Recent Applications of Natural Polymers in the Formulation of Nanogel

Page: [334 - 348] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Nanotechnology is a progressing and novel technique in healthcare and smart drug delivery. There are many benefits and future aspects of nanogel-containing nanoparticles in the advanced diagnosis, mitigation, and treatment of many important disorders with improved outcomes because of their particle size, high stability, biodegradability, biocompatibility, large surface area, and high drug charging capacity. Their small particle size provides the feature basis for drug charging capacity and the swelling property to form a 3D structure with advantages, limitations, and classification of nanogels. The motive of the review article is to summarize the natural polymers such as Okra gum, chitosan, Acacia gum, Pullulan, PLA, and PLGA that are employed to prepare nanogels comprising nanoparticles by the chemical cross-linking method. There are various applications of these nanogels as nanoparticles in the many fields of healthcare, including local anesthetics, neurodegenerative, vaccine delivery, transdermal delivery, ophthalmology, and diabetes. In this present review article, the author has focused on the current trends of nanogel in nanomedicine, oilfield applications, food packing, cancer research, cosmeceutical, and biomedical applications.

Keywords: Nanoparticles, nanotechnology, nanogels, polymers, oilfield, nanomedicine.

Graphical Abstract

[1]
Logothetidis S. Nanomedicine: The medicine of tomorrow. In: Logothetidis S, Ed. Nanomedicine and Nanobiotechnology NanoScience and Technology. Berlin, Heidelberg: Springer 2012; pp. 1-26.
[http://dx.doi.org/10.1007/978-3-642-24181-9_1]
[2]
Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 2017; 24(1): 539-57.
[http://dx.doi.org/10.1080/10717544.2016.1276232] [PMID: 28181831]
[3]
Pamfil D, Vasile C. Nanogels of Natural Polymers. In: Thakur V, Thakur M, Voicu S, Eds. Polymer Gels Gels Horizons: From Science to Smart Materials. Singapore: Springer 2018; pp. 71-110.
[4]
Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew Chem Int Ed Engl 2009; 48(30): 5418-29.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[5]
Bencherif SA, Siegwart DJ, Srinivasan A, et al. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 2009; 30(29): 5270-8.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.011] [PMID: 19592087]
[6]
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123: 979-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.053] [PMID: 30439428]
[7]
Rabbani G, Baig MH, Lee EJ, Cho WK, Ma JY, Choi I. Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analyses. Mol Pharm 2017; 14(5): 1656-65.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01124] [PMID: 28380300]
[8]
Soni G, Yadav KS. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm J 2016; 24(2): 133-9.
[http://dx.doi.org/10.1016/j.jsps.2014.04.001] [PMID: 27013905]
[9]
Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 2012; 33(5): 1607-17.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.011] [PMID: 22118820]
[10]
Rigogliuso S, Sabatino MA, Adamo G, et al. Polymeric nanogels: Nanocarriers for drug delivery application. Chem Eng 2012; 27: 247-52.
[11]
Tan JP, Tan MB, Tam MK. Application of nanogel systems in the administration of local anesthetics. Local Reg Anesth 2010; 3: 93-100.
[PMID: 22915875]
[12]
Gonçalves C, Pereira P, Gama M. Self-assembled hydrogel nanoparticles for drug delivery applications. Materials (Basel) 2010; 3(2): 1420-60.
[http://dx.doi.org/10.3390/ma3021420]
[13]
Singh N, Gill V, Gill P. Nanogel based artificial chaperone technology: An overview. Am J Adv Drug Deliv 2013; 1: 271-6.
[14]
Sultana F, Arafat M, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci 2013; 3(8) (Suppl. 1): S95-S105.
[15]
Vinogradov SV. Nanogels in the race for drug delivery. Nanomedicine (Lond) 2010; 5(2): 165-8.
[http://dx.doi.org/10.2217/nnm.09.103] [PMID: 20148627]
[16]
Labhasetwar V, Leslie-Pelecky DL. Biomedical Applications of Nanotechnology. Hoboken, New Jersey: John Wiley & Sons, Inc. 2007.
[http://dx.doi.org/10.1002/9780470152928]
[17]
Jin Q, Liu X, Liu G, Ji J. Fabrication of core or shell reversibly photo cross-linked micelles and nanogels from double responsive water-soluble block copolymers. Polymer (Guildf) 2010; 51(6): 1311-9.
[http://dx.doi.org/10.1016/j.polymer.2010.01.026]
[18]
Thakur RS, Agrawal R. Application of nanotechnology in pharmaceutical formulation design and development. Curr Drug Ther 2015; 10: 20-34.
[http://dx.doi.org/10.2174/157488551001150825095729]
[19]
Rabbani G, Khan MJ, Ahmad A, Maskat MY, Khan RH. Effect of copper oxide nanoparticles on the conformation and activity of β-galactosidase. Colloids Surf B Biointerfaces 2014; 123: 96-105.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.035] [PMID: 25260221]
[20]
Morimoto N, Endo T, Ohtomi M, Iwasaki Y, Akiyoshi K. Hybrid nanogels with physical and chemical cross-linking structures as nanocarriers. Macromol Biosci 2005; 5(8): 710-6.
[http://dx.doi.org/10.1002/mabi.200500051] [PMID: 16080166]
[21]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[22]
Moreno Raja M, Lim PQ, Wong YS, et al. Polymeric nanomaterials: Methods of preparation and characterization. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thoams S, Eds. Nanocarriers for Drug Delivery. Amsterdam, Netherland: Elsevier 2019; pp. 557-653.
[23]
Whistler RL, Conrad HE. A crystalline galactobiose from acid hydrolysis of okra mucilage. J Am Chem Soc 1954; 76(6): 1673-4.
[http://dx.doi.org/10.1021/ja01635a063]
[24]
Gulsen O, Karagul S, Abak K. Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism. Biologia (Bratisl) 2007; 62(1): 41-5.
[http://dx.doi.org/10.2478/s11756-007-0010-y]
[25]
Dhall RK, Sharma SR, Mahajan BVC. Development of post-harvest protocol of okra for export marketing. J Food Sci Technol 2014; 51(8): 1622-5.
[http://dx.doi.org/10.1007/s13197-012-0669-0] [PMID: 25114358]
[26]
de Alvarenga Pinto Cotrim M, Mottin AC, Ayres E. Preparation and characterization of okra mucilage (Abelmoschus esculentus) edible films. Macromol Symp 2016; 367(1): 90-100.
[27]
Ameena K, Dilip C, Saraswathi R, Krishnan PN, Sankar C, Simi SP. Isolation of the mucilages from Hibiscus rosasinensis Linn. and Okra (Abelmoschus esculentus Linn.) and studies of the binding effects of the mucilages. Asian Pac J Trop Med 2010; 3(7): 539-43.
[http://dx.doi.org/10.1016/S1995-7645(10)60130-7]
[28]
Ogaji I, Nnoli O. Film coating potential of okra gum using paracetamol tablets as a model drug. Asian J Pharm 2014; 4(2): 130-4.
[http://dx.doi.org/10.4103/0973-8398.68464]
[29]
Palei N, Mamidi S, Rajangam J. Formulation and evaluation of lamivudine sustained release tablet using okra mucilage. J Appl Pharm Sci 2016; 069-75.
[http://dx.doi.org/10.7324/JAPS.2016.60910]
[30]
Onakpa MM. Ethnomedicinal, phytochemical and pharmacological profile of genus Abelmoschus. Phytopharmacology 2013; 4: 648-63.
[31]
Durazzo A, Lucarini M, Novellino E, Souto EB, Daliu P, Santini A. Abelmoschus esculentus (L.): Bioactive components’ beneficial properties-focused on antidiabetic role-for sustainable health applications. Molecules 2018; 24(1): 38.
[http://dx.doi.org/10.3390/molecules24010038] [PMID: 30583476]
[32]
Mohammadi H, Kamkar A, Misaghi A. Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties. Carbohydr Polym 2018; 181: 351-7.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.045] [PMID: 29253983]
[33]
Zamzami MA, Rabbani G, Ahmad A, et al. Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry 2022; 143: 107982.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107982] [PMID: 34715586]
[34]
Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod 2013; 45: 423-9.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.019]
[35]
Mollick MMR, Rana D, Dash SK, et al. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab J Chem 2019; 12(8): 2572-84.
[http://dx.doi.org/10.1016/j.arabjc.2015.04.033]
[36]
Paul W, Sharma CP. Chitosan, a drug carrier for the 21st century: A review. STP Pharma Sci 2000; 10: 5-22.
[37]
Valente JFA, Gaspar VM, Antunes BP, Countinho P, Correia IJ. Microencapsulated chitosan–dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. Polymer (Guildf) 2013; 54(1): 5-15.
[http://dx.doi.org/10.1016/j.polymer.2012.10.032]
[38]
Jana S, Maji N, Nayak AK, Sen KK, Basu SK. Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydr Polym 2013; 98(1): 870-6.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.064] [PMID: 23987423]
[39]
Masalova O, Kulikouskaya V, Shutava T, Agabekov V. Alginate and chitosan gel nanoparticles for efficient protein entrapment. Phys Procedia 2013; 40: 69-75.
[http://dx.doi.org/10.1016/j.phpro.2012.12.010]
[40]
Varshosaz J, Sadrai H, Heidari A. Nasal delivery of insulin using bioadhesive chitosan gels. Drug Deliv 2006; 13(1): 31-8.
[http://dx.doi.org/10.1080/10717540500309040] [PMID: 16401591]
[41]
Hwang H-Y, Kim I-S, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 2008; 128(1): 23-31.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.003] [PMID: 18374444]
[42]
Singh RS, Saini GK, Kennedy JF. Pullulan: Microbial sources, production and applications. Carbohydr Polym 2008; 73(4): 515-31.
[http://dx.doi.org/10.1016/j.carbpol.2008.01.003] [PMID: 26048217]
[43]
Li H, Yu C, Zhang J, et al. pH-sensitive pullulan-doxorubicin nanoparticles loaded with 1,1,2-trichlorotrifluoroethane as a novel synergist for high intensity focused ultrasound mediated tumor ablation. Int J Pharm 2019; 556: 226-35.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.006] [PMID: 30543892]
[44]
Liu T, Liu H, Wu Z, et al. The use of poly(methacrylic acid) nanogel to control the release of amoxycillin with lower cytotoxicity. Mater Sci Eng C 2014; 43: 622-9.
[http://dx.doi.org/10.1016/j.msec.2014.07.067] [PMID: 25175257]
[45]
Tao X, Jin S, Wu D, et al. Effects of particle hydrophobicity, surface charge, media pH value and complexation with human serum albumin on drug release behavior of mitoxantrone-loaded pullulan nanoparticles. Nanomaterials (Basel) 2015; 6(1): 2.
[http://dx.doi.org/10.3390/nano6010002] [PMID: 28344259]
[46]
Tao X, Tao T, Wen Y, et al. Novel delivery of mitoxantrone with hydrophobically modified pullulan nanoparticles to inhibit bladder cancer cell and the effect of nano-drug size on inhibition efficiency. Nanoscale Res Lett 2018; 13(1): 345.
[http://dx.doi.org/10.1186/s11671-018-2769-x] [PMID: 30377872]
[47]
Vranic S, Gosens I, Jacobsen NR, et al. Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO2 nanoparticles. Arch Toxicol 2017; 91(1): 353-63.
[http://dx.doi.org/10.1007/s00204-016-1673-3] [PMID: 26872950]
[48]
Inouye S, Soberon X, Franceschini T, Nakamura K, Itakura K, Inouye M. Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane. Proc Natl Acad Sci USA 1982; 79(11): 3438-41.
[http://dx.doi.org/10.1073/pnas.79.11.3438] [PMID: 7048305]
[49]
Nayak AK, Pal D. Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol 2011; 49(4): 784-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.07.013] [PMID: 21816168]
[50]
Singh B, Sharma V, Chauhan D. Gastroretentive floating sterculia–alginate beads for use in antiulcer drug delivery. Chem Eng Res Des 2010; 88(8): 997-1012.
[http://dx.doi.org/10.1016/j.cherd.2010.01.017]
[51]
Malakar J, Nayak AK, Pal D, et al. Potato starch-blended alginate beads for prolonged release of tolbutamide: Development by statistical optimization and in vitro characterization. Asian J Pharm 2014; 7: 43-51.
[52]
Hasnain MS, Nayak AK, Kurakula M, et al. Alginate nanoparticles in drug delivery. Nayak AK, HAsnain MS, Eds Alginates in Drug Delivery. Cambridge, Massachusetts: Academic Pres 2020; pp. 129-52.
[http://dx.doi.org/10.1016/B978-0-12-817640-5.00006-6]
[53]
Taha MO, Nasser W, Ardakani A, Alkhatib HS. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: Switching from enteric coating release into biphasic profiles. Int J Pharm 2008; 350(1-2): 291-300.
[http://dx.doi.org/10.1016/j.ijpharm.2007.09.010] [PMID: 17980979]
[54]
Lau HC, Yu M, Nguyen QP. Nanotechnology for oilfield applications: Challenges and impact. J Petrol Sci Eng 2017; 157: 1160-9.
[http://dx.doi.org/10.1016/j.petrol.2017.07.062]
[55]
Montenegro MA, Boiero ML, Valle L, et al. Gum Arabic: More than an edible emulsifier. Prod Appl Biopolym 2012; 51: 953-78.
[56]
Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2002; 2(1): 25-8.
[http://dx.doi.org/10.1021/nl010065f]
[57]
Kattumuri V, Katti K, Bhaskaran S, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: In vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 2007; 3(2): 333-41.
[http://dx.doi.org/10.1002/smll.200600427] [PMID: 17262759]
[58]
Velikov KP, Zegers GE, van Blaaderen A. Synthesis and characterization of large colloidal silver particles. Langmuir 2003; 19(4): 1384-9.
[http://dx.doi.org/10.1021/la026610p]
[59]
Devi DK, Pratap SV, Haritha R, Sivudu KS, Radhika P, Sreedhar B. Gum acacia as a facile reducing, stabilizing, and templating agent for palladium nanoparticles. J Appl Polym Sci 2011; 121(3): 1765-73.
[http://dx.doi.org/10.1002/app.33004]
[60]
Sreedhar B, Devi DK, Yada D. Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium. Catal Commun 2011; 12(11): 1009-14.
[http://dx.doi.org/10.1016/j.catcom.2011.02.027]
[61]
Ekkelenkamp AE, Jansman MMT, Roelofs K, Engbersen JFJ, Paulusse JMJ. Surfactant-free preparation of highly stable zwitterionic poly(amido amine) nanogels with minimal cytotoxicity. Acta Biomater 2016; 30: 126-34.
[http://dx.doi.org/10.1016/j.actbio.2015.10.037] [PMID: 26518103]
[62]
Lockhart JN, Beezer DB, Stevens DM, Spears BR, Harth E. Onepot polyglycidol nanogels via liposome master templates for dual drug delivery. J Control Release 2016; 244(Pt B): 366-74.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.013] [PMID: 27411978]
[63]
Yang C, Wang X, Yao X, Zhang Y, Wu W, Jiang X. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Release 2015; 205: 206-17.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.008] [PMID: 25665867]
[64]
Schiavo S, Duroudier N, Bilbao E, et al. Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae. Sci Total Environ 2017; 577: 45-53.
[http://dx.doi.org/10.1016/j.scitotenv.2016.10.051] [PMID: 27751687]
[65]
Akiyoshi K, Kang E-C, Kurumada S, Sunamoto J, Principi T, Winnik FM. Controlled association of amphiphilic polymers in water: Thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N -isopropylacryla-mides). Macromolecules 2000; 33(9): 3244-9.
[http://dx.doi.org/10.1021/ma991798d]
[66]
Gonzales D, Fan K, Sevoian M. Synthesis and swelling characterizations of a poly(gamma-glutamic acid) hydrogel. J Polym Sci A Polym Chem 1996; 34(10): 2019-27.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19960730)34:10<2019:AID-POLA19>3.0.CO;2-K]
[67]
Alles N, Soysa NS, Hussain MD, et al. Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Eur J Pharm Sci 2009; 37(2): 83-8.
[http://dx.doi.org/10.1016/j.ejps.2009.01.002] [PMID: 19429414]
[68]
Wu W, Shen J, Banerjee P, Zhou S. Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 2010; 31(32): 8371-81.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.061] [PMID: 20701965]
[69]
Ghorbaniazar P, Sepehrianazar A, Eskandani M, Nabi-Meibodi M, Kouhsoltani M, Hamishehkar H. Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique. Adv Pharm Bull 2015; 5(2): 269-75.
[http://dx.doi.org/10.15171/apb.2015.037] [PMID: 26236667]
[70]
Abolmaali SS, Tamaddon AM, Mohammadi S, Amoozgar Z, Dinarvand R. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells. Mater Sci Eng C 2016; 62: 897-907.
[http://dx.doi.org/10.1016/j.msec.2016.02.045] [PMID: 26952497]
[71]
Okur AC, Erkoc P, Kizilel S. Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids Surf B Biointerfaces 2016; 147: 191-200.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.005] [PMID: 27513587]
[72]
De León AS, Molina M, Wedepohl S, Muñoz-Bonilla A, Rodríguez-Hernández J, Calderón M. Immobilization of stimuli-responsive nanogels onto honeycomb porous surfaces and controlled release of proteins. Langmuir 2016; 32(7): 1854-62.
[http://dx.doi.org/10.1021/acs.langmuir.5b04166] [PMID: 26818564]
[73]
Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomater 2014; 10(5): 2159-68.
[http://dx.doi.org/10.1016/j.actbio.2014.01.010] [PMID: 24440420]
[74]
Lou S, Gao S, Wang W, et al. Galactose-functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. Nanoscale 2015; 7(7): 3137-46.
[http://dx.doi.org/10.1039/C4NR06714B] [PMID: 25613320]
[75]
Ma K, Xu Y, An Z. Templateless synthesis of polyacrylamide-based Nanogels via RAFT dispersion polymerization. Macromol Rapid Commun 2015; 36(6): 566-70.
[http://dx.doi.org/10.1002/marc.201400730] [PMID: 25684634]
[76]
Abu Samah NH, Heard CM. The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo. Nanotoxicology 2014; 8(1): 100-6.
[http://dx.doi.org/10.3109/17435390.2012.754511] [PMID: 23194376]
[77]
Teo J, McCarroll JA, Boyer C, et al. A rationally optimized nanoparticle system for the delivery of RNA interference therapeutics into pancreatic tumors in vivo. Biomacromolecules 2016; 17(7): 2337-51.
[http://dx.doi.org/10.1021/acs.biomac.6b00185] [PMID: 27305597]
[78]
Quinn CP, Pathak CP, Heller A, Hubbell JA. Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. Biomaterials 1995; 16(5): 389-96.
[http://dx.doi.org/10.1016/0142-9612(95)98856-9] [PMID: 7662824]
[79]
Czaderna-Lekka A, Kozanecki M, Matusiak M, Kadlubowski S. Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems. Polymer (Guildf) 2021; 212: 123247.
[http://dx.doi.org/10.1016/j.polymer.2020.123247]
[80]
Peng P-C, Hsieh C-M, Chen C-P, Tsai T, Chen CT. Assessment of photodynamic inactivation against periodontal bacteria mediated by a chitosan hydrogel in a 3D gingival model. Int J Mol Sci 2016; 17(11): 1821.
[http://dx.doi.org/10.3390/ijms17111821] [PMID: 27809278]
[81]
Lee VY, Havenstrite K, Tjio M, et al. Nanogel star polymer architectures: A nanoparticle platform for modular programmable macromolecular self-assembly, intercellular transport, and dual-mode cargo delivery. Adv Mater 2011; 23(39): 4509-15.
[http://dx.doi.org/10.1002/adma.201102371] [PMID: 21901765]
[82]
Wu D, Wan M. A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release. J Pharm Pharm Sci 2008; 11(4): 32-45.
[http://dx.doi.org/10.18433/J3988J] [PMID: 19183512]
[83]
Lemoine D, Préat V. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J Control Release 1998; 54(1): 15-27.
[http://dx.doi.org/10.1016/S0168-3659(97)00241-1] [PMID: 9741900]
[84]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int 2014; 2014: 869269.
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[85]
Ferreira SA, Gama FM, Vilanova M. Polymeric nanogels as vaccine delivery systems. Nanomedicine 2013; 9(2): 159-73.
[http://dx.doi.org/10.1016/j.nano.2012.06.001] [PMID: 22772049]
[86]
Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: Carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 2013; 84(1): 1-20.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.009] [PMID: 23313176]
[87]
Phatak AA, Chaudhari PD. Development and evaluation of nanogel as a carrier for transdermal delivery of aceclofenac. Asian J Pharm Technol 2012; 2: 125-32.
[88]
Yang M, Gu Y, Tang X, Wang T, Liu J. Advancement of lipid-based nanocarriers and combination application with physical penetration technique. Curr Drug Deliv 2019; 16(4): 312-24.
[http://dx.doi.org/10.2174/1567201816666190118125427] [PMID: 30657039]
[89]
Abd El-Rehim HA, Swilem AE, Klingner A, Hegazy SA, Hamed AA. Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly(acrylic acid) nanogel dispersions prepared by γ radiation. Biomacromolecules 2013; 14(3): 688-98.
[http://dx.doi.org/10.1021/bm301742m] [PMID: 23414209]
[90]
Emam HE, Saad NM, Abdallah AEM, Ahmed HB. Acacia gum versus pectin in fabrication of catalytically active palladium nanoparticles for dye discoloration. Int J Biol Macromol 2020; 156: 829-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.018] [PMID: 32289427]
[91]
Moya-Ortega MD, Alves TF, Alvarez-Lorenzo C, et al. Dexamethasone eye drops containing γ-cyclodextrin-based nanogels. Int J Pharm 2013; 441(1-2): 507-15.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.002] [PMID: 23149258]
[92]
Srivastava S, Usmani Z, Atanasov AG, et al. Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini Rev Med Chem 2021; 21(2): 245-65.
[http://dx.doi.org/10.2174/1389557520999201116163012] [PMID: 33198616]
[93]
Lowery AR, Gobin AM, Day ES, Halas NJ, West JL. Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomedicine 2006; 1(2): 149-54.
[http://dx.doi.org/10.2147/nano.2006.1.2.149] [PMID: 17722530]
[94]
Souto EB, Souto SB, Campos JR, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 2019; 24(23): 4209.
[http://dx.doi.org/10.3390/molecules24234209] [PMID: 31756981]
[95]
Roque AC, Bicho A, Batalha IL, Cardoso AS, Hussain A. Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. J Biotechnol 2009; 144(4): 313-20.
[http://dx.doi.org/10.1016/j.jbiotec.2009.08.020] [PMID: 19737584]
[96]
Tekade RK, Maheshwari R, Soni N, et al. Nanotechnology for the development of nanomedicine. In: Mishra V, Keshwarani P, Mohd Amin MC, Iyer A, Eds. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Cambridge, Massachusetts: Academic Press 2017; pp. 3-61.
[97]
Mihindukulasuriya SDF, Lim L-T. Nanotechnology development in food packaging: A review. Trends Food Sci Technol 2014; 40(2): 149-67.
[http://dx.doi.org/10.1016/j.tifs.2014.09.009]
[98]
Rossi M, Passeri D, Sinibaldi A, et al. Chapter Five - Nanotechnology for food packaging and food quality assessment. Adv Food Nutr Res 2017; 82: 149-204.
[99]
Hull LC, Farrell D, Grodzinski P. Highlights of recent developments and trends in cancer nanotechnology research--view from NCI Alliance for Nanotechnology in Cancer. Biotechnol Adv 2014; 32(4): 666-78.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.003] [PMID: 23948249]
[100]
Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov Today 2010; 15(19-20): 842-50.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[101]
Sengel-Turk CT, Gumustas M, Uslu B, et al. Chapter 10 - Nanosized drug carriers for oral delivery of anticancer compounds and the importance of the chromatographic techniques. In: Grumezescu AM, Ed. nano- and microscale drug delivery systems. Amsterdam, Netherlands: Elsevier 2017; pp. 165-95.
[102]
Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 2018; 46 (Suppl. 2): 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039] [PMID: 30043651]
[103]
Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug Discov Today 2011; 16(9-10): 457-63.
[http://dx.doi.org/10.1016/j.drudis.2011.03.004] [PMID: 21414419]
[104]
Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014; 2014: 843687.
[http://dx.doi.org/10.1155/2014/843687] [PMID: 24963412]
[105]
Hidayah R, Soeratri W, Rosita N. Nano carrier as a cosmetic delivery system. Sun Int J Eng Basic Sci 2018; 1(3): 45-8.
[http://dx.doi.org/10.30558/ijebs.20180103002]
[106]
Khare S, Alexander A, Amit N. Biomedical applications of nanobiotechnology for drug design, delivery and diagnostics. Res J Pharm Technol 2014; 7: 915-25.
[107]
Argenta DF, dos Santos TC, Campos AM, et al. Hydrogel nanocomposite systems: Physico-chemical characterization and application for drug-delivery systems. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thoams S, Eds. Nanocarriers for Drug Delivery. Amsterdam, Netherland: Elsevier 2019; pp. 81-131.
[108]
Azzaoui K, Mejdoubi E, Lamhamdi A, et al. Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films. Carbohydr Polym 2015; 115: 170-6.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.089] [PMID: 25439882]
[109]
Kumar R. Lipid-Based Nanoparticles for Drug-Delivery Systems. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thoams S, Eds. Nanocarriers for Drug Delivery. Amsterdam, Netherland: Elsevier 2019; pp. 249-84.