Novel Electrospun Polymeric Nanofibers Loaded Different Medicaments as Drug Delivery Systems for Regenerative Endodontics

Page: [992 - 1014] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Background: A combination of antibiotics, including metronidazole (MET), ciprofloxacin (CIP), and minocycline (MINO), has been demonstrated to disinfect bacteria in necrotic teeth before regenerative processes. It has been presented clinically that antibiotic pastes may drive to possible stem cell death, creating difficulties in removing from the canal system, which can limit the regenerative procedure. This study was designed to (1) synthesize nanofibrous webs containing various concentrations of different medicaments (triple, double, and calcium hydroxide, Ca(OH)2), and (2) coat the electrospun fibrous gutta-percha (GP) cones.

Methods: Poly(vinylpyrrolidone) (PVP)-based electrospun fibrous webs were processed with low medicament concentrations. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were carried out to investigate fiber morphology and antibiotic incorporation, and characterize GP-coated fibrous webs, respectively. The chemical and physical properties of dentine were determined via fourier transform infrared spectroscopy (FTIR) and Nano-SEM, respectively. The antimicrobial properties of the different fibrous webs were assessed against various bacteria by direct nanofiber/bacteria contact. Cytocompatibility was measured by applying the MTT method.

Results: The mean fiber diameter of the experimental groups of medicament-containing fibers ranged in the nm scale and was significantly smaller than PVP fibers. EDX analysis confirmed the presence of medicaments in the nanofibers. XPS analysis presented a complete coating of the fibers with GPs; FTIR and Nano-SEM showed no chemical and physical configuration of intracanal medicaments on the dentine surface. Meanwhile, nanofibrous webs led to a significant reduction in the percentage of viable bacteria compared to the negative control and PVP.

Conclusion: Our findings suggest that TA-NFs, DA-NFs, and Ca(OH)2)-NFs coated GP cones have significant potential in eliminating intracanal bacteria, having cell-friendly behavior and clinical usage features.

Keywords: Drug delivery, drug carrier, electrospinning, nano/microfibers, regenerative endodontic, morphology.

Graphical Abstract

[1]
Liang, A.C.; Chen, L.I.H. Fast-dissolving intraoral drug delivery systems. Expert Opin. Ther. Pat., 2001, 11(2001), 981-986.
[http://dx.doi.org/10.1517/13543776.11.6.981]
[2]
Bala, R.; Pawar, P.; Khanna, S.; Arora, S. Orally dissolving strips: A new approach to oral drug delivery system. Int. J. Pharm. Investig., 2013, 3(2), 67-76.
[http://dx.doi.org/10.4103/2230-973X.114897] [PMID: 24015378]
[3]
Saharan, V.A. Current Advances in Drug Delivery Through Fast Dissolving/Disintegrating Dosage Forms; Bentham Science Publishers: Sharjah, UAE, 2017.
[http://dx.doi.org/10.2174/97816810845961170101]
[4]
Celebioglu, A.; Uyar, T. Hydrocortisone/cyclodextrin complex electrospun nanofibers for a fast-dissolving oral drug delivery system. RSC Med. Chem., 2020, 11(2), 245-258.
[http://dx.doi.org/10.1039/C9MD00390H] [PMID: 33479631]
[5]
Rahane, R.; Rachh, P.R. A review on fast dissolving tablet. J. Drug Deliv. Ther., 2018, 8(5), 50-55.
[http://dx.doi.org/10.22270/jddt.v8i5.1888]
[6]
Dixit, R.P.; Puthli, S.P. Oral strip technology: Overview and future potential. J. Control. Release, 2009, 139(2), 94-107.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.014] [PMID: 19559740]
[7]
Yildiz, Z.I.; Celebioglu, A.; Uyar, T. Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: Fast-dissolving and enhanced water-solubility of sulfisoxazole. Int. J. Pharm., 2017, 531(2), 550-558.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.047] [PMID: 28445768]
[8]
Li, X.; Kanjwal, M.A.; Lin, L.; Chronakis, I.S. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf. B Biointerfaces, 2013, 103, 182-188.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.016] [PMID: 23201736]
[9]
Balogh, A.; Domokos, A.; Farkas, B.; Farkas, A.; Rapi, Z.; Kiss, D.; Nyiri, Z.; Eke, Z.; Szarka, G.; Örkényi, R.; Mátravölgyi, B.; Faigl, F.; Marosi, G.; Nagy, Z.K. Continuous end-to-end production of solid drug dosage forms: Coupling flow synthesis and formulation by electrospinning. Chem. Eng. J., 2018, 350, 290-299.
[http://dx.doi.org/10.1016/j.cej.2018.05.188]
[10]
Li, X-Y.; Li, Y-C.; Yu, D-G.; Liao, Y-Z.; Wang, X. Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning. Int. J. Mol. Sci., 2013, 14(11), 21647-21659.
[http://dx.doi.org/10.3390/ijms141121647] [PMID: 24185912]
[11]
Manasco, J.L.; Tang, C.; Burns, N.A.; Saquing, C.D.; Khan, S.A. Rapidly dissolving poly(vinyl alcohol)/cyclodextrin electrospun nanofibrous membranes. RSC Adv., 2014, 4(26), 13274-13279.
[http://dx.doi.org/10.1039/c3ra43836h]
[12]
Celebioglu, A.; Uyar, T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. Mater. Sci. Eng. C, 2021, 118, 111514.
[http://dx.doi.org/10.1016/j.msec.2020.111514] [PMID: 33255070]
[13]
Kwak, H.W.; Woo, H.; Kim, I.C.; Lee, K.H. Fish gelatin nanofibers prevent drug crystallization and enable ultrafast delivery. RSC Adv., 2017, 7(64), 40411-40417.
[http://dx.doi.org/10.1039/C7RA06433K]
[14]
Yu, D.G.; Shen, X.X.; Branford-White, C.; White, K.; Zhu, L.M.; Bligh, S.W. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology, 2009, 20(5), 055104.
[http://dx.doi.org/10.1088/0957-4484/20/5/055104] [PMID: 19417335]
[15]
Li, J.J.; Yang, Y.Y.; Yu, D.G.; Du, Q.; Yang, X.L. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers. Eur. J. Pharm. Sci., 2018, 122, 195-204.
[http://dx.doi.org/10.1016/j.ejps.2018.07.002] [PMID: 30008429]
[16]
Aytac, Z.; Ipek, S.; Erol, I.; Durgun, E.; Uyar, T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloid Surf. B Biointerfaces, 2019, 178, 129-136.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.059]
[17]
Yu, D.G.; Li, J.J.; Williams, G.R.; Zhao, M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Control. Release, 2018, 292, 91-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.016] [PMID: 30118788]
[18]
Wu, Y.H.; Yu, D.G.; Li, X.Y.; Diao, A.H.; Illangakoon, U.E.; Williams, G.R. Fast-dissolving sweet sedative nanofiber membranes. J. Mater. Sci., 2015, 50(10), 3604-3613.
[http://dx.doi.org/10.1007/s10853-015-8921-4]
[19]
Vass, P.; Démuth, B.; Farkas, A.; Hirsch, E.; Szabó, E.; Nagy, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; Csontos, I.; Marosi, G.; Nagy, Z.K. Continuous alternative to freeze drying: Manufacturing of cyclodextrin-based reconstitution powder from aqueous solution using scaled-up electrospinning. J. Control. Release, 2019, 298, 120-127.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.019] [PMID: 30779951]
[20]
Domokos, A.; Balogh, A.; Dénes, D.; Nyerges, G.; Ződi, L.; Farkas, B.; Marosi, G.; Nagy, Z.K. Continuous manufacturing of orally dissolving webs containing a poorly soluble drug via electrospinning. Eur. J. Pharm. Sci., 2019, 130, 91-99.
[http://dx.doi.org/10.1016/j.ejps.2019.01.026] [PMID: 30684658]
[21]
Balogh, A.; Farkas, B.; Faragó, K.; Farkas, A.; Wagner, I.; Van Assche, I.; Verreck, G.; Nagy, Z.K.; Marosi, G. Melt-blown and electrospun drug-loaded polymer fiber mats for dissolution enhancement: A comparative study. J. Pharm. Sci., 2015, 104(5), 1767-1776.
[http://dx.doi.org/10.1002/jps.24399] [PMID: 25761776]
[22]
Yildiz, Z.I.; Uyar, T. Fast-dissolving electrospun nanofibrous films of paracetamol/cyclodextrin inclusion complexes. Appl. Surf. Sci., 2019, 492, 626-633.
[http://dx.doi.org/10.1016/j.apsusc.2019.06.220]
[23]
Ding, B.; Wang, X.; Yu, J. Electrospinning: Nanofabrication and Applications; William Andrew: Norwich, NY, 2018.
[24]
Quan, J.; Yu, Y.; Branford-White, C.; Williams, G.R.; Yu, D-G.; Nie, W.; Zhu, L-M. Preparation of ultrafine fast-dissolving feruloyl-oleyl-glycerol-loaded polyvinylpyrrolidone fiber mats via electrospinning. Colloids Surf. B Biointerfaces, 2011, 88(1), 304-309.
[http://dx.doi.org/10.1016/j.colsurfb.2011.07.006] [PMID: 21798728]
[25]
Qin, Z.Y.; Jia, X.W.; Liu, Q.; Kong, B.H.; Wang, H. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. Int. J. Biol. Macromol., 2019, 137, 224-231.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.224] [PMID: 31260763]
[26]
Nam, S.; Lee, J.J.; Lee, S.Y.; Jeong, J.Y.; Kang, W.S.; Cho, H.J. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy. Int. J. Pharm., 2017, 526(1-2), 225-234.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.004] [PMID: 28478278]
[27]
Santos, F.; Matias, A.A.; Paiva, A.; Duarte, A. Design and processing of drug delivery formulations of therapeutic deep eutectic systems for tuberculosis. J. Supercrit. Fluids, 2020, 161, 104826.
[http://dx.doi.org/10.1016/j.supflu.2020.104826]
[28]
Bailly, N.; Thomas, M.; Klumperman, B. Poly(N-vinylpyrrolidone)-block-poly(vinyl acetate) as a drug delivery vehicle for hydrophobic drugs. Biomacromolecules, 2012, 13(12), 4109-4117.
[http://dx.doi.org/10.1021/bm301410d] [PMID: 23116120]
[29]
Mano, F.; Martins, M.; Sá-Nogueira, I.; Barreiros, S.; Borges, J.P.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatin. AAPS PharmSciTech, 2017, 18(7), 2579-2585.
[http://dx.doi.org/10.1208/s12249-016-0703-z] [PMID: 28236268]
[30]
Siqueira, J.F., Jr; Rôças, I.N.; Silva, M.G. Prevalence and clonal analysis of Porphyromonas gingivalis in primary endodontic infections. J. Endod., 2008, 34(11), 1332-1336.
[http://dx.doi.org/10.1016/j.joen.2008.08.021] [PMID: 18928841]
[31]
Lin, L.M.; Kahler, B. A review of regenerative endodontics: Current protocols and future directions. J. Istanb. Univ. Fac. Dent., 2017, 51(3)(Suppl. 1), S41-S51.
[http://dx.doi.org/10.17096/jiufd.53911] [PMID: 29354308]
[32]
Lv, H.; Chen, Y.; Cai, Z.; Lei, L.; Zhang, M.; Zhou, R.; Huang, X. The efficacy of platelet-rich fibrin as a scaffold in regenerative endodontic treatment: A retrospective controlled cohort study. BMC Oral Health, 2018, 18(1), 139.
[http://dx.doi.org/10.1186/s12903-018-0598-z] [PMID: 30103724]
[33]
Rizzo, A.; Paolillo, R.; Guida, L.; Annunziata, M.; Bevilacqua, N.; Tufano, M.A. Effect of metronidazole and modulation of cytokine production on human periodontal ligament cells. Int. Immunopharmacol., 2010, 10(7), 744-750.
[http://dx.doi.org/10.1016/j.intimp.2010.04.004] [PMID: 20399284]
[34]
Kamocki, K.; Nör, J.E.; Bottino, M.C. Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics. Int. Endod. J., 2015, 48(12), 1147-1156.
[http://dx.doi.org/10.1111/iej.12414] [PMID: 25425048]
[35]
Hoshino, E.; Kurihara-Ando, N.; Sato, I.; Uematsu, H.; Sato, M.; Kota, K.; Iwaku, M. In vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int. Endod. J., 1996, 29(2), 125-130.
[http://dx.doi.org/10.1111/j.1365-2591.1996.tb01173.x] [PMID: 9206436]
[36]
Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol., 2008, 6(3), 199-210.
[http://dx.doi.org/10.1038/nrmicro1838] [PMID: 18264116]
[37]
Ruparel, N.B.; Teixeira, F.B.; Ferraz, C.C.R.; Diogenes, A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J. Endod., 2012, 38(10), 1372-1375.
[http://dx.doi.org/10.1016/j.joen.2012.06.018] [PMID: 22980180]
[38]
Berkhoff, J.A.; Chen, P.B.; Teixeira, F.B.; Diogenes, A. Evaluation of triple antibiotic paste removal by different irrigation procedures. J. Endod., 2014, 40(8), 1172-1177.
[http://dx.doi.org/10.1016/j.joen.2013.12.027] [PMID: 25069927]
[39]
Kim, J.H.; Kim, Y.; Shin, S.J.; Park, J.W.; Jung, I.Y. Tooth discoloration of immature permanent incisor associated with triple antibiotic therapy: A case report. J. Endod., 2010, 36(6), 1086-1091.
[http://dx.doi.org/10.1016/j.joen.2010.03.031] [PMID: 20478471]
[40]
Pankajakshan, D.; Albuquerque, M.T.P.; Evans, J.D.; Kamocka, M.M.; Gregory, R.L.; Bottino, M.C. Triple antibiotic polymer nanofibers for intracanal drug delivery: Effects on dual species biofilm and cell function. J. Endod., 2016, 42(10), 1490-1495.
[http://dx.doi.org/10.1016/j.joen.2016.07.019] [PMID: 27663615]
[41]
Zargar, N.; Rayat Hosein Abadi, M.; Sabeti, M.; Yadegari, Z.; Akbarzadeh Baghban, A.; Dianat, O. Antimicrobial efficacy of clindamycin and triple antibiotic paste as root canal medicaments on tubular infection: An in vitro study. Aust. Endod. J., 2019, 45(1), 86-91.
[http://dx.doi.org/10.1111/aej.12288] [PMID: 30113736]
[42]
CLSI Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th Ed.; CLSI Standard M07. Clinical and Laboratory Standards Institute: Wayne, PA, 2018.www.clsi.org
[43]
Stevanović, M.; Bračko, I.; Milenković, M.; Filipović, N.; Nunić, J.; Filipič, M.; Uskoković, D.P. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomater., 2014, 10(1), 151-162.
[http://dx.doi.org/10.1016/j.actbio.2013.08.030] [PMID: 23988864]
[44]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[45]
Dikmen, M.; Ozturk, N.; Ozturk, Y. The antioxidant potency of Punica granatum L. Fruit peel reduces cell proliferation and induces apoptosis on breast cancer. J. Med. Food, 2011, 14(12), 1638-1646.
[http://dx.doi.org/10.1089/jmf.2011.0062] [PMID: 21861726]
[46]
Nagy, Z.K.; Balogh, A.; Démuth, B.; Pataki, H.; Vigh, T.; Szabó, B.; Molnár, K.; Schmidt, B.T.; Horák, P.; Marosi, G.; Verreck, G.; Van Assche, I.; Brewster, M.E. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int. J. Pharm., 2015, 480(1-2), 137-142.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.025] [PMID: 25596415]
[47]
Lopes, C. de C.A.; Limirio, P.H.J.O.; Novais, V.R.; Dechichi, P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl. Spectrosc. Rev., 2018, 53(9), 747-769.
[http://dx.doi.org/10.1080/05704928.2018.1431923]
[48]
Diogenes, A.; Ruparel, N.B. Regenerative endodontic procedures: Clinical outcomes. Dent. Clin. North Am., 2017, 61(1), 111-125.
[http://dx.doi.org/10.1016/j.cden.2016.08.004] [PMID: 27912813]
[49]
Sjögren, U.; Figdor, D.; Persson, S.; Sundqvist, G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int. Endod. J., 2003, 30(5), 297-306.
[http://dx.doi.org/10.1046/j.1365-2591.1997.00092.x]
[50]
Banchs, F.; Trope, M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J. Endod., 2004, 30(4), 196-200.
[http://dx.doi.org/10.1097/00004770-200404000-00003] [PMID: 15085044]
[51]
Bose, R.; Nummikoski, P.; Hargreaves, K. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J. Endod., 2009, 35(10), 1343-1349.
[http://dx.doi.org/10.1016/j.joen.2009.06.021] [PMID: 19801227]
[52]
Jeeruphan, T.; Jantarat, J.; Yanpiset, K.; Suwannapan, L.; Khewsawai, P.; Hargreaves, K.M. Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: A retrospective study. J. Endod., 2012, 38(10), 1330-1336.
[http://dx.doi.org/10.1016/j.joen.2012.06.028] [PMID: 22980172]
[53]
Sato, I.; Ando-Kurihara, N.; Kota, K.; Iwaku, M.; Hoshino, E. Sterilization of infected root-canal dentine by topical application of a mixture of ciprofloxacin, metronidazole and minocycline in situ. Int. Endod. J., 1996, 29(2), 118-124.
[http://dx.doi.org/10.1111/j.1365-2591.1996.tb01172.x] [PMID: 9206435]
[54]
Petrino, J.A.; Boda, K.K.; Shambarger, S.; Bowles, W.R.; McClanahan, S.B. Challenges in regenerative endodontics: A case series. J. Endod., 2010, 36(3), 536-541.
[http://dx.doi.org/10.1016/j.joen.2009.10.006] [PMID: 20171379]
[55]
Reynolds, K.; Johnson, J.D.; Cohenca, N. Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to eliminate potential coronal discolouration: A case report. Int. Endod. J., 2009, 42(1), 84-92.
[http://dx.doi.org/10.1111/j.1365-2591.2008.01467.x] [PMID: 19125982]
[56]
Sato, T.; Hoshino, E.; Uematsu, H.; Noda, T. In vitro antimicrobial susceptibility to combinations of drugs on bacteria from carious and endodontic lesions of human deciduous teeth. Oral Microbiol. Immunol., 1993, 8(3), 172-176.
[http://dx.doi.org/10.1111/j.1399-302X.1993.tb00661.x] [PMID: 8233571]
[57]
Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C. Tissue-engineering-based strategies for regenerative endodontics. J. Dent. Res., 2014, 93(12), 1222-1231.
[http://dx.doi.org/10.1177/0022034514549809] [PMID: 25201917]
[58]
Cui, W.; Li, X.; Zhu, X.; Yu, G.; Zhou, S.; Weng, J. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules, 2006, 7(5), 1623-1629.
[http://dx.doi.org/10.1021/bm060057z] [PMID: 16677047]
[59]
Kenawy, R.; Bowlin, G.L.; Mansfield, K.; Layman, J.; Simpson, D.G.; Sanders, E.H.; Wnek, G.E. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release, 2002, 81(1-2), 57-64.
[http://dx.doi.org/10.1016/S0168-3659(02)00041-X] [PMID: 11992678]
[60]
Kenawy, E.R.; Abdel-Hay, F.I.; El-Newehy, M.H.; Wnek, G.E. Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater. Sci. Eng. A, 2007, 459(1-2), 390-396.
[http://dx.doi.org/10.1016/j.msea.2007.01.039]
[61]
Kenawy, E.R.; Abdel-Hay, F.I.; El-Newehy, M.H.; Wnek, G.E. Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater. Chem. Phys., 2009, 113(1), 296-302.
[http://dx.doi.org/10.1016/j.matchemphys.2008.07.081]
[62]
Di Renzo, M.; Ellis, T.H.; Sacher, E.; Stangel, I. A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: I. Demineralization. Biomaterials, 2001, 22(8), 787-792.
[http://dx.doi.org/10.1016/S0142-9612(00)00240-4] [PMID: 11246946]
[63]
Eliades, G.; Palaghias, G.; Vougiouklakis, G. Effect of acidic conditioners on dentin morphology, molecular composition and collagen conformation in situ. Dent. Mater., 1997, 13(1), 24-33.
[http://dx.doi.org/10.1016/S0109-5641(97)80005-X] [PMID: 9467320]
[64]
Galler, K.M.; D’Souza, R.N.; Federlin, M.; Cavender, A.C.; Hartgerink, J.D.; Hecker, S.; Schmalz, G. Dentin conditioning codetermines cell fate in regenerative endodontics. J. Endod., 2011, 37(11), 1536-1541.
[http://dx.doi.org/10.1016/j.joen.2011.08.027] [PMID: 22000458]
[65]
Andreasen, J.O.; Munksgaard, E.C.; Bakland, L.K. Comparison of fracture resistance in root canals of immature sheep teeth after filling with calcium hydroxide or MTA. Dent. Traumatol., 2006, 22(3), 154-156.
[http://dx.doi.org/10.1111/j.1600-9657.2006.00419.x] [PMID: 16643291]
[66]
Andreasen, J.O.; Farik, B.; Munksgaard, E.C. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent. Traumatol., 2002, 18(3), 134-137.
[http://dx.doi.org/10.1034/j.1600-9657.2002.00097.x] [PMID: 12110105]
[67]
Leiendecker, A.P.; Qi, Y.P.; Sawyer, A.N.; Niu, L.N.; Agee, K.A.; Loushine, R.J.; Weller, R.N.; Pashley, D.H.; Tay, F.R. Effects of calcium silicate-based materials on collagen matrix integrity of mineralized dentin. J. Endod., 2012, 38(6), 829-833.
[http://dx.doi.org/10.1016/j.joen.2012.01.004] [PMID: 22595120]
[68]
Madhubala, M.M.; Srinivasan, N.; Ahamed, S. Comparative evaluation of propolis and triantibiotic mixture as an intracanal medicament against Enterococcus faecalis. J. Endod., 2011, 37(9), 1287-1289.
[http://dx.doi.org/10.1016/j.joen.2011.05.028] [PMID: 21846550]
[69]
Pallotta, R.C.; Ribeiro, M.S.; de Lima Machado, M.E. Determination of the minimum inhibitory concentration of four medicaments used as intracanal medication. Aust. Endod. J., 2007, 33(3), 107-111.
[http://dx.doi.org/10.1111/j.1747-4477.2007.00095.x] [PMID: 18076578]
[70]
Bottino,, M.C.; Kamocki, K; Yassen, G.H.; Platt,, J.A; Vail, M.M; Ehrlich, Y; Spolnik, K.J; Gregory, R.L Bioactive nanofibrous scaffolds for regenerative endodontics. J. Dent. Res., 2013, 92(11), 963-969.
[http://dx.doi.org/10.1177/0022034513505770] [PMID: 24056225]