Managing Apoptosis in Lung Diseases using Nano-assisted Drug Delivery System

Page: [3202 - 3211] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Several factors exist that limit the efficacy of lung cancer treatment. These may be tumor-specific delivery of therapeutics, airway geometry, humidity, clearance mechanisms, presence of lung diseases, and therapy against tumor cell resistance. Advancements in drug delivery using nanotechnology based multifunctional nanocarriers, have emerged as a viable method for treating lung cancer with more efficacy and fewer adverse effects. This review does a thorough and critical examination of effective nano-enabled approaches for lung cancer treatment, such as nano-assisted drug delivery systems. In addition, to therapeutic effectiveness, researchers have been working to determine several strategies to produce nanotherapeutics by adjusting the size, drug loading, transport, and retention. Personalized lung tumor therapies using sophisticated nano modalities have the potential to provide great therapeutic advantages based on individual unique genetic markers and disease profiles. Overall, this review provides comprehensive information on newer nanotechnological prospects for improving the management of apoptosis in lung cancer.

Keywords: Lung cancer, lung diseases, apoptosis, nano-drug delivery systems, nanoparticles, nanotechnology.

[1]
Fadeel B, Orrenius S. Apoptosis: A basic biological phenom-enon with wide-ranging implications in human disease. J Intern Med 2005; 258(6): 479-517.
[http://dx.doi.org/10.1111/j.1365-2796.2005.01570.x] [PMID: 16313474]
[2]
Wong RS. Apoptosis in cancer: From pathogenesis to treat-ment. J Exp Clin Cancer Res 2011; 30(1): 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[3]
Schmidt EP, Tuder RM. Role of apoptosis in amplifying inflammatory responses in lung diseases. J Cell Death 2010; JCD-S5375.
[http://dx.doi.org/10.4137/JCD.S5375]
[4]
Mizumura K, Cloonan SM, Haspel JA, Choi AMK. The emerging importance of autophagy in pulmonary diseases. Chest 2012; 142(5): 1289-99.
[http://dx.doi.org/10.1378/chest.12-0809] [PMID: 23131937]
[5]
Arora S, Ahmad S, Irshad R, et al. TLRs in pulmonary dis-eases. Life Sci 2019; 233: 116671.
[http://dx.doi.org/10.1016/j.lfs.2019.116671] [PMID: 31336122]
[6]
Liu Z, Yan J, Tong L, Liu S, Zhang Y. The role of exosomes from BALF in lung disease. J Cell Physiol 2022; 237(1): 161-8.
[http://dx.doi.org/10.1002/jcp.30553] [PMID: 34388259]
[7]
Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11(2): 255-60.
[http://dx.doi.org/10.1016/S0955-0674(99)80034-9] [PMID: 10209153]
[8]
Gupta S. Molecular signaling in death receptor and mito-chondrial pathways of apoptosis. Int J Oncol 2003; 22(1): 15-20.
[http://dx.doi.org/10.3892/ijo.22.1.15] [PMID: 12469180]
[9]
Matés JM, Segura JA, Alonso FJ, Márquez J. Intracellular redox status and oxidative stress: Implications for cell pro-liferation, apoptosis, and carcinogenesis. Arch Toxicol 2008; 82(5): 273-99.
[http://dx.doi.org/10.1007/s00204-008-0304-z] [PMID: 18443763]
[10]
Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005; 6(4): 318-27.
[http://dx.doi.org/10.1038/nrm1618] [PMID: 15803138]
[11]
Mishra AP, Salehi B, Sharifi-Rad M, et al. Programmed cell death, from a cancer perspective: An overview. Mol Diagn Ther 2018; 22(3): 281-95.
[http://dx.doi.org/10.1007/s40291-018-0329-9] [PMID: 29560608]
[12]
Olsson M, Zhivotovsky B. Caspases and cancer. Cell Death Differ 2011; 18(9): 1441-9.
[http://dx.doi.org/10.1038/cdd.2011.30] [PMID: 21455218]
[13]
Dwivedi P. ROS mediated apoptotic pathways in primary effusion lymphoma: Comment on induction of apoptosis by Shikonin through ROS-mediated intrinsic and extrinsic path-ways in primary effusion lymphoma. Transl Oncol 2021; 14(7): 101061.
[http://dx.doi.org/10.1016/j.tranon.2021.101061]
[14]
Ow YP, Green DR, Hao Z, Mak TW. Cytochrome c: Func-tions beyond respiration. Nat Rev Mol Cell Biol 2008; 9(7): 532-42.
[http://dx.doi.org/10.1038/nrm2434] [PMID: 18568041]
[15]
Zhivotovsky B, Kroemer G. Apoptosis and genomic instabil-ity. Nat Rev Mol Cell Biol 2004; 5(9): 752-62.
[http://dx.doi.org/10.1038/nrm1443] [PMID: 15340382]
[16]
Bernstein C, Bernstein H, Payne CM, Garewal H. DNA re-pair/pro-apoptotic dual-role proteins in five major DNA re-pair pathways: Fail-safe protection against carcinogenesis. Mutat Res 2002; 511(2): 145-78.
[http://dx.doi.org/10.1016/S1383-5742(02)00009-1] [PMID: 12052432]
[17]
Skorski T. Oncogenic tyrosine kinases and the DNA-damage response. Nat Rev Cancer 2002; 2(5): 351-60.
[http://dx.doi.org/10.1038/nrc799] [PMID: 12044011]
[18]
Maddika S, Ande SR, Panigrahi S, et al. Cell survival, cell death and cell cycle pathways are interconnected: Implica-tions for cancer therapy. Drug Resist Updat 2007; 10(1-2): 13-29.
[http://dx.doi.org/10.1016/j.drup.2007.01.003] [PMID: 17303468]
[19]
Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer. Biochim Biophys Acta Mol Cell Res 2020; 1867(6): 118688.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118688] [PMID: 32087180]
[20]
Järvinen K, Hotti A, Santos L, Nummela P, Hölttä E. Caspa-se-8, c-FLIP, and caspase-9 in c-Myc-induced apoptosis of fibroblasts. Exp Cell Res 2011; 317(18): 2602-15.
[http://dx.doi.org/10.1016/j.yexcr.2011.08.014] [PMID: 21903094]
[21]
Eichhorst ST. Modulation of apoptosis as a target for liver disease. Expert Opin Ther Targets 2005; 9(1): 83-99.
[http://dx.doi.org/10.1517/14728222.9.1.83] [PMID: 15757484]
[22]
Singh N, Bose K. Apoptosis: pathways, molecules and be-yond. Proteases in apoptosis: pathways, protocols and translational advances. Cham: Springer 2015; pp. 1-30.
[23]
Sharma A, Dulta K, Nagraik R, et al. Potentialities of ap-tasensors in cancer diagnosis. Mater Lett 2022; 308: 131240.
[24]
Manta P, Kumar D, Kapoor DN. A novel gold nanosensor and ‘blockade-of-binding’ based immunochromatographic rapid antigen test kit for Zika virus. Mater Lett 2022; 309: 131322.
[25]
Attri A, Thakur D, Kaur T, et al. Nanoparticles incorporating a fluorescence turn-on reporter for real-time drug release monitoring, a chemoenhancer and a stealth agent: Poseidon’s trident against cancer? Mol Pharm 2021; 18(1): 124-47.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00730] [PMID: 33346663]
[26]
Shukla MK, Dong WL, Azizov S, et al. Trends of bioderived carbonaceous materials for futuristic biomedical applica-tions. Mater Lett 2022; 311: 131606.
[27]
Zhou QT, Leung SS, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery sys-tems for respiratory infections. Adv Drug Deliv Rev 2015; 85: 83-99.
[http://dx.doi.org/10.1016/j.addr.2014.10.022] [PMID: 25451137]
[28]
Champion JA, Katare YK, Mitragotri S. Particle shape: A new design parameter for micro- and nanoscale drug delivery car-riers. J Control Release 2007; 121(1-2): 3-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.022] [PMID: 17544538]
[29]
Gao W, Thamphiwatana S, Angsantikul P, Zhang L. Nano-particle approaches against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6(6): 532-47.
[http://dx.doi.org/10.1002/wnan.1282] [PMID: 25044325]
[30]
Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applica-tions and strategies in nanotechnology for lung diseases. Nano Res 2021; 14(7): 2067-89.
[http://dx.doi.org/10.1007/s12274-020-3180-3] [PMID: 33456721]
[31]
Sandha KK, Shukla MK, Gupta PN. Recent advances in strat-egies for extracellular matrix degradation and synthesis inhi-bition for improved therapy of solid tumors. Curr Pharm Des 2020; 26(42): 5456-67.
[http://dx.doi.org/10.2174/1381612826666200728141601] [PMID: 32723249]
[32]
Aghasafari P, George U, Pidaparti R. A review of inflamma-tory mechanism in airway diseases. Inflamm Res 2019; 68(1): 59-74.
[http://dx.doi.org/10.1007/s00011-018-1191-2] [PMID: 30306206]
[33]
Santus P, Corsico A, Solidoro P, Braido F, Di Marco F, Scichilone N. Oxidative stress and respiratory system: Phar-macological and clinical reappraisal of N-acetylcysteine. COPD 2014; 11(6): 705-17.
[http://dx.doi.org/10.3109/15412555.2014.898040] [PMID: 24787454]
[34]
Roca M, Verduri A, Corbetta L, Clini E, Fabbri LM, Beghé B. Mechanisms of acute exacerbation of respiratory symptoms in chronic obstructive pulmonary disease. Eur J Clin Invest 2013; 43(5): 510-21.
[http://dx.doi.org/10.1111/eci.12064] [PMID: 23489139]
[35]
Wilson MS, Wynn TA. Pulmonary fibrosis: Pathogenesis, etiology and regulation. Mucosal Immunol 2009; 2(2): 103-21.
[http://dx.doi.org/10.1038/mi.2008.85] [PMID: 19129758]
[36]
Phan THG, Paliogiannis P, Nasrallah GK, et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2021; 78(5): 2031-57.
[http://dx.doi.org/10.1007/s00018-020-03693-7] [PMID: 33201251]
[37]
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16(11): 755-72.
[http://dx.doi.org/10.1038/nrd.2017.170] [PMID: 28983101]
[38]
Mirza S, Clay RD, Koslow MA, Scanlon PD. COPD guide-lines: A review of the 2018 GOLD report. In Mayo Clin Proc 2018; 93(10): 1488-502.
[http://dx.doi.org/10.1016/j.mayocp.2018.05.026] [PMID: 30286833]
[39]
da Silva AL, Cruz FF, Rocco PRM, Morales MM. New per-spectives in nanotherapeutics for chronic respiratory diseas-es. Biophys Rev 2017; 9(5): 793-803.
[http://dx.doi.org/10.1007/s12551-017-0319-x] [PMID: 28914424]
[40]
Wu L, Shan W, Zhang Z, Huang Y. Engineering nanomateri-als to overcome the mucosal barrier by modulating surface properties. Adv Drug Deliv Rev 2018; 124: 150-63.
[http://dx.doi.org/10.1016/j.addr.2017.10.001] [PMID: 28989056]
[41]
Ramos FL, Krahnke JS, Kim V. Clinical issues of mucus accumulation in COPD. Int J Chron Obstruct Pulmon Dis 2014; 9: 139-50.
[PMID: 24493923]
[42]
Zhang X, Zhang W, Liu L, et al. Antibiotic-loaded MoS2 nanosheets to combat bacterial resistance via biofilm inhibi-tion. Nanotechnology 2017; 28(22): 225101.
[http://dx.doi.org/10.1088/1361-6528/aa6c9b] [PMID: 28480869]
[43]
Al Ojaimi Y, Blin T, Lamamy J, et al. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 108022.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108022] [PMID: 34687769]
[44]
Verhamme IM, Leonard SE, Perkins RC. Proteases: Pivot points in functional proteomics. Methods Mol Biol 2019; 1871: 313-92.
[45]
Meyer N, Woidacki K, Maurer M, Zenclussen AC. Safe-guarding of fetal growth by mast cells and natural killer cells: Deficiency of one is counterbalanced by the other. Front Immunol 2017; 8: 711.
[http://dx.doi.org/10.3389/fimmu.2017.00711] [PMID: 28670317]
[46]
Leclere M, Lavoie-Lamoureux A, Lavoie JP. Heaves, an asthma-like disease of horses. Respirology 2011; 16(7): 1027-46.
[http://dx.doi.org/10.1111/j.1440-1843.2011.02033.x] [PMID: 21824219]
[47]
D’Amato G, Liccardi G, D’Amato M, Holgate S. Environ-mental risk factors and allergic bronchial asthma. Clin Exp Allergy 2005; 35(9): 1113-24.
[http://dx.doi.org/10.1111/j.1365-2222.2005.02328.x] [PMID: 16164436]
[48]
Tillie-Leblond I, Montani D, Crestani B, et al. Relation be-tween inflammation and symptoms in asthma. Allergy 2009; 64(3): 354-67.
[http://dx.doi.org/10.1111/j.1398-9995.2009.01971.x] [PMID: 19210358]
[49]
Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An un-stoppable pathological event? Cell Signal 2020; 68: 109540.
[http://dx.doi.org/10.1016/j.cellsig.2020.109540] [PMID: 31953012]
[50]
Bhatia SK. COPD. Biomaterials for clinical applications. New York, NY: Springer 2010; pp. 99-120.
[http://dx.doi.org/10.1007/978-1-4419-6920-0_5]
[51]
Saettele M, Saettele T, Chung J. Obstructive pulmonary diseases. Clinically oriented pulmonary imaging. 2012; pp. 161-78.
[52]
Amaral MD. Processing of CFTR: Traversing the cellular maze--how much CFTR needs to go through to avoid cystic fibrosis? Pediatr Pulmonol 2005; 39(6): 479-91.
[http://dx.doi.org/10.1002/ppul.20168] [PMID: 15765539]
[53]
Mantoo MR, Kabra M, Kabra SK. Cystic fibrosis presenting as pseudo-bartter syndrome: An important diagnosis that is missed! Indian J Pediatr 2020; 87(9): 726-32.
[http://dx.doi.org/10.1007/s12098-020-03342-8] [PMID: 32504456]
[54]
Gill DR, Davies LA, Pringle IA, Hyde SC. The development of gene therapy for diseases of the lung. Cell Mol Life Sci 2004; 61(3): 355-68.
[http://dx.doi.org/10.1007/s00018-003-3317-z] [PMID: 14770298]
[55]
Kumar S, Sharma AK, Lalhlenmawia H, Kumar D. Natural compounds targeting major signaling pathways in lung can-cer. Targeting cellular signalling pathways in lung diseas-es. Singapore: Springer Singapore 2021; pp. 821-46.
[http://dx.doi.org/10.1007/978-981-33-6827-9_37]
[56]
Luk C, Tsao MS, Bayani J, Shepherd F, Squire JA. Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet 2001; 125(2): 87-99.
[http://dx.doi.org/10.1016/S0165-4608(00)00363-0] [PMID: 11369051]
[57]
Pikor LA, Ramnarine VR, Lam S, Lam WL. Genetic altera-tions defining NSCLC subtypes and their therapeutic implica-tions. Lung Cancer 2013; 82(2): 179-89.
[http://dx.doi.org/10.1016/j.lungcan.2013.07.025] [PMID: 24011633]
[58]
Lee YC, Wu CT, Shih JY, Jou YS, Chang YL. Frequent allelic deletion at the FHIT locus associated with p53 overexpres-sion in squamous cell carcinoma subtype of Taiwanese non-small-cell lung cancers. Br J Cancer 2004; 90(12): 2378-83.
[http://dx.doi.org/10.1038/sj.bjc.6601778] [PMID: 15150628]
[59]
Daltro P, Santos EN, Gasparetto TD, Ucar ME, Marchiori E. Pulmonary infections. Pediatr Radiol 2011; 41(1) (Suppl. 1): S69-82.
[http://dx.doi.org/10.1007/s00247-011-2012-8] [PMID: 21523569]
[60]
Paju S, Scannapieco FA. Oral biofilms, periodontitis, and pulmonary infections. Oral Dis 2007; 13(6): 508-12.
[http://dx.doi.org/10.1111/j.1601-0825.2007.01410a.x] [PMID: 17944664]
[61]
Ho DK, Nichols BLB, Edgar KJ, Murgia X, Loretz B, Lehr CM. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. Eur J Pharm Biopharm 2019; 144: 110-24.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.002] [PMID: 31493510]
[62]
Singh L, Dua K, Kumar S, Kumar D, Majhi S. Targeting mo-lecular and cellular mechanisms in tuberculosis. Targeting cellular signalling pathways in lung diseases. Singapore: Springer 2021; pp. 337-53.
[http://dx.doi.org/10.1007/978-981-33-6827-9_14]
[63]
Gomez JE, McKinney JD. M. tuberculosis persistence, laten-cy, and drug tolerance. Tuberculosis 2004; 84(1-2): 29-44.
[http://dx.doi.org/10.1016/j.tube.2003.08.003] [PMID: 14670344]
[64]
Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis 2018; 113: 200-14.
[http://dx.doi.org/10.1016/j.tube.2018.10.009] [PMID: 30514504]
[65]
Wipperman MF, Sampson NS, Thomas ST. Pathogen roid rage: Cholesterol utilization by Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49(4): 269-93.
[http://dx.doi.org/10.3109/10409238.2014.895700] [PMID: 24611808]
[66]
Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed Pharmacother 2018; 99: 735-45.
[http://dx.doi.org/10.1016/j.biopha.2018.01.115] [PMID: 29710471]
[67]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[68]
Sharma L, Sharma A, Nandy SK, et al. Radiotherapy in COVID-19: A review. Pharmacologyonline 2021; (2): 277-85.
[69]
Zhao S, Lin Q, Ran J, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020; 92: 214-7.
[http://dx.doi.org/10.1016/j.ijid.2020.01.050] [PMID: 32007643]
[70]
Alnuqaydan AM, Almutary AG, Sukamaran A, et al. Middle East Respiratory Syndrome (MERS) virus-pathophysiological axis and the current treatment strategies. AAPS PharmSciTech 2021; 22(5): 173.
[http://dx.doi.org/10.1208/s12249-021-02062-2] [PMID: 34105037]
[71]
Mohanty SK, Satapathy A, Naidu MM, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) - anatomic pathology perspective on current knowledge. Diagn Pathol 2020; 15(1): 103.
[http://dx.doi.org/10.1186/s13000-020-01017-8] [PMID: 32799894]
[72]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[73]
Allawadhi P, Singh V, Govindaraj K, et al. Biomedical appli-cations of polysaccharide nanoparticles for chronic inflam-matory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281: 118923.
[http://dx.doi.org/10.1016/j.carbpol.2021.118923] [PMID: 35074100]
[74]
Szebeni J, Simberg D, González-Fernández Á, Barenholz Y, Dobrovolskaia MA. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat Nanotechnol 2018; 13(12): 1100-8.
[http://dx.doi.org/10.1038/s41565-018-0273-1] [PMID: 30348955]
[75]
Gao X, Guo L, Li J, Thu HE, Hussain Z. Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metasta-sis: Critical appraisal of newer developments and challenges to clinical transition. J Control Release 2018; 292: 29-57.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.024] [PMID: 30359665]
[76]
Kong L, Yuan Q, Zhu H, et al. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/] Mdm2/AR controlled apoptosis. Biomaterials 2011; 32(27): 6515-22.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.032] [PMID: 21640377]
[77]
Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H. Single-layer MoS2-based nanoprobes for homogeneous detection of bi-omolecules. J Am Chem Soc 2013; 135(16): 5998-6001.
[http://dx.doi.org/10.1021/ja4019572] [PMID: 23570230]
[78]
Pi J, Yang F, Jin H, et al. Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin. Bioorg Med Chem Lett 2013; 23(23): 6296-303.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.078] [PMID: 24140445]
[79]
Xia Y, Chen Y, Hua L, et al. Functionalized selenium nano-particles for targeted delivery of doxorubicin to improve non-small-cell lung cancer therapy. Int J Nanomedicine 2018; 13: 6929-39.
[http://dx.doi.org/10.2147/IJN.S174909] [PMID: 30464451]
[80]
Liu J, Meng J, Cao L, et al. Synthesis and investigations of ciprofloxacin loaded engineered selenium lipid nanocarriers for effective drug delivery system for preventing lung infec-tions of interstitial lung disease. J Photochem Photobiol B 2019; 197: 111510.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.05.007] [PMID: 31163288]
[81]
Pi J, Shen L, Yang E, et al. Macrophage‐targeted isoniazid–selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli. Angew Chem Int Ed Engl 2020; 59(8): 3226-34.
[http://dx.doi.org/10.1002/anie.201912122] [PMID: 31756258]
[82]
de Leeuw van Weenen JE, Auvinen HE, Parlevliet ET, et al. Blocking dopamine D2 receptors by haloperidol curtails the beneficial impact of calorie restriction on the metabolic phe-notype of high-fat diet induced obese mice. J Neuroendocrinol 2011; 23(2): 158-67.
[http://dx.doi.org/10.1111/j.1365-2826.2010.02092.x] [PMID: 21062378]
[83]
Sheikhpour M, Sadeghizadeh M, Yazdian F, et al. Co-administration of curcumin and bromocriptine nano-liposomes for induction of apoptosis in lung cancer cells. Iran Biomed J 2020; 24(1): 24-9.
[http://dx.doi.org/10.29252/ibj.24.1.24] [PMID: 31454860]
[84]
Su J, Zhang N, Ho PC. Evaluation of the pharmacokinetics of All-Trans-Retinoic Acid (ATRA) in Wistar rats after intrave-nous administration of ATRA loaded into tributyrin submi-cron emulsion and its cellular activity on caco-2 and HepG2 cell lines. J Pharm Sci 2008; 97(7): 2844-53.
[http://dx.doi.org/10.1002/jps.21193] [PMID: 17879972]
[85]
Kawakami S, Suzuki S, Yamashita F, Hashida M. Induction of apoptosis in A549 human lung cancer cells by all-trans retinoic acid incorporated in DOTAP/cholesterol liposomes. J Control Release 2006; 110(3): 514-21.
[http://dx.doi.org/10.1016/j.jconrel.2005.10.030] [PMID: 16360957]
[86]
Kaczmarek JC, Kauffman KJ, Fenton OS, et al. Optimization of a degradable polymer–lipid nanoparticle for potent sys-temic delivery of mRNA to the lung endothelium and im-mune cells. Nano Lett 2018; 18(10): 6449-54.
[http://dx.doi.org/10.1021/acs.nanolett.8b02917] [PMID: 30211557]
[87]
Liu Q, Wang D, Xu Z, et al. Targeted delivery of Rab26 siR-NA with precisely tailored DNA prism for lung cancer thera-py. ChemBioChem 2019; 20(9): 1139-44.
[http://dx.doi.org/10.1002/cbic.201800761] [PMID: 30610755]
[88]
Mokhtarieh AA, Lee J, Kim S, Lee MK. Preparation of siR-NA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing. Biochim Biophys Acta Biomembr 2018; 1860(6): 1318-25.
[http://dx.doi.org/10.1016/j.bbamem.2018.02.027] [PMID: 29501600]
[89]
Muddineti OS, Shah A, Rompicharla SVK, Ghosh B, Biswas S. Cholesterol-grafted chitosan micelles as a nanocarrier sys-tem for drug-siRNA co-delivery to the lung cancer cells. Int J Biol Macromol 2018; 118(Pt A): 857-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.114] [PMID: 29953893]
[90]
Dua K, Wadhwa R, Singhvi G, et al. The potential of siRNA based drug delivery in respiratory disorders: Recent advanc-es and progress. Drug Dev Res 2019; 80(6): 714-30.
[http://dx.doi.org/10.1002/ddr.21571] [PMID: 31691339]
[91]
McCaskill J, Singhania R, Burgess M, et al. Efficient biodis-tribution and gene silencing in the lung epithelium via intra-venous liposomal delivery of siRNA. Mol Ther Nucleic Acids 2013; 2: e96.
[http://dx.doi.org/10.1038/mtna.2013.22] [PMID: 23736774]
[92]
Hattori Y, Nakamura M, Takeuchi N, et al. Effect of cationic lipid in cationic liposomes on siRNA delivery into the lung by intravenous injection of cationic lipoplex. J Drug Target 2019; 27(2): 217-27.
[http://dx.doi.org/10.1080/1061186X.2018.1502775] [PMID: 30024300]
[93]
Ozpolat B, Sood AK, Lopez-Berestein G. Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med 2010; 267(1): 44-53.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02191.x] [PMID: 20059643]
[94]
Mehta M. Deeksha , Tewari D, et al. Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflam-matory respiratory diseases. Chem Biol Interact 2019; 308: 206-15.
[http://dx.doi.org/10.1016/j.cbi.2019.05.028] [PMID: 31136735]
[95]
Garbuzenko OB, Saad M, Betigeri S, et al. Intratracheal ver-sus intravenous liposomal delivery of siRNA, antisense oli-gonucleotides and anticancer drug. Pharm Res 2009; 26(2): 382-94.
[http://dx.doi.org/10.1007/s11095-008-9755-4] [PMID: 18958402]
[96]
Otsuka M, Shiratori M, Chiba H, et al. Treatment of pulmo-nary fibrosis with siRNA against a collagen-specific chaper-one HSP47 in vitamin A-coupled liposomes. Exp Lung Res 2017; 43(6-7): 271-82.
[http://dx.doi.org/10.1080/01902148.2017.1354946] [PMID: 29035148]
[97]
Li Y, Wu Y, Ong BS. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 2005; 127(10): 3266-7.
[http://dx.doi.org/10.1021/ja043425k] [PMID: 15755129]
[98]
Evanoff DD Jr, Chumanov G. Synthesis and optical proper-ties of silver nanoparticles and arrays. ChemPhysChem 2005; 6(7): 1221-31.
[http://dx.doi.org/10.1002/cphc.200500113] [PMID: 15942971]
[99]
Kuppurangan G, Karuppasamy B, Nagarajan K, Sekar RK, Viswaprakash N, Ramasamy T. Biogenic synthesis and spec-troscopic characterization of silver nanoparticles using leaf extract of Indoneesiella echioides: In vitro assessment on an-tioxidant, antimicrobial and cytotoxicity potential. Appl Nanosci 2016; 6(7): 973-82.
[http://dx.doi.org/10.1007/s13204-015-0514-7]
[100]
Kanipandian N, Thirumurugan R. A feasible approach to phyto-mediated synthesis of silver nanoparticles using in-dustrial crop Gossypium hirsutum (cotton) extract as stabiliz-ing agent and assessment of its in vitro biomedical potential. Ind Crops Prod 2014; 55: 1-0.
[http://dx.doi.org/10.1016/j.indcrop.2014.01.042]
[101]
Kumari R, Saini AK, Chhillar AK, Saini V, Saini RV. Anti-tumor effect of bio-fabricated silver nanoparticles towards ehrlich ascites carcinoma. Biointerface Res Appl Chem 2021; 11(5): 12958-72.
[http://dx.doi.org/10.33263/BRIAC115.1295812972]
[102]
Yeul VS, Rayalu SS. Unprecedented chitin and chitosan: A chemical overview. J Polym Environ 2013; 21(2): 606-14.
[http://dx.doi.org/10.1007/s10924-012-0458-x]
[103]
Peniche C, Argüelles-Monal W, Goycoolea FM. Chitin and chitosan: Major sources, properties and applications. Monomers, polymers and composites from renewable re-sources. Elsevier 2008; pp. 517-42.
[http://dx.doi.org/10.1016/B978-0-08-045316-3.00025-9]
[104]
Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull 2019; 9(2): 195-204.
[http://dx.doi.org/10.15171/apb.2019.023] [PMID: 31380245]
[105]
Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 2018; 110: 97-109.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.140] [PMID: 28866015]
[106]
Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 1998; 53(1-3): 183-93.
[http://dx.doi.org/10.1016/S0168-3659(97)00252-6] [PMID: 9741926]
[107]
Bacon A, Makin J, Sizer PJ, et al. Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens. Infect Immun 2000; 68(10): 5764-70.
[http://dx.doi.org/10.1128/IAI.68.10.5764-5770.2000] [PMID: 10992483]
[108]
Köping-Höggård M, Tubulekas I, Guan H, et al. Chitosan as a nonviral gene delivery system. Structure-property relation-ships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 2001; 8(14): 1108-21.
[http://dx.doi.org/10.1038/sj.gt.3301492] [PMID: 11526458]
[109]
Howard KA, Kjems J. Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert Opin Biol Ther 2007; 7(12): 1811-22.
[http://dx.doi.org/10.1517/14712598.7.12.1811] [PMID: 18034647]
[110]
Howard KA, Rahbek UL, Liu X, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 2006; 14(4): 476-84.
[http://dx.doi.org/10.1016/j.ymthe.2006.04.010] [PMID: 16829204]
[111]
Liu X, Howard KA, Dong M, et al. The influence of poly-meric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 2007; 28(6): 1280-8.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.004] [PMID: 17126901]
[112]
Jiang J, Liu Y, Wu C, et al. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells. Drug Dev Ind Pharm 2017; 43(8): 1304-13.
[http://dx.doi.org/10.1080/03639045.2017.1318895] [PMID: 28402175]
[113]
Tao L, Jiang J, Gao Y, Wu C, Liu Y. Biodegradable alginate-chitosan hollow nanospheres for codelivery of doxorubicin and paclitaxel for the effect of human lung cancer A549 cells. BioMed Res Int 2018; 2018: 4607945.
[http://dx.doi.org/10.1155/2018/4607945] [PMID: 29789794]
[114]
Kumar M, Kong X, Behera AK, Hellermann GR, Lockey RF, Mohapatra SS. Chitosan IFN-γ-pDNA Nanoparticle (CIN) therapy for allergic asthma. Genet Vaccines Ther 2003; 1(1): 3.
[http://dx.doi.org/10.1186/1479-0556-1-3] [PMID: 14613519]
[115]
Qiu Y, Chow MYT, Liang W, Chung WWY, Mak JCW, Lam JKW. From pulmonary surfactant, synthetic KL4 peptide as effective siRNA delivery vector for pulmonary delivery. Mol Pharm 2017; 14(12): 4606-17.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00725] [PMID: 29121767]
[116]
Sasaki S, Guo S. Nucleic acid therapies for cystic fibrosis. Nucleic Acid Ther 2018; 28(1): 1-9.
[117]
Veilleux D, Gopalakrishna Panicker RK, Chevrier A, Biniecki K, Lavertu M, Buschmann MD. Lyophilisation and concen-tration of chitosan/siRNA polyplexes: Influence of buffer composition, oligonucleotide sequence, and hyaluronic acid coating. J Colloid Interface Sci 2018; 512: 335-45.
[http://dx.doi.org/10.1016/j.jcis.2017.09.084] [PMID: 29080529]
[118]
Xu PY, Kankala RK, Pan YJ, Yuan H, Wang SB, Chen AZ. Overcoming multidrug resistance through inhalable siRNA nanoparticles-decorated porous microparticles based on su-percritical fluid technology. Int J Nanomedicine 2018; 13: 4685-98.
[http://dx.doi.org/10.2147/IJN.S169399] [PMID: 30154654]
[119]
Yuan ZQ, Chen WL, You BG, et al. Multifunctional nanopar-ticles co-delivering EZH2 siRNA and etoposide for synergis-tic therapy of orthotopic non-small-cell lung tumor. J Control Release 2017; 268: 198-211.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.025] [PMID: 29061511]
[120]
Zhang D, Lee H, Wang X, Rai A, Groot M, Jin Y. Exosome-mediated small RNA delivery: A novel therapeutic approach for inflammatory lung responses. Mol Ther 2018; 26(9): 2119-30.
[http://dx.doi.org/10.1016/j.ymthe.2018.06.007] [PMID: 30005869]