[10]
Mao, Y.; Zou, C.; Jiang, Y.; Fu, D. Erythrocyte-derived drug delivery systems in cancer therapy. Chin. Chem. Lett., 2020.
[12]
Araujo, L.H.; Horn, L.; Merritt, R.E.; Shilo, K.; Xu-Welliver, M.; Carbone, D.P. Cancer of the lung: Non–small cell lung cancer and small cell lung cancer. Abeloff’s Clinical Oncology; Elsevier, 2020, pp. 1108-1158.
[30]
Fornaguera, C; Castells-Sala, C; Borrós, S Unraveling polymeric nanoparticles cell uptake pathways: Two decades working to understand nanoparticles journey to improve gene therapy. In: Cell Biology and Translational Medicine; Springer, 2019; 9, pp. 117-138.
[35]
Leonard, F.; Godin, B. Nanocarrier-based anticancer therapies with the focus on strategies for targeting the tumor microenvironment. Intracel-lular Delivery III; Springer, 2016, pp. 67-122.
[65]
Ramalingam, V.; Rajaram, R. A paradoxical role of reactive oxygen species in cancer signaling pathway: Physiology and pathology. Process Biochem., 2021, 100, 69-81.
[68]
Heron, DE; Huq, MS; DABR, F Editors. stereotactic radiosurgery and stereotactic body radiation therapy (SBRT). Springer Publishing Company, 2018 Sep 2;
[69]
Dos Santos AlF, de Almeida DRQ, Terra LF, Baptista McS, Labriola L. Photodynamic therapy in cancer treatment-an update review. J. Cancer Metastasis Treat., 2019, 5, 25.
[87]
Bhatt, P.; Trehan, S.; Inamdar, N.; Mourya, V.K.; Misra, A. Polymers in drug delivery: An update. Applications of Polymers in Drug Delivery; Elsevier, 2021, pp. 1-42.
[95]
Yadav, H.; Karthikeyan, C. Natural polysaccharides: Structural features and properties. Polysaccharide Carriers for Drug Delivery; Elsevier, 2019, pp. 1-17.
[101]
Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Seminars in cancer biology; Woodman, C.; Vundu, G.; George, A.; Wilson, C.M., Eds.; Elsevier, 2020.
[102]
Saokar, S.; Saudagar, R. Nanoparticle in pharmaceutical drug delivery system: A review. J. Drug Deliv. Ther., 2019, 9(3), 543-548.
[108]
Skupin-Mrugalska, P. Liposome-based drug delivery for lung cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Can-cer; Elsevier, 2019, pp. 123-160.
[117]
Imran, M.; Shah, M.R. Amphiphilic block copolymers-Based micelles for drug delivery; Design and Development of New Nanocarriers. Else-vier, 2018, pp. 365-400.
[139]
New discoveries of mdig in the epigenetic regulation of cancers Seminars in cancer biology; Zhang, Q.; Thakur, C.; Shi, J.; Sun, J.; Fu, Y.; Stemmer, P., Eds.; Elsevier, 2019.
[140]
Kale, V.P.; Gilhooley, P.J.; Phadtare, S.; Nabavizadeh, A.; Pandey, M.K. Role of Gambogic Acid in Chemosensitization of Cancer Role of Nutraceu-ticals in Cancer Chemosensitization; Elsevier, 2018, pp. 151-167.
[141]
Yoneda, K.; Tanaka, F. Molecular diagnosis and targeting for lung cancer. Molecular Diagnosis and Targeting for Thoracic and Gastrointestinal Malignancy; Springer, 2018, pp. 1-32.
[155]
Buckingham, L. Molecular diagnostics: Fundamentals, methods and clinical applications; FA Davis, 2019.
[162]
Kotler, E.; Shani, O.; Goldfeld, G.; Lotan-Pompan, M.; Tarcic, O.; Gershoni, A. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell, 2018, 71(1), 178-190.
[168]
Dhanjal, D.S.; Mehta, M.; Chopra, C.; Singh, R.; Sharma, P.; Chellappan, D.K. Novel Controlled release pulmonary drug delivery systems: Current updates and challenges. Modeling and Control of Drug Delivery Systems; Elsevier, 2021, pp. 253-272.