Solid Lipid Nanoparticles: A Potential Option for Enhancing Oral Bioavailability of Highly Soluble and Poorly Permeable (BCS Class III) Drugs

Page: [223 - 236] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Oral administration of drug is the most preferred one among the other routes for the majority of clinical applications. As compared to the parenteral method of administration, it has potential benefits such as increased patient compliance, fewer problems, and reduced treatment costs. Regardless of these factors, inadequate bioavailability owing to poor solubility or permeability limits the therapeutic effectiveness of orally given drugs. Though most current research focuses on BCS II (drugs with low solubility and high permeability), BCS III (drugs with high solubility and low permeability) also has poor oral bioavailability due to their limited permeability across lipid membranes and is usually administered through the parenteral route. The need for an oral alternative to parenteral administration has prompted a renewed focus on the development of innovative dosage forms that support the absorption of medicines that are poorly permeable through the intestinal epithelium. Because of their unique sizedependent feature in enhancing transmembrane permeability, ability to incorporate both lipophilic and hydrophilic drugs and biocompatible nature of components, the use of nanoparticles for improving drug bioavailability has been a focus of current study in the field of drug delivery in recent years. The lipidbased nanoparticle method presents a potential new avenue for manufacturing BCS Class III medicines with enhanced bioavailability, as poor permeability is the main issue for these agents. This research aims to assess the potential of lipid nanoparticles for improving the oral bioavailability of medicines with permeability-restricted oral absorption, such as pharmaceuticals in Biopharmaceutical Classification System (BCS) class III.

Keywords: Solid lipid nanoparticles, biopharmaceutical classification system, class III drugs, poor permeability, bioavailability, drugs.

Graphical Abstract

[1]
Sushama, T.; Arundhati, B. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech, 2019, 121(20), 1-15.
[2]
Gomez-Orellana, I. Strategies to improve oral drug bioavailability. Expert Opin. Drug Deliv., 2005, 2(3), 419-433.
[http://dx.doi.org/10.1517/17425247.2.3.419] [PMID: 16296764]
[3]
van De Waterbeemd, H.; Smith, D.A.; Beaumont, K.; Walker, D.K. Property-based design: Optimization of drug absorption and pharmacokinetics. J. Med. Chem., 2001, 44(9), 1313-1333.
[http://dx.doi.org/10.1021/jm000407e] [PMID: 11311053]
[4]
Ajay, Predicting drug-likeness: Why and how? Curr. Top. Med. Chem., 2002, 2(12), 1273-1286.
[http://dx.doi.org/10.2174/1568026023392968] [PMID: 12470280]
[5]
Venkatesh, S.; Lipper, R.A. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci., 2000, 89(2), 145-154.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200002)89:2<145::AID-JPS2>3.0.CO;2-6] [PMID: 10688744]
[6]
Kerns, E.H.; Di, L. Multivariate pharmaceutical profiling for drug discovery. Curr. Top. Med. Chem., 2002, 2(1), 87-98.
[http://dx.doi.org/10.2174/1568026023394470] [PMID: 11899067]
[7]
Alanine, A.; Nettekoven, M.; Roberts, E.; Thomas, A.W. Lead generation-enhancing the success of drug discovery by investing in the hit to lead process. Comb. Chem. High Throughput Screen., 2003, 6(1), 51-66.
[http://dx.doi.org/10.2174/1386207033329823] [PMID: 12570752]
[8]
Gardner, C.R.; Walsh, C.T.; Almarsson, O. Drugs as materials: Valuing physical form in drug discovery. Nat. Rev. Drug Discov., 2004, 3(11), 926-934.
[http://dx.doi.org/10.1038/nrd1550] [PMID: 15520815]
[9]
Lombardino, J.G.; Lowe, J.A., III The role of the medicinal chemist in drug discovery--then and now. Nat. Rev. Drug Discov., 2004, 3(10), 853-862.
[http://dx.doi.org/10.1038/nrd1523] [PMID: 15459676]
[10]
Salah, E.; Abouelfetouh, M.M.; Pan, Y.; Chen, D.; Xie, S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf. B Biointerfaces, 2020, 196, 111305.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111305] [PMID: 32795844]
[11]
Wenlock, M.C.; Austin, R.P.; Barton, P.; Davis, A.M.; Leeson, P.D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem., 2003, 46(7), 1250-1256.
[http://dx.doi.org/10.1021/jm021053p] [PMID: 12646035]
[12]
Vieth, M.; Siegel, M.G.; Higgs, R.E.; Watson, I.A.; Robertson, D.H.; Savin, K.A.; Durst, G.L.; Hipskind, P.A. Characteristic physical properties and structural fragments of marketed oral drugs. J. Med. Chem., 2004, 47(1), 224-232.
[http://dx.doi.org/10.1021/jm030267j] [PMID: 14695836]
[13]
Sakaeda, T.; Okamura, N.; Nagata, S.; Yagami, T.; Horinouchi, M.; Okumura, K.; Yamashita, F.; Hashida, M. Molecular and pharmacokinetic properties of 222 commercially available oral drugs in humans. Biol. Pharm. Bull., 2001, 24(8), 935-940.
[http://dx.doi.org/10.1248/bpb.24.935] [PMID: 11510489]
[14]
Leeson, P.D.; Davis, A.M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem., 2004, 47(25), 6338-6348.
[http://dx.doi.org/10.1021/jm049717d] [PMID: 15566303]
[15]
Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[16]
Papich, M.G.; Martinez, M.N. Applying biopharmaceutical classification system (BCS) criteria to predict oral absorption of drugs in dogs: Challenges and pitfalls. AAPS J., 2015, 17(4), 948-964.
[http://dx.doi.org/10.1208/s12248-015-9743-7] [PMID: 25916691]
[17]
Nair, A.K.; Anand, O.; Chun, N.; Conner, D.P.; Mehta, M.U.; Nhu, D.T.; Polli, J.E.; Yu, L.X.; Davit, B.M. Statistics on BCS classification of generic drug products approved between 2000 and 2011 in the USA. AAPS J., 2012, 14(4), 664-666.
[http://dx.doi.org/10.1208/s12248-012-9384-z] [PMID: 22718306]
[18]
Arpan, C.; Arka, B.; Dishari, D.; Soumyasree, D.; Goutam, M. A review on some formulation strategies to improve the bioavailability of drugs with low permeability and high solubility (BCS III). Int. J. Pharm. Eng., 2016, 4(1), 683-690.
[19]
Arik, D.; Gordon, A. Provisional BCS Classification of the Leading Oral Drugs on the Global Market, 7th ed; Burger’s Medicinal Chemistry, Drug Discovery, and Development, 2010, pp. 353-366.
[20]
Sharma, P.; Varma, M.V.; Chawla, H.P.; Panchagnula, R. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Farmaco, 2005, 60(11-12), 884-893.
[http://dx.doi.org/10.1016/j.farmac.2005.08.008] [PMID: 16226752]
[21]
Javier, L.; Xavier, B. Physico-Chemical and Computational Approaches to Drug Discovery; Royal Society of Chemistry: Cambridge, England, 2012, pp. 104-127.
[22]
van Hoogdalem, E.J.; de Boer, A.G.; Breimer, D.D. Intestinal drug absorption enhancement: An overview. Pharmacol. Ther., 1989, 44(3), 407-443.
[http://dx.doi.org/10.1016/0163-7258(89)90009-0] [PMID: 2519349]
[23]
Lundquist, P.; Artursson, P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 256-276.
[http://dx.doi.org/10.1016/j.addr.2016.07.007] [PMID: 27496705]
[24]
Shaikh, M.S.I.; Nikita, D.D.; Rajendra, B. Permeability enhancement techniques for poorly permeable drugs: A review. J. Appl. Pharm. Sci., 2012, 2(6), 34-39.
[http://dx.doi.org/10.7324/JAPS.2012.2705]
[25]
Dave, V.S.; Gupta, D.; Yu, M.; Nguyen, P.; Varghese Gupta, S. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. Drug Dev. Ind. Pharm., 2017, 43(2), 177-189.
[http://dx.doi.org/10.1080/03639045.2016.1269122] [PMID: 27998192]
[26]
Stella, V.J. Prodrug Approaches to Enhancing the Oral Delivery of Poorly Permeable Drugs, Enhancing the Oral Delivery of Poorly Permeable Drugs In: Prodrugs; Springer: New York, NY, 2007; V, pp. 38-82.
[27]
Thakkar, H.; Patel, B.; Thakkar, S. A review on techniques for oral bioavailability enhancement of drugs. Int. J. Pharm. Sci. Rev. Res., 2010, 4(3), 203-233.
[28]
Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov., 2008, 7(3), 255-270.
[http://dx.doi.org/10.1038/nrd2468] [PMID: 18219308]
[29]
Beaumont, K.; Webster, R.; Gardner, I.; Dack, K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist. Curr. Drug Metab., 2003, 4(6), 461-485.
[http://dx.doi.org/10.2174/1389200033489253] [PMID: 14683475]
[30]
Gupta, D.; Varghese Gupta, S.; Dahan, A.; Tsume, Y.; Hilfinger, J.; Lee, K.D.; Amidon, G.L. Increasing oral absorption of polar neuraminidase inhibitors: A prodrug transporter approach applied to oseltamivir analogue. Mol. Pharm., 2013, 10(2), 512-522.
[http://dx.doi.org/10.1021/mp300564v] [PMID: 23244438]
[31]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[32]
Miller, J.M.; Dahan, A.; Gupta, D.; Varghese, S.; Amidon, G.L. Enabling the intestinal absorption of highly polar antiviral agents: Ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir. Mol. Pharm., 2010, 7(4), 1223-1234.
[http://dx.doi.org/10.1021/mp100050d] [PMID: 20536260]
[33]
El-Gizawy, S.A.; El-Maghraby, G.M.; Hedaya, A.A. Formulation of acyclovir-loaded solid lipid nanoparticles: Design, optimization, and in vitro characterization. Pharm. Dev. Technol., 2019, 24(10), 1287-1298.
[http://dx.doi.org/10.1080/10837450.2019.1667385] [PMID: 31507232]
[34]
Subedi, R.K.; Kang, K.W.; Choi, H.K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur. J. Pharm. Sci., 2009, 37(3-4), 508-513.
[http://dx.doi.org/10.1016/j.ejps.2009.04.008] [PMID: 19406231]
[35]
Singh, S.; Dobhal, A.K.; Jain, A.; Pandit, J.K.; Chakraborty, S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chem. Pharm. Bull. (Tokyo), 2010, 58(5), 650-655.
[http://dx.doi.org/10.1248/cpb.58.650] [PMID: 20460791]
[36]
Ghaffari, S.; Varshosaz, J.; Saadat, A.; Atyabi, F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int. J. Nanomedicine, 2010, 6, 35-43.
[PMID: 21289980]
[37]
Chokshi, N.V.; Khatri, H.N.; Patel, M.M. Fabrication and optimization of isoniazid loaded lipid nanoparticulate systems for the treatment of tuberculosis. Adv. Sci. Eng. Med., 2019, 11(8), 741-775.
[http://dx.doi.org/10.1166/asem.2019.2418]
[38]
Ansari, M.J.; Anwer, M.K.; Jami, S.; Al-Shdefat, R.; Ali, B.E.; Ahmad, M.M.; Ansari, M.N. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv., 2016, 23(6), 1972-1979.
[39]
Kumar, N.; Kumar, R. Nanotechnology and Nanomaterials in the Treatment of Life-Threatening Diseases; William Andrew: Waltham, MA, USA, 2013.
[40]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[41]
Hassan, H.; Bello, R.O.; Adam, S.K.; Alias, E.; Meor Mohd Affandi, M.M.; Shamsuddin, A.F.; Basir, R. Acyclovir-loaded solid lipid nanoparticles: Optimization, characterization and evaluation of its pharmacokinetic profile. Nanomaterials (Basel), 2020, 1785(10), 1-17.
[42]
Rajpoot, K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr. Pharm. Des., 2019, 25(37), 3943-3959.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[43]
Chen, D.B.; Yang, T.Z.; Lu, W.L.; Zhang, Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem. Pharm. Bull. (Tokyo), 2001, 49(11), 1444-1447.
[http://dx.doi.org/10.1248/cpb.49.1444] [PMID: 11724235]
[44]
Fundarò, A.; Cavalli, R.; Bargoni, A.; Vighetto, D.; Zara, G.P.; Gasco, M.R. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: Pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol. Res., 2000, 42(4), 337-343.
[http://dx.doi.org/10.1006/phrs.2000.0695] [PMID: 10987994]
[45]
Bhandari, R.; Kaur, I.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int. J. Pharm., 2013, 441(1-2), 202-212.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.042] [PMID: 23220081]
[46]
Freitas, C.; Muller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN) dispersions. Int. J. Pharm., 1998, 168(2), 221-229.
[http://dx.doi.org/10.1016/S0378-5173(98)00092-1]
[47]
Freitas, C.; Müller, R.H. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm., 1999, 47(2), 125-132.
[http://dx.doi.org/10.1016/S0939-6411(98)00074-5] [PMID: 10234536]
[48]
Freitas, C.; Müller, R.H. Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte. J. Microencapsul., 1999, 16(1), 59-71.
[http://dx.doi.org/10.1080/026520499289310] [PMID: 9972503]
[49]
Dingler, A.; Gohla, S. Production of solid lipid nanoparticles (SLN): Scaling up feasibilities. J. Microencapsul., 2002, 19(1), 11-16.
[http://dx.doi.org/10.1080/02652040010018056] [PMID: 11811752]
[50]
Harde, H.; Das, M.; Jain, S. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv., 2011, 8(11), 1407-1424.
[http://dx.doi.org/10.1517/17425247.2011.604311] [PMID: 21831007]
[51]
Khadka, P.; Jieum, R.; Hyeongmin, K.; Iksoo, K.; Jeong, T.K.; Hyunil, K.; Jae, M.C.; Gyiae, Y.; Jaehwi, L. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci, 2014, 9(6), 304-316.
[http://dx.doi.org/10.1016/j.ajps.2014.05.005]
[52]
Vijayan, V.; Shaik, A.; Sakthivel, S.; Ravindra, R. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J. Acute Dis., 2013, 2(4), 282-286.
[http://dx.doi.org/10.1016/S2221-6189(13)60144-4]
[53]
Pathak, K.; Keshri, L.; Shah, M. Lipid nanocarriers: Influence of lipids on product development and pharmacokinetics. Crit. Rev. Ther. Drug Carrier Syst., 2011, 28(4), 357-393.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i4.20] [PMID: 21967401]
[54]
Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Lipid nanoparticles, production, characterization and Stability. Sprin, Bri. Phar. Sci. Drug Dev, 2015, 11-22.
[55]
Wissing, S.A.; Müller, R.H. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity-in vivo study. Eur. J. Pharm. Biopharm., 2003, 56(1), 67-72.
[http://dx.doi.org/10.1016/S0939-6411(03)00040-7] [PMID: 12837483]
[56]
Ramteke, K.H.; Joshi, S.A.; Dhole, S.N. Solid lipid nanoparticle: A review. IOSR J. Pharm., 2012, 2, 34-44.
[http://dx.doi.org/10.9790/3013-26103444]
[57]
Kushwaha, A.K.; Vuddanda, P.R.; Karunanidhi, P.; Singh, S.K.; Singh, S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BioMed Res. Int., 2013, 2013, 584549.
[http://dx.doi.org/10.1155/2013/584549] [PMID: 24228255]
[58]
Gomes, F.L.T.; Maranhão, R.C.; Tavares, E.R.; Carvalho, P.O.; Higuchi, M.L.; Mattos, F.R.; Pitta, F.G.; Hatab, S.A.; Kalil-Filho, R.; Serrano, C.V., Jr. Regression of atherosclerotic plaques of cholesterol-fed rabbits by combined chemotherapy with paclitaxel and methotrexate carried in lipid core nanoparticles. J. Cardiovasc. Pharmacol. Ther., 2018, 23(6), 561-569.
[http://dx.doi.org/10.1177/1074248418778836] [PMID: 29779420]
[59]
Geszke-Moritz, M.; Moritz, M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater. Sci. Eng. C, 2016, 68(1), 982-994.
[http://dx.doi.org/10.1016/j.msec.2016.05.119] [PMID: 27524099]
[60]
Khaleel, B.S.; Dhandayuthabani, R.; Syed, M.M.; Sugantha, K.V. Solid lipid nanoparticles for oral drug delivery. Mater. Today Proc., 2021, 36(2), 313-324.
[61]
Verma, S.; Makkar, D. Solid lipid nanoparticles: A comprehensive review. J. Chem. Pharm. Res., 2016, 8(8), 102-114.
[62]
Jenning, V.; Gohla, S. Comparison of wax and glyceride solid lipid nanoparticles (SLN). Int. J. Pharm., 2000, 196(2), 219-222.
[http://dx.doi.org/10.1016/S0378-5173(99)00426-3] [PMID: 10699722]
[63]
Schmiele, M.; Schindler, T.; Unruh, T.; Busch, S.; Morhenn, H.; Westermann, M.; Steiniger, F.; Radulescu, A.; Lindner, P.; Schweins, R.; Boesecke, P. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2013, 87(6), 062316.
[http://dx.doi.org/10.1103/PhysRevE.87.062316] [PMID: 23848684]
[64]
Severino, P.; Andreani, T.; Macedo, A.S.; Fangueiro, J.F.; Santana, M.H.; Silva, A.M.; Souto, E.B. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J. Drug Deliv., 2012, 2012, 750891.
[http://dx.doi.org/10.1155/2012/750891] [PMID: 22175030]
[65]
Manjunath, K.; Reddy, J.S.; Venkateswarlu, V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 127-144.
[http://dx.doi.org/10.1358/mf.2005.27.2.876286] [PMID: 15834465]
[66]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[67]
Pardeshi, C.; Rajput, P.; Belgamwar, V.; Tekade, A.; Patil, G.; Chaudhary, K.; Sonje, A. Solid lipid based nanocarriers: An overview. Acta Pharm., 2012, 62(4), 433-472.
[http://dx.doi.org/10.2478/v10007-012-0040-z] [PMID: 23333884]
[68]
Vijay, M.; Kuldeep, K.B.; Asit, V.; Nishika, Y.; Sourav, T.; Kalvatala, S.; Jessica, M.R. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 191(10), 1-21.
[69]
Cortesi, R.; Esposjto, E.; Luca, G.; Nastruzzi, C. Production of lipospheres as carriers for bioactive compounds. Biomaterials, 2002, 23(11), 2283-2294.
[http://dx.doi.org/10.1016/S0142-9612(01)00362-3] [PMID: 12013175]
[70]
Bhandari, R.; Kaur, I.P. A method to prepare solid lipid nanoparticles with improved entrapment efficiency of hydrophilic drugs. Curr. Nanosci., 2013, 9(2), 1-10.
[71]
Eman, S.E.; Mohamed, N.; Raghda, A.M. Development and characterization of solid lipid dispersion as delivery system for hydrophilic antihypertensive drug atenolol. Int. J. Drug Deliv., 2012, 4(2), 219-228.
[72]
Laura, B.C.; Itziar, A.; Lide, A. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 474(9), 1-20.
[73]
Yuan, H.; Chen, J.; Du, Y.Z.; Hu, F.Q.; Zeng, S.; Zhao, H.L. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf. B Biointerfaces, 2007, 58(2), 157-164.
[http://dx.doi.org/10.1016/j.colsurfb.2007.03.002] [PMID: 17446050]
[74]
Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Contr. Release, 2009, 133(3), 238-244.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.002] [PMID: 18951932]
[75]
Sanjula, B.; Shah, F.M.; Javed, A.; Alka, A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J. Drug Target., 2009, 17(3), 249-256.
[http://dx.doi.org/10.1080/10611860902718672] [PMID: 19255893]
[76]
Shakweh, M.; Ponchel, G.; Fattal, E. Particle uptake by Peyer’s patches: A pathway for drug and vaccine delivery. Expert Opin. Drug Deliv., 2004, 1(1), 141-163.
[http://dx.doi.org/10.1517/17425247.1.1.141] [PMID: 16296726]
[77]
Kreuter, J. Peroral administration of nanoparticles. Adv. Drug Deliv. Rev., 1991, 7(1), 71-86.
[http://dx.doi.org/10.1016/0169-409X(91)90048-H]
[78]
Yasir, M.; Gaur, P.K.; Puri, D.; Shehkar, P.; Kumar, S.S. Solid lipid nanoparticles approach for lymphatic targeting through intraduodenal delivery of quetiapine fumarate. Curr. Drug Deliv., 2018, 15(6), 818-828.
[http://dx.doi.org/10.2174/1567201814666170525121049] [PMID: 28545354]
[79]
O’Driscoll, C.M. Lipid-based formulations for intestinal lymphatic delivery. Eur. J. Pharm. Sci., 2002, 15(5), 405-415.
[http://dx.doi.org/10.1016/S0928-0987(02)00051-9] [PMID: 12036717]
[80]
Trevaskis, N.L.; Charman, W.N.; Porter, C.J.H. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update. Adv. Drug Deliv. Rev., 2008, 60(6), 702-716.
[http://dx.doi.org/10.1016/j.addr.2007.09.007] [PMID: 18155316]
[81]
Joshi, D.; Garg, T.; Goyal, A. K.; Rath, G. Advanced drug delivery approaches against periodontitis. Drug Delivery, 2016, 23(2), 363-77.
[http://dx.doi.org/10.3109/10717544.2014.935531]
[82]
Porter, C.J.; Trevaskis, N.L.; Charman, W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov., 2007, 6(3), 231-248.
[http://dx.doi.org/10.1038/nrd2197] [PMID: 17330072]
[83]
Hultin, M.; Savonen, R.; Chevreuil, O.; Olivecrona, T. Chylomicron metabolism in rats: Kinetic modeling indicates that the particles remain at endothelial sites for minutes. J. Lipid Res., 2013, 54(10), 2595-2605.
[http://dx.doi.org/10.1194/jlr.M032979] [PMID: 23922383]
[84]
Shilpa, C.; Tarun, G.; Murthy, R.S.R.; Goutam, R.; Amit, K.G. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J. Drug Target., 2014, 12(1), 1-13.
[85]
Florence, A.T. The oral absorption of micro- and nanoparticulates: Neither exceptional nor unusual. Pharm. Res., 1997, 14(3), 259-266.
[http://dx.doi.org/10.1023/A:1012029517394] [PMID: 9098866]
[86]
Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm. Res., 1996, 13(12), 1838-1845.
[http://dx.doi.org/10.1023/A:1016085108889] [PMID: 8987081]
[87]
Mudavath, H.; Sandeep, K.P.; Ramya, S.K. Solid lipid nanoparticles; a review. Int. J. Pharm. Sci. Res., 2013, 4(3), 928-940.
[88]
Mei, Z.; Li, X.; Wu, Q.; Hu, S.; Yang, X. The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharmacol. Res., 2005, 51(4), 345-351.
[http://dx.doi.org/10.1016/j.phrs.2004.10.007] [PMID: 15683748]
[89]
Jepson, M.A.; Clark, M.A.; Foster, N.; Mason, C.M.; Bennett, M.K.; Simmons, N.L.; Hirst, B.H. Targeting to intestinal M cells. J. Anat., 1996, 189(Pt 3), 507-516.
[PMID: 8982824]
[90]
des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release, 2006, 116(1), 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[91]
Rahul, N.; Vishnu, P.K.; Arun, K.K.S.; Badivaddin, T.M.; Sevukarajan, M. Formulation and evaluation of solid lipid nanoparticles of water soluble drug: Isoniazid. J. Pharm. Sci. Res., 2011, 3(5), 1256-1264.
[92]
Liu, J.; Gong, T.; Wang, C.; Zhong, Z.; Zhang, Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: Preparation and characterization. Int. J. Pharm., 2007, 340(1-2), 153-162.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.009] [PMID: 17428627]
[93]
Shah, M.; Agrawal, Y.K.; Garala, K.; Ramkishan, A. Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride. Indian J. Pharm. Sci., 2012, 74(5), 434-442.
[http://dx.doi.org/10.4103/0250-474X.108419] [PMID: 23716872]