[1]
Verma, A.; Singh, S.; Kaur, R.; Jain, U.K. Topical gels as drug delivery systems: A review. Int. J. Pharm. Sci. Rev. Res., 2013, 23(2), 374-382.
[8]
Tsintou, M.; Wang, C.; Dalamagkas, K.; Weng, D.; Zhang, Y-N.; Niu, W. Nanogels for biomedical applications: Drug delivery, imaging, tissue engineering, and biosensors. In: Nanobiomaterials Science, Development and Evaluation; Elsevier, 2017; pp. 87-124.
[17]
Ibrahim, N.A.; Nada, A.A.; Eid, B.M. Polysaccharide-based polymer gels and their potential applications. Polymer Gels, 2018, 97-126.
[21]
Prajapati, S.K.; Jain, A. Polysaccharide-based interpenetrating polymeric network system for biomedical use. In: Tailor-Made Polysaccharides in Biomedical Applications; Elsevier, 2020; pp. 133-150.
[23]
Jain, A.; Jain, S.K. Environmentally responsive chitosan-based nanocarriers (CBNs). In: Handbook of Polymers for Pharmaceutical Technologies, Biodegradable Polymers; , 2015; 3, p. 105.
[28]
Prajapati, S.K.; Mody, N.; Jain, A. Hyaluronic Acid: Biodegradable Material of Choice for Drug Delivery Applications; Nova Science Publisher, 2020.
[43]
Feroz, S.; Muhammad, N.; Ratnayake, J. Keratin-Based materials for biomedical applications. Dias GJBm., 2020, 5(3), 496-509.
[48]
Elzoghby, A.O.; Samy, W.M. Albumin-based nanoparticles as potential controlled release drug delivery systems. Elgindy NAJJocr., 2012, 157(2), 168-182.
[51]
Balakrishnan, P.; Geethamma, V.; Sreekala, M.S.; Thomas, S. Polymeric biomaterials: State-of-the-art and new challenges. In: Fundamental Biomaterials: Polymers; Elsevier, 2018; pp. 1-20.
[53]
Jem, K.J.; Tan, B.J.A.I. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Industrial Eng. Polymer Res., 2020, 3(2), 60-70.
[55]
Urbánek, T; Jäger, E; Jäger, A Hrubý, MJP Selectively biodegradable polyesters: Nature-inspired construction materials for future biomedical applications. 2019, 11(6), 1061.
[56]
Balani, K.; Verma, V.; Agarwal, A.; Narayan, R.; Perspective, E. Physical, thermal, and mechanical properties of polymers; The American Ceramic Society, 2015.
[58]
Karandikar, S.; Mirani, A.; Waybhase, V.; Patravale, V. Nanovaccines for oral delivery-formulation strategies and challenges. In: Nanostructures for Oral Medicine; Elsevier, 2017; pp. 263-293.
[63]
Sharma, K.; Kesharwani, P.; Prajapati, S.K.; Jain, A.; Mittal, N.; Kaushik, R. Smart Devices in Healthcare Sector: Applications.Handbook of Smart Materials, Technologies, and Devices: Applications of Industry 40; Hussain, C.M.; Di Sia, P, Eds.; Springer International Publishing: Cham, 2020, pp. 1-27.
[65]
Soni, K.S.; Desale, S.S. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release, 2016, 240, 109-126.
[70]
Water, J.J.; Kim, Y.; Maltesen, M.J.; Franzyk, H.; Foged, C. Hyaluronic acid-based nanogels produced by microfluidics-facilitated self-assembly improves the safety profile of the cationic host defense peptide novicidin. Nielsen HMJPr., 2015, 32(8), 2727-2735.
[80]
Sultana, F.; Manirujjaman, M.; Imran-Ul-Haque, M.A.; Sharmin, S.J.J.A.P.S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(8), 95-105.
[81]
Singh, S.; Möller, M. Biocompatible and biodegradable nanogels and hydrogels for protein peptide delivery; Lehrstuhl für Textilchemie und Makromolekulare Chemie, 2014.
[87]
Yadav, H.; Al Halabi, N. Alsalloum, GJJPPR Nanogels as novel drug delivery systems-a review. J. Pharm. Pharmaceut. Res., 2017, 1(5), 1-8.
[92]
Liechty, W.B.; Scheuerle, R.L. Peppas, NAJP Tunable, responsive nanogels containing t-butyl methacrylate and 2-(t-butylamino) ethyl methacrylate. Polymer, 2013, 54(15), 3784-3795.
[93]
Sim, T.; Lim, C. Hoang, NH Recent advance of pH-sensitive nanocarriers targeting solid tumors. J. Pharm. Investig., 2017, 47(5), 383-394.
[99]
Ulański, P.; Janik, I. Rosiak, JJRP Chemistry. Radiation formation of polymeric nanogels. Radiat. Phys. Chem., 1998, 52(1-6), 289-294.
[107]
Piogé, S.; Nesterenko, A.; Brotons, G.; Pascual, S.; Fontaine, L. Core cross-linking of dynamic diblock copolymer micelles. Quantitative study of photopolymerization efficiency and micelle structure. Quantitative Study of Photopolymerization Efficiency and Micelle Structure, 2011, 44(3), 594-603.
[118]
Maver, T.; Kurečič, M.; Smrke, D.M.; Kleinschek, K.S.; Maver, U. Plant-derived medicines with potential use in wound treatment; Herbal Medicine, 2018.
[119]
Prajapati, S.K.; Mishra, G.; Malaiya, A.; Jain, A.; Mody, N.; Raichur, A.M. Antimicrobial application potential of phytoconstituents from turmeric and garlic. In: Bioactive Natural Products for Pharmaceutical Applications; Springer, 2021; pp. 409-435.
[120]
Athya, D.K.; Jain, A.; Verma, A. Phytochemical and pharmacological investigation of cassia siamea lamk: An insight. Nat. Prod. J., 2017, 7, 255-266.
[125]
Rajput, R.; Narkhede, J.; Naik, B.N. DMPK. Nanogels as nanocarriers for drug delivery: a review. ADMET & DMPK, 2020, 8(1), 1-15.
[127]
Hamzah, M.L. Formulation and evaluation of flurbiprofen nanogel. Res. J. Pharm. Technology, 2020, 13(11), 5183-5188.
[135]
Avasatthi, V.; Pawar, H.; Dora, C.P.; Bansod, P.; Gill, M.S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation. Pharm. Dev. Technol., 2016, 21(5), 554-562.