Alzheimer’s Disease-Related Psychosis: An Overview of Clinical Manifestations, Pathogenesis, and Current Treatment

Page: [285 - 301] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Behavioral and psychotic manifestations, including aggression, delusions, and hallucinations, are frequent comorbidities in patients with debilitating nervous illnesses such as Alzheimer’s disease (AD), Amyotrophic Lateral Sclerosis, Multiple Sclerosis, and Parkinson’s disease. ADrelated psychosis may be linked to a poor disease prognosis, highlighting that early detection and management are mandatory. The manifestations are variable and may be very heterogeneous, imposing a real diagnostic issue. Some assessment tools such as BEHAVE-AD, CERAD-BRSD, and the Psycho-Sensory Hallucinations Scale have been designed to facilitate the diagnosis. The mechanisms behind neurodegeneration-related psychosis are complex and are not fully understood, imposing a burden on researchers to find appropriate management modalities. Familial history and some genetic disturbances may have a determinant role in these delusions and hallucinations in cases with AD. The loss of neuronal cells, atrophy in some regions of the central nervous, and synaptic dysfunction may also contribute to these comorbidities. Furthermore, inflammatory disturbances triggered by pro-inflammatory agents such as interleukins and tumor necrosis factors are stratified among the potential risk factors for the onset of numerous psychotic symptoms in Alzheimer’s patients. Little is known about the possible management tools; therefore, it is urgent to conduct well-designed trials to investigate pharmacological and non-pharmacological interventions that can improve the care process of these patients. This review summarizes the current findings regarding the AD-related psychosis symptoms, pathological features, assessment, and management.

Keywords: Alzheimer’s disease, psychosis, pathogenesis, assessment, management, dementia.

[1]
Ashraf GM, Ebada MA, Suhail M, et al. Dissecting sex-related cognition between alzheimer’s disease and diabetes: From molecular mechanisms to potential therapeutic strategies. Oxid Med Cell Longev 2021; 2021: 4572471.
[http://dx.doi.org/10.1155/2021/4572471] [PMID: 33747345]
[2]
Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet Med 2016; 18(5): 421-30.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[3]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[4]
Jost BC, Grossberg GT. The natural history of Alzheimer’s disease: A brain bank study. J Am Geriatr Soc 1995; 43(11): 1248-55.
[http://dx.doi.org/10.1111/j.1532-5415.1995.tb07401.x] [PMID: 7594159]
[5]
2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018; 14(3): 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[6]
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 280-92.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[7]
Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol 2014; 13(6): 614-29.
[http://dx.doi.org/10.1016/S1474-4422(14)70090-0] [PMID: 24849862]
[8]
Jones L, Holmans PA, Hamshere ML, et al. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One 2010; 5(11): e13950.
[http://dx.doi.org/10.1371/journal.pone.0013950] [PMID: 21085570]
[9]
Hollingworth P, Harold D, Sims R, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011; 43(5): 429-35.
[http://dx.doi.org/10.1038/ng.803] [PMID: 21460840]
[10]
Gratuze M, Leyns CEG, Holtzman DM. New insights into the role of TREM2 in Alzheimer’s disease. Mol Neurodegener 2018; 13(1): 66.
[http://dx.doi.org/10.1186/s13024-018-0298-9] [PMID: 30572908]
[11]
Nordengen K, Kirsebom B-E, Henjum K, et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflammation 2019; 16(1): 46.
[http://dx.doi.org/10.1186/s12974-019-1399-2] [PMID: 30791945]
[12]
Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain 2017; 140(3): 792-803.
[http://dx.doi.org/10.1093/brain/aww349] [PMID: 28122877]
[13]
Edison P, Brooks DJ. Role of neuroinflammation in the trajectory of alzheimer’s disease and in vivo quantification using PET. J Alzheimers Dis 2018; 64(s1): S339-51.
[http://dx.doi.org/10.3233/JAD-179929] [PMID: 29865053]
[14]
Parbo P, Ismail R, Hansen KV, et al. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s disease. Brain 2017; 140(7): 2002-11.
[http://dx.doi.org/10.1093/brain/awx120] [PMID: 28575151]
[15]
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: A comparative overview. Mol Neurobiol 2014; 50(2): 534-44.
[http://dx.doi.org/10.1007/s12035-014-8657-1] [PMID: 24567119]
[16]
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[17]
Businaro R, Corsi M, Asprino R, et al. Modulation of inflammation as a way of delaying Alzheimer’s disease progression: The diet’s role. Curr Alzheimer Res 2018; 15(4): 363-80.
[http://dx.doi.org/10.2174/1567205014666170829100100] [PMID: 28847284]
[18]
Benmelouka A, Sherif AM, Ebada MA. A review of the relationship between gut microbiota and memory Biological singapore: Diagnostic and therapeutic advances in Alzheimer’s disease. Springer Singapore 2019; pp. 151-65.
[http://dx.doi.org/10.1007/978-981-13-9636-6_8]
[19]
Folch J, Petrov D, Ettcheto M, et al. Current research therapeutic strategies for alzheimer’s disease treatment. Neural Plast 2016; 2016: 8501693.
[http://dx.doi.org/10.1155/2016/8501693] [PMID: 26881137]
[20]
Shi X, Lin X, Hu R, Sun N, Hao J, Gao C. Toxicological differences between NMDA receptor antagonists and cholinesterase inhibitors. Am J Alzheimers Dis Other Demen 2016; 31(5): 405-12.
[http://dx.doi.org/10.1177/1533317515622283] [PMID: 26769920]
[21]
Chen M. The maze of APP processing in Alzheimer’s disease: where did we go wrong in reasoning? Front Cell Neurosci 2015; 9: 186.
[http://dx.doi.org/10.3389/fncel.2015.00186] [PMID: 26052267]
[22]
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for prevention and treatment of Alzheimer’s disease. BioMed Res Int 2016; 2016: 2589276.
[http://dx.doi.org/10.1155/2016/2589276] [PMID: 27547756]
[23]
Wang J-H, Wu Y-J, Tee BL, Lo RY. Medical comorbidity in alzheimer’s disease: A nested case-control study. J Alzheimers Dis 2018; 63(2): 773-81.
[http://dx.doi.org/10.3233/JAD-170786] [PMID: 29660933]
[24]
Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 2014; 370(4): 322-33.
[http://dx.doi.org/10.1056/NEJMoa1304839] [PMID: 24450891]
[25]
Duthie A, Chew D, Soiza RL. Non-psychiatric comorbidity associated with Alzheimer’s disease. QJM 2011; 104(11): 913-20.
[http://dx.doi.org/10.1093/qjmed/hcr118] [PMID: 21768167]
[26]
Garcez ML, Falchetti ACB, Mina F, Budni J. Alzheimer’s disease associated with psychiatric comorbidities. An Acad Bras Cienc 2015; 87(2)(Suppl.): 1461-73.
[http://dx.doi.org/10.1590/0001-3765201520140716] [PMID: 26312426]
[27]
Jeste DV, Wragg RE, Salmon DP, Harris MJ, Thal LJ. Cognitive deficits of patients with Alzheimer’s disease with and without delusions. Am J Psychiatry 1992; 149(2): 184-9.
[http://dx.doi.org/10.1176/ajp.149.2.184] [PMID: 1734737]
[28]
Paulsen JS, Ready RE, Stout JC, et al. Neurobehaviors and psychotic symptoms in Alzheimer’s disease. J Int Neuropsychol Soc 2000; 6(7): 815-20.
[http://dx.doi.org/10.1017/S1355617700677081] [PMID: 11105471]
[29]
Vilalta-Franch J, López-Pousa S, Calvó-Perxas L, Garre-Olmo J. Psychosis of Alzheimer disease: Prevalence, incidence, persistence, risk factors, and mortality. Am J Geriatr Psychiatry 2013; 21(11): 1135-43.
[http://dx.doi.org/10.1016/j.jagp.2013.01.051] [PMID: 23567368]
[30]
Ropacki SA, Jeste DV. Epidemiology of and risk factors for psychosis of Alzheimer’s disease: A review of 55 studies published from 1990 to 2003. Am J Psychiatry 2005; 162(11): 2022-30.
[http://dx.doi.org/10.1176/appi.ajp.162.11.2022] [PMID: 16263838]
[31]
R AV. G OJ, S B. Behavior disorders of dementia. Am Fam Physician 2006; 73(4): 647-52.
[PMID: 16506707]
[32]
Motsinger CD, Perron GA, Lacy TJ. Use of atypical antipsychotic drugs in patients with dementia. Am Fam Physician 2003; 67(11): 2335-40.
[PMID: 12800962]
[33]
Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA 1997; 278(16): 1363-71.
[http://dx.doi.org/10.1001/jama.1997.03550160083043] [PMID: 9343469]
[34]
Haupt M, Kurz A. Predictors of nursing home placement in patients with alzheimer’s disease. Int J Geriatr Psychiatry 1993; 8(9): 741-6.
[http://dx.doi.org/10.1002/gps.930080906]
[35]
Sinha P, Desai NG, Prakash O, Kushwaha S, Tripathi CB. Caregiver burden in Alzheimer-type dementia and psychosis: A comparative study from India. Asian J Psychiatr 2017; 26: 86-91.
[http://dx.doi.org/10.1016/j.ajp.2017.01.002] [PMID: 28483100]
[36]
Tariot PN, Mack JL, Patterson MB, et al. The behavior rating scale for dementia of the consortium to establish a registry for alzheimer’s disease. the behavioral pathology committee of the consortium to establish a registry for alzheimer’s disease. Am J Psychiatry 1995; 152(9): 1349-57.
[http://dx.doi.org/10.1176/ajp.152.9.1349] [PMID: 7653692]
[37]
Cook SE, Miyahara S, Bacanu S-A, et al. Psychotic symptoms in Alzheimer disease: Evidence for subtypes. Am J Geriatr Psychiatry 2003; 11(4): 406-13.
[http://dx.doi.org/10.1097/00019442-200307000-00003] [PMID: 12837669]
[38]
Review L. Delusions in Alzheimer’s Disease : A Literature Review. 2004; 11-5.
[39]
Wilson RS, Krueger KR, Kamenetsky JM, et al. Hallucinations and mortality in Alzheimer disease. Am J Geriatr Psychiatry 2005; 13(11): 984-90.
[http://dx.doi.org/10.1097/00019442-200511000-00009] [PMID: 16286442]
[40]
Lerner AJ, Koss E, Patterson MB, et al. Concomitants of visual hallucinations in Alzheimer’s disease. Neurology 1994; 44(3 Pt 1): 523-7.
[http://dx.doi.org/10.1212/WNL.44.3_Part_1.523] [PMID: 8145925]
[41]
Aarsland D, Cummings JL, Yenner G, Miller B. Relationship of aggressive behavior to other neuropsychiatric symptoms in patients with Alzheimer’s disease. Am J Psychiatry 1996; 153(2): 243-7.
[http://dx.doi.org/10.1176/ajp.153.2.243] [PMID: 8561206]
[42]
Francis J. Delusions, delirium, and cognitive impairment: The challenge of clinical heterogeneity. 1992.
[http://dx.doi.org/10.1111/j.1532-5415.1992.tb01861.x]
[43]
Monteiro IM, Boksay I, Auer SR, Torossian C, Ferris SH, Reisberg B. Addition of a frequency-weighted score to the Behavioral Pathology in Alzheimer’s Disease Rating Scale: The BEHAVE-AD-FW: Methodology and reliability. Eur Psychiatry 2001; 16(S1)(Suppl. 1): 5s-24s.
[http://dx.doi.org/10.1016/S0924-9338(00)00524-1] [PMID: 11520474]
[44]
Nakatsuka M, Meguro K, Tsuboi H, Nakamura K, Akanuma K, Yamaguchi S. Content of delusional thoughts in Alzheimer’s disease and assessment of content-specific brain dysfunctions with BEHAVE-AD-FW and SPECT. Int Psychogeriatr 2013; 25(6): 939-48.
[http://dx.doi.org/10.1017/S1041610213000094] [PMID: 23433495]
[45]
Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994; 44(12): 2308-14.
[http://dx.doi.org/10.1212/WNL.44.12.2308] [PMID: 7991117]
[46]
Mega MS, Lee L, Dinov ID, Mishkin F, Toga AW, Cummings JL. Cerebral correlates of psychotic symptoms in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2000; 69(2): 167-71.
[http://dx.doi.org/10.1136/jnnp.69.2.167] [PMID: 10896687]
[47]
Shinno H, Inagaki T, Miyaoka T, et al. A decrease in N-acetylaspartate and an increase in myoinositol in the anterior cingulate gyrus are associated with behavioral and psychological symptoms in Alzheimer’s disease. J Neurol Sci 2007; 260(1-2): 132-8.
[http://dx.doi.org/10.1016/j.jns.2007.04.017] [PMID: 17540407]
[48]
de Chazeron I, Pereira B, Chereau-Boudet I, et al. Validation of a Psycho-Sensory hAllucinations Scale (PSAS) in schizophrenia and Parkinson’s disease. Schizophr Res 2015; 161(2-3): 269-76.
[http://dx.doi.org/10.1016/j.schres.2014.11.010] [PMID: 25481345]
[49]
Llorca PM, Pereira B, Jardri R, et al. Hallucinations in schizophrenia and Parkinson’s disease: An analysis of sensory modalities involved and the repercussion on patients. Sci Rep 2016; 6(1): 38152.
[http://dx.doi.org/10.1038/srep38152] [PMID: 27905557]
[50]
El Haj M, Roche J, Jardri R, Kapogiannis D, Gallouj K, Antoine P. Clinical and neurocognitive aspects of hallucinations in Alzheimer’s disease. Neurosci Biobehav Rev 2017; 83: 713-20.
[http://dx.doi.org/10.1016/j.neubiorev.2017.02.021] [PMID: 28235545]
[51]
Rubin EH, Kinscherf DA. Psychopathology of very mild dementia of the Alzheimer type. Am J Psychiatry 1989; 146(8): 1017-21.
[http://dx.doi.org/10.1176/ajp.146.8.1017] [PMID: 2750973]
[52]
Mangone CA, Sanguinetti RM, Baumann PD, et al. Influence of feelings of burden on the caregiver’s perception of the patient’s functional status. Dementia 1993; 4(5): 287-93.
[PMID: 8261026]
[53]
Lyketsos CG, Steele C, Baker L, et al. Major and minor depression in Alzheimer’s disease: Prevalence and impact. J Neuropsychiatry Clin Neurosci 1997; 9(4): 556-61.
[http://dx.doi.org/10.1176/jnp.9.4.556] [PMID: 9447496]
[54]
González-Salvador T, Lyketsos CG, Baker A, et al. Quality of life in dementia patients in long-term care. Int J Geriatr Psychiatry 2000; 15(2): 181-9.
[http://dx.doi.org/10.1002/(SICI)1099-1166(200002)15:2<181::AID-GPS96>3.0.CO;2-I] [PMID: 10679850]
[55]
Alberca R, Gil-Néciga E, Salas D, Pérez JA, Lozano P. [Psychotic symptoms and Alzheimer’s disease]. Neurologia 2000; 15(1): 8-14.
[PMID: 10730061]
[56]
Rubin EH. Delusions as part of alzheimer’s disease. Neuropsychiatry Neuropsychol Behav Neurol 1992; 5(2): 108-13.
[57]
Starkstein SE, Vázquez S, Petracca G, et al. A SPECT study of delusions in Alzheimer’s disease. Neurology 1994; 44(11): 2055-9.
[http://dx.doi.org/10.1212/WNL.44.11.2055] [PMID: 7969959]
[58]
Piccininni M, Di Carlo A, Baldereschi M, Zaccara G, Inzitari D. Behavioral and psychological symptoms in Alzheimer’s disease: Frequency and relationship with duration and severity of the disease. Dement Geriatr Cogn Disord 2005; 19(5-6): 276-81.
[http://dx.doi.org/10.1159/000084552] [PMID: 15775717]
[59]
Binetti G, Mega MS, Magni E, et al. Behavioral disorders in Alzheimer disease: A transcultural perspective. Arch Neurol 1998; 55(4): 539-44.
[http://dx.doi.org/10.1001/archneur.55.4.539] [PMID: 9561983]
[60]
Mega MS, Cummings JL, Fiorello T, Gornbein J. The spectrum of behavioral changes in Alzheimer’s disease. Neurology 1996; 46(1): 130-5.
[http://dx.doi.org/10.1212/WNL.46.1.130] [PMID: 8559361]
[61]
Tanaka H, Hashimoto M, Fukuhara R, et al. Relationship between dementia severity and behavioural and psychological symptoms in early-onset Alzheimer’s disease. Psychogeriatrics 2015; 15(4): 242-7.
[http://dx.doi.org/10.1111/psyg.12108] [PMID: 25737233]
[62]
Lopez OL, Becker JT, Sweet RA, et al. Psychiatric symptoms vary with the severity of dementia in probable Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 2003; 15(3): 346-53.
[http://dx.doi.org/10.1176/jnp.15.3.346] [PMID: 12928511]
[63]
Canevelli M, Adali N, Cantet C, et al. Impact of behavioral subsyndromes on cognitive decline in Alzheimer’s disease: Data from the ICTUS study. J Neurol 2013; 260(7): 1859-65.
[http://dx.doi.org/10.1007/s00415-013-6893-3] [PMID: 23504051]
[64]
Cooper JK, Mungas D, Weiler PG. Relation of cognitive status and abnormal behaviors in Alzheimer’s disease. J Am Geriatr Soc 1990; 38(8): 867-70.
[http://dx.doi.org/10.1111/j.1532-5415.1990.tb05701.x] [PMID: 2201714]
[65]
Chen JC, Borson S, Scanlan JM. Stage-specific prevalence of behavioral symptoms in Alzheimer’s disease in a multi-ethnic community sample. Am J Geriatr Psychiatry 2000; 8(2): 123-33.
[http://dx.doi.org/10.1097/00019442-200005000-00007] [PMID: 10804073]
[66]
Cummings JL, Miller B, Hill MA, Neshkes R. Neuropsychiatric aspects of multi-infarct dementia and dementia of the Alzheimer type. Arch Neurol 1987; 44(4): 389-93.
[http://dx.doi.org/10.1001/archneur.1987.00520160031010] [PMID: 3827694]
[67]
Binetti G, Bianchetti A, Padovani A, Lenzi G, De Leo D, Trabucchi M. Delusions in Alzheimer’s disease and multi-infarct dementia. Acta Neurol Scand 1993; 88(1): 5-9.
[http://dx.doi.org/10.1111/j.1600-0404.1993.tb04177.x] [PMID: 8372630]
[68]
Sweet RA, Nimgaonkar VL, Devlin B, Lopez OL, DeKosky ST. Increased familial risk of the psychotic phenotype of Alzheimer disease. Neurology 2002; 58(6): 907-11.
[http://dx.doi.org/10.1212/WNL.58.6.907] [PMID: 11914406]
[69]
Tunstall N, Owen MJ, Williams J, et al. Familial influence on variation in age of onset and behavioural phenotype in Alzheimer’s disease. Br J Psychiatry 2000; 176(2): 156-9.
[http://dx.doi.org/10.1192/bjp.176.2.156] [PMID: 10755053]
[70]
Sweet RA, Bennett DA, Graff-Radford NR, Mayeux R. Assessment and familial aggregation of psychosis in Alzheimer’s disease from the National Institute on Aging Late Onset Alzheimer’s Disease Family Study. Brain 2010; 133(Pt 4): 1155-62.
[http://dx.doi.org/10.1093/brain/awq001] [PMID: 20147454]
[71]
Barral S, Vardarajan BN, Reyes-Dumeyer D, et al. Genetic variants associated with susceptibility to psychosis in late-onset Alzheimer’s disease families. Neurobiol Aging 2015; 36(11): 3116.e9-3116.e16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.08.006] [PMID: 26359528]
[72]
Bacanu S-A, Devlin B, Chowdari KV, DeKosky ST, Nimgaonkar VL, Sweet RA. Heritability of psychosis in Alzheimer disease. Am J Geriatr Psychiatry 2005; 13(7): 624-7.
[http://dx.doi.org/10.1097/00019442-200507000-00011] [PMID: 16009739]
[73]
Hollingworth P, Hamshere ML, Holmans PA, et al. Increased familial risk and genomewide significant linkage for Alzheimer’s disease with psychosis. Am J Med Genet B Neuropsychiatr Genet 2007; 144B(7): 841-8.
[http://dx.doi.org/10.1002/ajmg.b.30515] [PMID: 17492769]
[74]
DeMichele-Sweet MA, Sweet RA. Genetics of psychosis in Alzheimer’s disease: A review. J Alzheimers Dis 2010; 19(3): 761-80.
[http://dx.doi.org/10.3233/JAD-2010-1274] [PMID: 20157235]
[75]
Christie D, Shofer J, Millard SP, et al. Genetic association between APOE*4 and neuropsychiatric symptoms in patients with probable Alzheimer’s disease is dependent on the psychosis phenotype. Behav Brain Funct 2012; 8(1): 62.
[http://dx.doi.org/10.1186/1744-9081-8-62] [PMID: 23270420]
[76]
Demichele-Sweet MAA, Lopez OL, Sweet RA. Psychosis in Alzheimer’s disease in the national Alzheimer’s disease coordinating center uniform data set: Clinical correlates and association with apolipoprotein e. Int J Alzheimers Dis 2011; 2011: 926597.
[http://dx.doi.org/10.4061/2011/926597] [PMID: 21461363]
[77]
Chu SH, Roeder K, Ferrell RE, et al. TOMM40 poly-T repeat lengths, age of onset and psychosis risk in Alzheimer disease. Neurobiol Aging 2011; 32(12): 2328.e1-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.016] [PMID: 21820212]
[78]
Holmes C, Arranz MJ, Powell JF, Collier DA, Lovestone S. 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer’s disease. Hum Mol Genet 1998; 7(9): 1507-9.
[http://dx.doi.org/10.1093/hmg/7.9.1507] [PMID: 9700207]
[79]
Pritchard AL, Harris J, Pritchard CW, et al. Role of 5HT 2A and 5HT 2C polymorphisms in behavioural and psychological symptoms of Alzheimer’s disease. Neurobiol Aging 2008; 29(3): 341-7.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.10.011] [PMID: 17098333]
[80]
Assal F, Alarcón M, Solomon EC, Masterman D, Geschwind DH, Cummings JL. Association of the serotonin transporter and receptor gene polymorphisms in neuropsychiatric symptoms in Alzheimer disease. Arch Neurol 2004; 61(8): 1249-53.
[http://dx.doi.org/10.1001/archneur.61.8.1249] [PMID: 15313842]
[81]
Lam LCW, Tang NLS, Ma SL, Zhang W, Chiu HFK. 5-HT2A T102C receptor polymorphism and neuropsychiatric symptoms in Alzheimer’s disease. Int J Geriatr Psychiatry 2004; 19(6): 523-6.
[http://dx.doi.org/10.1002/gps.1109] [PMID: 15211529]
[82]
DeMichele-Sweet MAA, Weamer EA, Klei L, et al. Genetic risk for schizophrenia and psychosis in Alzheimer disease. Mol Psychiatry 2018; 23(4): 963-72.
[http://dx.doi.org/10.1038/mp.2017.81] [PMID: 28461698]
[83]
DeMichele-Sweet MAA, Klei L, Creese B, et al. Genome-wide association identifies the first risk loci for psychosis in Alzheimer disease. Mol Psychiatry 2021; 26(10): 5797-811.
[http://dx.doi.org/10.1038/s41380-021-01152-8] [PMID: 34112972]
[84]
Zheng X, Demirci FY, Barmada MM, et al. A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer’s disease. PLoS One 2014; 9(11): e111462.
[http://dx.doi.org/10.1371/journal.pone.0111462] [PMID: 25379732]
[85]
Zheng X, Demirci FY, Barmada MM, et al. Genome-wide copy-number variation study of psychosis in Alzheimer’s disease. Transl Psychiatry 2015; 5(6): e574-4.
[http://dx.doi.org/10.1038/tp.2015.64] [PMID: 26035058]
[86]
Creese B, Vassos E, Bergh S, Athanasiu L, Johar I, Rongve A, et al. Association between schizophrenia polygenic score and psychotic symptoms in Alzheimer’s disease: Meta-analysis of 11 cohort studies. BioRxiv : 528802.2019.
[http://dx.doi.org/10.1101/528802]
[87]
Pishva E, Creese B, Smith AR, et al. Psychosis-associated DNA methylomic variation in Alzheimer’s disease cortex. Neurobiol Aging 2020; 89: 83-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.01.001] [PMID: 32007278]
[88]
Bruen PD, McGeown WJ, Shanks MF, Venneri A. Neuroanatomical correlates of neuropsychiatric symptoms in Alzheimer’s disease. Brain 2008; 131(Pt 9): 2455-63.
[http://dx.doi.org/10.1093/brain/awn151] [PMID: 18669506]
[89]
Farber NB, Rubin EH, Newcomer JW, et al. Increased neocortical neurofibrillary tangle density in subjects with Alzheimer disease and psychosis. Arch Gen Psychiatry 2000; 57(12): 1165-73.
[http://dx.doi.org/10.1001/archpsyc.57.12.1165] [PMID: 11115331]
[90]
Lopez OL, Becker JT, Brenner RP, Rosen J, Bajulaiye OI, Reynolds CF. Alzheimer’s disease with delusions and hallucinations. Neurology 1991; 41(6): 906 LP.
[91]
Lyketsos CG, Steinberg M, Tschanz JT, Norton MC, Steffens DC, Breitner JCS. Mental and behavioral disturbances in dementia: Findings from the cache county study on memory in aging. Am J Psychiatry 2000; 157(5): 708-14.
[http://dx.doi.org/10.1176/appi.ajp.157.5.708] [PMID: 10784462]
[92]
Lee DY, Choo IH, Kim KW, et al. White matter changes associated with psychotic symptoms in Alzheimer’s disease patients. J Neuropsychiatry Clin Neurosci 2006; 18(2): 191-8.
[http://dx.doi.org/10.1176/jnp.2006.18.2.191] [PMID: 16720796]
[93]
Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995; 118(Pt 1): 279-306.
[http://dx.doi.org/10.1093/brain/118.1.279] [PMID: 7895011]
[94]
Boublay N, Schott AM, Krolak-Salmon P. Neuroimaging correlates of neuropsychiatric symptoms in Alzheimer’s disease: A review of 20 years of research. Eur J Neurol 2016; 23(10): 1500-9.
[http://dx.doi.org/10.1111/ene.13076] [PMID: 27435186]
[95]
Mulsantab Z-QEFAS H.. Neuroimaging of delusions in Alzheimer’s disease. 2012; 202(2): 89-95.
[96]
Baxter LR Jr, Schwartz JM, Phelps ME, et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989; 46(3): 243-50.
[http://dx.doi.org/10.1001/archpsyc.1989.01810030049007] [PMID: 2784046]
[97]
Kotrla KJ, Chacko RC, Harper RG, Jhingran S, Doody R. SPECT findings on psychosis in Alzheimer’s disease. Am J Psychiatry 1995; 152(10): 1470-5.
[http://dx.doi.org/10.1176/ajp.152.10.1470] [PMID: 7573586]
[98]
Lopez OL, Smith G, Becker JT, Meltzer CC, DeKosky ST. The psychotic phenomenon in probable Alzheimer’s disease: A positron emission tomography study. J Neuropsychiatry Clin Neurosci 2001; 13(1): 50-5.
[http://dx.doi.org/10.1176/jnp.13.1.50] [PMID: 11207329]
[99]
Ismail Z, Nguyen M, Mulsant BH, Mamo D. Neurobiology of delusions in alzheimer ’ s disease 2011; 211-8.
[100]
George S, Moossy John, Martinez M Julio, et al. Neuropathologic and neurochemical correlates of psychosis in primary dementia. 1991.
[101]
Mukaetova-Ladinska EB, Harrington CR, Xuereb J, Roth M, Wischik CM. Biochemical, neuropathological, and clinical correlations of neurofibrillary degeneration in Alzheimer’s disease. Biochem Neuropathol Clin Correl neurofibrillary degenration Alzheimer’s Dis Springer Publ New York 1995; 57-80.
[102]
Lai MK P, Lai O –F, Keene J, Esiri MM, Francis PT, Hope T, et al. Psychosis of Alzheimer’s disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 2001; 57(5): 805LP-11.
[103]
Reeves S, Brown R, Howard R, Grasby P. Increased striatal dopamine (D2/D3) receptor availability and delusions in Alzheimer disease. Neurology 2009; 72(6): 528-34.
[http://dx.doi.org/10.1212/01.wnl.0000341932.21961.f3] [PMID: 19204262]
[104]
Olivero P, Lozano C, Sotomayor-Zárate R, et al. Proteostasis and mitochondrial role on psychiatric and neurodegenerative disorders: Current perspectives. Neural Plast 2018; 2018: 6798712.
[http://dx.doi.org/10.1155/2018/6798712] [PMID: 30050571]
[105]
Elmatboly AM, Sherif AM, Deeb DA, et al. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. Environ Sci Pollut Res Int 2020; 27(11): 11461-83.
[http://dx.doi.org/10.1007/s11356-020-07914-1] [PMID: 32072427]
[106]
Murray PS, Kirkwood CM, Gray MC, et al. Hyperphosphorylated tau is elevated in Alzheimer’s disease with psychosis. J Alzheimers Dis 2014; 39(4): 759-73.
[http://dx.doi.org/10.3233/JAD-131166] [PMID: 24270207]
[107]
Ting SKS, Hao Y, Chia PS, Tan E-K, Hameed S. Clinicopathological correlation of psychosis and brain vascular changes in Alzheimer’s disease. Sci Rep 2016; 6(1): 20858.
[http://dx.doi.org/10.1038/srep20858] [PMID: 26868671]
[108]
Karameh WK, Murari G, Schweizer TA, Munoz DG, Fischer CE. Psychosis in neurodegenerative disorders: Recent developments. Curr Opin Psychiatry 2019; 32(2): 117-22.
[http://dx.doi.org/10.1097/YCO.0000000000000476] [PMID: 30520740]
[109]
Krivinko JM, Erickson SL, Ding Y, et al. Synaptic proteome compensation and resilience to psychosis in Alzheimer’s disease. Am J Psychiatry 2018; 175(10): 999-1009.
[http://dx.doi.org/10.1176/appi.ajp.2018.17080858] [PMID: 30021459]
[110]
DeChellis-Marks MR, Wei Y, Ding Y, Wolfe CM, Krivinko JM, MacDonald ML, et al. Psychosis in Alzheimer’s disease is associated with excitatory neuron vulnerability and post-transcriptional mechanisms altering synaptic protein levels. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.09.07.21262904]
[111]
Penke B, Bogár F, Fülöp L. β-Amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules 2017; 22(10): 1692.
[http://dx.doi.org/10.3390/molecules22101692] [PMID: 28994715]
[112]
Fuster-Matanzo A, Llorens-Martín M, Hernández F, Avila J. Role of neuroinflammation in adult neurogenesis and Alzheimer disease: Therapeutic approaches. Mediators Inflamm 2013; 2013: 260925.
[http://dx.doi.org/10.1155/2013/260925] [PMID: 23690659]
[113]
Pawelec G. Age and immunity: What is “immunosenescence”? Exp Gerontol 2018; 105: 4-9.
[http://dx.doi.org/10.1016/j.exger.2017.10.024] [PMID: 29111233]
[114]
Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: Friend or foe? Mol Neurobiol 2017; 54(10): 8071-89.
[http://dx.doi.org/10.1007/s12035-016-0297-1] [PMID: 27889895]
[115]
Le Page A, Dupuis G, Frost EH, et al. Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp Gerontol 2018; 107: 59-66.
[http://dx.doi.org/10.1016/j.exger.2017.12.019] [PMID: 29275160]
[116]
Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2005; 2(1): 9.
[http://dx.doi.org/10.1186/1742-2094-2-9] [PMID: 15762998]
[117]
Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003; 74(9): 1200-5.
[http://dx.doi.org/10.1136/jnnp.74.9.1200] [PMID: 12933918]
[118]
Holmgren S, Hjorth E, Schultzberg M, et al. Neuropsychiatric symptoms in dementia-a role for neuroinflammation? Brain Res Bull 2014; 108: 88-93.
[http://dx.doi.org/10.1016/j.brainresbull.2014.09.003] [PMID: 25224917]
[119]
Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. 2012.
[120]
Di Nicola M, Cattaneo A, Hepgul N, et al. Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav Immun 2013; 31: 90-5.
[http://dx.doi.org/10.1016/j.bbi.2012.06.010] [PMID: 22749891]
[121]
Song X-Q, Lv L-X, Li W-Q, Hao Y-H, Zhao J-P. The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry 2009; 65(6): 481-8.
[http://dx.doi.org/10.1016/j.biopsych.2008.10.018] [PMID: 19058794]
[122]
Kubistova A, Horacek J, Novak T. Increased interleukin-6 and tumor necrosis factor alpha in first episode schizophrenia patients versus healthy controls. Psychiatr Danub 2012; 24(Suppl. 1): S153-6.
[PMID: 22945211]
[123]
Fernandez-Egea E, Bernardo M, Donner T, et al. Metabolic profile of antipsychotic-naive individuals with non-affective psychosis. Br J Psychiatry 2009; 194(5): 434-8.
[http://dx.doi.org/10.1192/bjp.bp.108.052605] [PMID: 19407273]
[124]
Theodoropoulou S, Spanakos G, Baxevanis CN, et al. Cytokine serum levels, autologous mixed lymphocyte reaction and surface marker analysis in never medicated and chronically medicated schizophrenic patients. Schizophr Res 2001; 47(1): 13-25.
[http://dx.doi.org/10.1016/S0920-9964(00)00007-4] [PMID: 11163541]
[125]
Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol Neurobiol 2019; 56(3): 1841-51.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[126]
Cenit MC, Sanz Y, Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol 2017; 23(30): 5486-98.
[http://dx.doi.org/10.3748/wjg.v23.i30.5486] [PMID: 28852308]
[127]
Nagele EP, Han M, Acharya NK, DeMarshall C, Kosciuk MC, Nagele RG. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS One 2013; 8(4): e60726.
[http://dx.doi.org/10.1371/journal.pone.0060726] [PMID: 23589757]
[128]
Mihaylova NM, Dimitrov JD, Djoumerska-Alexieva IK, Vassilev TL. Inflammation-induced enhancement of IgG immunoreactivity. Inflamm Res 2008; 57(1): 1-3.
[http://dx.doi.org/10.1007/s00011-007-6213-4] [PMID: 18209958]
[129]
Denny MF, Chandaroy P, Killen PD, et al. Accelerated macrophage apoptosis induces autoantibody formation and organ damage in systemic lupus erythematosus. J Immunol 2006; 176(4): 2095-104.
[http://dx.doi.org/10.4049/jimmunol.176.4.2095] [PMID: 16455965]
[130]
Lutz HU. Homeostatic roles of naturally occurring antibodies: An overview. J Autoimmun 2007; 29(4): 287-94.
[http://dx.doi.org/10.1016/j.jaut.2007.07.007] [PMID: 17826952]
[131]
Zong S, Hoffmann C, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P. Neuronal surface autoantibodies in neuropsychiatric disorders: Are there implications for depression? Front Immunol 2017; 8: 752.
[http://dx.doi.org/10.3389/fimmu.2017.00752] [PMID: 28725222]
[132]
Iseme RA, McEvoy M, Kelly B, Agnew L, Attia J, Walker FR. Autoantibodies and depression: Evidence for a causal link? Neurosci Biobehav Rev 2014; 40: 62-79.
[http://dx.doi.org/10.1016/j.neubiorev.2014.01.008] [PMID: 24480318]
[133]
Shoenfeld Y, Nahum A, Korczyn AD, et al. Neuronal-binding antibodies from patients with antiphospholipid syndrome induce cognitive deficits following intrathecal passive transfer. Lupus 2003; 12(6): 436-42.
[http://dx.doi.org/10.1191/0961203303lu409oa] [PMID: 12873044]
[134]
Bowman GL, Quinn JF. Alzheimer’s disease and the blood–brain barrier: Past, present and future. 2008.
[http://dx.doi.org/10.2217/1745509X.4.1.47]
[135]
Chang M-K, Binder CJ, Miller YI, et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 2004; 200(11): 1359-70.
[http://dx.doi.org/10.1084/jem.20031763] [PMID: 15583011]
[136]
Zenaro E, Pietronigro E, Della Bianca V, et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 2015; 21(8): 880-6.
[http://dx.doi.org/10.1038/nm.3913] [PMID: 26214837]
[137]
Hohsfield LA, Humpel C. Migration of blood cells to β-amyloid plaques in Alzheimer’s disease. Exp Gerontol 2015; 65: 8-15.
[http://dx.doi.org/10.1016/j.exger.2015.03.002] [PMID: 25752742]
[138]
Arendt T, Brückner MK, Morawski M, Jäger C, Gertz H-J. Early neurone loss in Alzheimer’s disease: Cortical or subcortical? Acta Neuropathol Commun 2015; 3(1): 10.
[http://dx.doi.org/10.1186/s40478-015-0187-1] [PMID: 25853173]
[139]
Waisman A, Johann L. Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. J Mol Med (Berl) 2018; 96(12): 1279-92.
[http://dx.doi.org/10.1007/s00109-018-1709-7] [PMID: 30386908]
[140]
Wu J, Li L. Autoantibodies in Alzheimer’s disease: Potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res 2016; 30(5): 361-72.
[PMID: 27476881]
[141]
Giil LM, Kristoffersen EK, Vedeler CA, et al. Autoantibodies toward the angiotensin 2 type 1 receptor: A novel autoantibody in Alzheimer’s disease. J Alzheimers Dis 2015; 47(2): 523-9.
[http://dx.doi.org/10.3233/JAD-150053] [PMID: 26401573]
[142]
Karczewski P, Hempel P, Kunze R, Bimmler M. Agonistic autoantibodies to the α(1) -adrenergic receptor and the β(2) -adrenergic receptor in Alzheimer’s and vascular dementia. Scand J Immunol 2012; 75(5): 524-30.
[http://dx.doi.org/10.1111/j.1365-3083.2012.02684.x] [PMID: 22260197]
[143]
Busse S, Brix B, Kunschmann R, Bogerts B, Stoecker W, Busse M. N-methyl-d-aspartate glutamate receptor (NMDA-R) antibodies in mild cognitive impairment and dementias. Neurosci Res 2014; 85: 58-64.
[http://dx.doi.org/10.1016/j.neures.2014.06.002] [PMID: 24973618]
[144]
Witmer AN, Dai J, Weich HA, Vrensen GFJM, Schlingemann RO. Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J Histochem Cytochem 2002; 50(6): 767-77.
[http://dx.doi.org/10.1177/002215540205000603] [PMID: 12019293]
[145]
Giil LM, Vedeler CA, Kristoffersen EK, et al. Antibodies to signaling molecules and receptors in Alzheimer’s disease are associated with psychomotor slowing, depression, and poor visuospatial function. J Alzheimers Dis 2017; 59(3): 929-39.
[http://dx.doi.org/10.3233/JAD-170245] [PMID: 28697567]
[146]
Giil LM, Aarsland D, Hellton K, et al. Antibodies to multiple receptors are associated with neuropsychiatric symptoms and mortality in Alzheimer’s disease: A longitudinal study. J Alzheimers Dis 2018; 64(3): 761-74.
[http://dx.doi.org/10.3233/JAD-170882] [PMID: 29914018]
[147]
Cummings J. Drug development for psychotropic, cognitive-enhancing, and disease-modifying treatments for Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 2021; 33(1): 3-13.
[http://dx.doi.org/10.1176/appi.neuropsych.20060152] [PMID: 33108950]
[148]
Schneider LS. Pimavanserin for patients with Alzheimer’s disease psychosis. Lancet Neurol 2018; 17(3): 194-5.
[http://dx.doi.org/10.1016/S1474-4422(18)30052-8] [PMID: 29452674]
[149]
Ballard C, Banister C, Khan Z, et al. Evaluation of the safety, tolerability, and efficacy of pimavanserin versus placebo in patients with Alzheimer’s disease psychosis: A phase 2, randomised, placebo-controlled, double-blind study. Lancet Neurol 2018; 17(3): 213-22.
[http://dx.doi.org/10.1016/S1474-4422(18)30039-5] [PMID: 29452684]
[150]
Ballard C, Youakim JM, Coate SS B. Pimavanserin in alzheimer’s disease psychosis: Efficacy in patients with more pronounced psychotic symptoms. J Prev Alzheimer’s Dis - JPAD© 2019; 6(1)
[151]
Tariot PN, Cummings JL, Soto-Martin ME, et al. Trial of Pimavanserin in Dementia-Related Psychosis. N Engl J Med 2021; 385(4): 309-19.
[http://dx.doi.org/10.1056/NEJMoa2034634] [PMID: 34289275]
[152]
Street JS, Clark WS, Gannon KS, et al. Olanzapine treatment of psychotic and behavioral symptoms in patients with Alzheimer disease in nursing care facilities: A double-blind, randomized, placebo-controlled trial. Arch Gen Psychiatry 2000; 57(10): 968-76.
[http://dx.doi.org/10.1001/archpsyc.57.10.968] [PMID: 11015815]
[153]
Campbell N, Ayub A, Boustani MA, et al. Impact of cholinesterase inhibitors on behavioral and psychological symptoms of Alzheimer’s disease: A meta-analysis. Clin Interv Aging 2008; 3(4): 719-28.
[PMID: 19281064]
[154]
Cummings J, Lai TJ, Hemrungrojn S, et al. Role of donepezil in the management of neuropsychiatric symptoms in Alzheimer’s disease and dementia with lewy bodies. CNS Neurosci Ther 2016; 22(3): 159-66.
[http://dx.doi.org/10.1111/cns.12484] [PMID: 26778658]
[155]
Porsteinsson AP, Drye LT, Pollock BG, et al. Effect of citalopram on agitation in Alzheimer disease: The CitAD randomized clinical trial. JAMA 2014; 311(7): 682-91.
[http://dx.doi.org/10.1001/jama.2014.93] [PMID: 24549548]
[156]
Devanand DP, Crocco E, Forester BP, Husain MM, Lee S, Vahia I V, et al. Low Dose lithium treatment of behavioral complications in alzheimer’s disease: lit-ad randomized clinical trial. Am J Geriatr psychiatry Off J Am Assoc Geriatr Psychiatry 2022; 30(1): 32-4.
[157]
Landel V, Annweiler C, Millet P, et al. Vitamin D, cognition and Alzheimer’s disease: The therapeutic benefit is in the D-tails. J Alzheimers Dis 2016; 53(2): 419-44.
[http://dx.doi.org/10.3233/JAD-150943] [PMID: 27176073]
[158]
Wang L, Ying J, Fan P, et al. Effects of vitamin D use on outcomes of psychotic symptoms in Alzheimer disease patients. Am J Geriatr Psychiatry 2019; 27(9): 908-17.
[http://dx.doi.org/10.1016/j.jagp.2019.03.016] [PMID: 31126722]
[159]
Vakilian A, Razavi-Nasab SM, Ravari A, et al. Vitamin B12 in association with antipsychotic drugs can modulate the expression of pro-/anti-inflammatory cytokines in Alzheimer disease patients. Neuroimmunomodulation 2017; 24(6): 310-9.
[http://dx.doi.org/10.1159/000486597] [PMID: 29558759]
[160]
De Oliveira AM, Radanovic M, De Mello PCH, Buchain PC, Vizzotto ADB, Celestino DL, et al. Non-pharmacological interventions to reduce behavioral and psychological symptoms of dementia: A systematic review. BioMed Res Int 2015; 2015
[161]
Manuscript A, Syndromes GP. Five Things That Healthcare Providers and Patients Should Question 2010; 48(Suppl. 2): 1-6.
[162]
Kales HC, Gitlin LN, Lyketsos CG. Assessment and management of behavioral and psychological symptoms of dementia. BMJ 2015. 350(mar02 7): h369.
[http://dx.doi.org/10.1136/bmj.h369] [PMID: 25731881]
[163]
Moretti F, De Ronchi D, Bernabei V, et al. Pet therapy in elderly patients with mental illness. Psychogeriatrics 2011; 11(2): 125-9.
[http://dx.doi.org/10.1111/j.1479-8301.2010.00329.x] [PMID: 21707862]
[164]
Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: An international Delphi consensus. Int Psychogeriatr 2019; 31(1): 83-90.
[http://dx.doi.org/10.1017/S1041610218000534] [PMID: 30068400]