10.1016/j.foodhyd.2011.12.003]
[263]
Alemán A, Giménez B, Pérez-Santin E, Gómez-Guillén MC, Montero P. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int 2011; 44(4): 1044-51.
[http://dx.doi.org/10.1016/j.foodres.2011.03.010]
[264]
273 Kanchana, S.; Arumugam, M. Alternative exploration of hyaluronic acid from marine superstore. Asian J Pharm Res 2014; 4(4): 169-73.
[265]
Smith AM, Moxon S, Morris GA. Biopolymers as wound healing materials. In: Agren MS, Ed. Wound Healing Biomaterials Sawston. Cambridge: Woodhead Publishing 2016; pp. 261-87.
[http://dx.doi.org/10.1016/B978-1-78242-456-7.00013-1]
[266]
Asari A. Medical Application of Hyaluronan. In: Garg HG, Hales CA, Eds. Chemistry and Biology of Hyaluronan. Amsterdam: Elsevier Science Ltd 2004; pp. 457-73.
[http://dx.doi.org/10.1016/B978-008044382-9/50052-2]
[267]
Aragona P. Hyaluronan in the treatment of ocular surface disorders. In: Garg HG, Hales CA, Eds. Chemistry and Biology of Hyaluronan. Amsterdam: Elsevier Science Ltd 2004; pp. 529-51.
[http://dx.doi.org/10.1016/B978-008044382-9/50055-8]
[268]
Abdel-Mohsen AM, Hrdina R, Burgert L, et al. Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydr Polym 2013; 92(2): 1177-87.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.098] [PMID: 23399144]
[269]
Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater 2013; 9(7): 7081-92.
[http://dx.doi.org/10.1016/j.actbio.2013.03.005] [PMID: 23507088]
[270]
Wang B, Yang W, McKittrick J, Meyers MA. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 2016; 76: 229-318.
[http://dx.doi.org/10.1016/j.pmatsci.2015.06.001]
[271]
Feroz S, Muhammad N, Ranayake J, Dias G. Keratin - Based materials for biomedical applications. Bioact Mater 2020; 5(3): 496-509.
[http://dx.doi.org/10.1016/j.bioactmat.2020.04.007] [PMID: 32322760]
[272]
Feng Y, Borrelli M, Meyer-Ter-Vehn T, Reichl S, Schrader S, Geerling G. Epithelial wound healing on keratin film, amniotic membrane and polystyrene in vitro. Curr Eye Res 2014; 39(6): 561-70.
[http://dx.doi.org/10.3109/02713683.2013.853804] [PMID: 24400943]
[273]
Aluigi A, Sotgiu G, Torreggiani A, et al. Methylene blue doped films of wool keratin with antimicrobial photodynamic activity. ACS Appl Mater Interfaces 2015; 7(31): 17416-24.
[http://dx.doi.org/10.1021/acsami.5b04699] [PMID: 26196705]
[274]
Cui L, Gong J, Fan X, Wang P, Wang Q, Qiu Y. Transglutaminase‐modified wool keratin film and its potential application in tissue engineering. Eng Life Sci 2013; 13(2): 149-55.
[http://dx.doi.org/10.1002/elsc.201100206]
[275]
Bhatia S, Sharma A, Sharma K, et al. Novel algal polysaccharides from marine source. Porphyran Pharmacog Rev 2008; 2(4): 271-6.
[276]
Zhang Q, Li N, Liu X, Zhao Z, Li Z, Xu Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr Res 2004; 339(1): 105-11.
[http://dx.doi.org/10.1016/j.carres.2003.09.015] [PMID: 14659676]
[277]
Qiu Y, Jiang H, Fu L, Ci F, Mao X. Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem 2021; 349: 129209.
[http://dx.doi.org/10.1016/j.foodchem.2021.129209] [PMID: 33588184]
[278]
Kidgell JT, Magnusson M, de Nys R, Glasson CRK. Ulvan: A systematic review of extraction, composition and function. Algal Res 2019; 39: 101422.
[http://dx.doi.org/10.1016/j.algal.2019.101422]
[279]
Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007; 8(6): 1765-74.
[http://dx.doi.org/10.1021/bm061185q] [PMID: 17458931]
[280]
Tziveleka LA, Ioannou E, Roussis V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr Polym 2019; 218: 355-70.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.074] [PMID: 31221340]
[281]
Chen X, Yue Z, Winberg PC, et al. Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomater Sci 2019; 7(8): 3497-509.
[http://dx.doi.org/10.1039/C9BM00480G] [PMID: 31290861]
[282]
Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 2016; 82: 315-27.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.081] [PMID: 26523336]
[283]
Massironi A, Morelli A, Grassi L, et al. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydr Polym 2019; 203: 310-21.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.066] [PMID: 30318218]
[284]
Elli S, Stancanelli E, Wang Z, Petitou M, Liu J, Guerrini M. Degeneracy of the antithrombin binding sequence in heparin: 2-O-sulfated Iduronic acid can replace the critical glucuronic acid. Chemistry 2020; 26(51): 11814-8.
[http://dx.doi.org/10.1002/chem.202001346] [PMID: 32515841]
[285]
Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 2016; 82: 315-27.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.081]
[286]
Massironi A, Morelli A, Grassi L, et al. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydr Polym 2019; 203: 310-21.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.066]
[287]
Elli S, Stancanelli E, Wang Z, Petitou M, Liu J, Guerrini M. Degeneracy of the antithrombin binding sequence in heparin: 2-O-sulfated Iduronic acid can replace the critical glucuronic acid. Chem A Eur J 2020; 26(51): 11814-8.
[http://dx.doi.org/10.1002/chem.202001346]