The Virulent Hypothetical Proteins: The Potential Drug Target Involved in Bacterial Pathogenesis

Page: [2608 - 2623] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Hypothetical proteins (HPs) are non-predicted sequences that are identified only by open reading frames in sequenced genomes, but their protein products remain uncharacterized by any experimental means. The genome of every species consists of HPs that are involved in various cellular processes and signaling pathways. Annotation of HPs is important as they play a key role in disease mechanisms, drug designing, vaccine production, antibiotic production, and host adaptation. In the case of bacteria, 25-50% of the genome comprises HPs, which are involved in metabolic pathways and pathogenesis. The characterization of bacterial HPs helps to identify virulent proteins that are involved in pathogenesis. This can be done using in-silico studies, which provide sequence analogs, physiochemical properties, cellular or subcellular localization, structure and function validation, and protein-protein interactions. The most diverse types of virulent proteins are exotoxins, endotoxins, and adherent virulent factors that are encoded by virulent genes present on the chromosomal DNA of the bacteria. This review evaluates virulent HPs of pathogenic bacteria, such as Staphylococcus aureus, Chlamydia trachomatis, Fusobacterium nucleatum, and Yersinia pestis. The potential of these HPs as a drug target in bacteria-caused infectious diseases, along with the mode of action and treatment approaches, has been discussed.

Keywords: Hypothetical proteins, pathogenesis, virulence, bacteria, viruses, drug.

Graphical Abstract

[1]
da Costa, W.L.O.; Araújo, C.L.A.; Dias, L.M.; Pereira, L.C.S.; Alves, J.T.C.; Araújo, F.A.; Folador, E.L.; Henriques, I.; Silva, A.; Folador, A.R.C. Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adap-tation to extreme environments, including high arsenic resistance. PLoS One, 2018, 13(6), e0198965.
[http://dx.doi.org/10.1371/journal.pone.0198965] [PMID: 29940001]
[2]
Naveed, M.; Mehboob, M.; Hussain, A.; Ikram, K.; Tallat, A.; Zeeshan, N. Structural and functional annotation of virulent hypothetical proteins in Chlamydia trachomatis: An in-silico approach. Curr. Bioinform., 2019, 13, 344-352.
[http://dx.doi.org/10.2174/1574893613666181107111259]
[3]
Naveed, M.; Chaudhry, Z.; Ali, Z.; Amjad, M. Annotation and curation of hypothetical proteins: Prioritizing targets for experimental study. Adv. Life Sci., 2018, 5(3), 73-87.
[4]
Saleh, S.; Staes, A.; Deborggraeve, S.; Gevaert, K. Targeted proteomics for studying pathogenic bacteria. Proteomics, 2019, 19(16), e1800435.
[http://dx.doi.org/10.1002/pmic.201800435] [PMID: 31241236]
[5]
Stones, D.H.; Krachler, A.M. Against the tide: The role of bacterial adhesion in host colonization. Biochem. Soc. Trans., 2016, 44(6), 1571-1580.
[http://dx.doi.org/10.1042/BST20160186] [PMID: 27913666]
[6]
Chávez-Fumagalli, M.A.; Schneider, M.S.; Lage, D.P.; Machado-de-Ávila, R.A.; Coelho, E.A. An in silico functional annotation and scree-ning of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics. Exp. Parasitol., 2017, 176, 66-74.
[http://dx.doi.org/10.1016/j.exppara.2017.03.005] [PMID: 28327439]
[7]
Yang, Z.; Zeng, X.; Tsui, S.K-W. Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics, 2019, 20(1), 394-394.
[http://dx.doi.org/10.1186/s12864-019-5746-6] [PMID: 31113361]
[8]
Singh, G.; Singh, V. Functional elucidation of hypothetical proteins for their indispensable roles toward drug designing targets from Heli-cobacter pylori strain HPAG1. J. Biomol. Struct. Dyn., 2018, 36(4), 906-918.
[http://dx.doi.org/10.1080/07391102.2017.1302361] [PMID: 28278024]
[9]
Ijaq, J.; Chandrasekharan, M.; Poddar, R.; Bethi, N.; Sundararajan, V.S. Annotation and curation of uncharacterized proteins- challenges. Front. Genet., 2015, 6, 119.
[http://dx.doi.org/10.3389/fgene.2015.00119] [PMID: 25873935]
[10]
Nakajima, N.; Hayashida, M.; Jansson, J.; Maruyama, O.; Akutsu, T. Determining the minimum number of protein-protein interactions required to support known protein complexes. PLoS One, 2018, 13(4), e0195545.
[http://dx.doi.org/10.1371/journal.pone.0195545] [PMID: 29698482]
[11]
Naveed, M.; Tehreem, S.; Usman, M.; Chaudhry, Z.; Abbas, G. Structural and functional annotation of hypothetical proteins of human adenovirus: Prioritizing the novel drug targets. BMC Res. Notes, 2017, 10(1), 706.
[http://dx.doi.org/10.1186/s13104-017-2992-z] [PMID: 29212526]
[12]
Nadzirin, N.; Willett, P.; Artymiuk, P.J.; Firdaus-Raih, M. IMAAAGINE: A webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank. Nucleic Acids Res., 2013, 41(Web Server issue), W432-40.
[http://dx.doi.org/10.1093/nar/gkt431] [PMID: 23716645]
[13]
Shahik, S.; Rahman, T.; Ghosh, S.; Ara, I.; Amin, S.; Ali, Y.; Habib, A.; Hossain, M.; Sikder, M. Molecular characterization and drug de-signing against hypothetical proteins of Aspergillus fumigatus Af293 by homology modeling and molecular docking. Toxicol. Int., 2015, 22, 59-69.
[http://dx.doi.org/10.22506/ti/2015/v22/i3/137626]
[14]
Josse, J.; Velard, F.; Gangloff, S.C. Staphylococcus aureus vs. osteoblast: Relationship and consequences in osteomyelitis. Front. Cell. Infect. Microbiol., 2015, 5, 85-85.
[http://dx.doi.org/10.3389/fcimb.2015.00085] [PMID: 26636047]
[15]
Darmon, E.; Leach, D.R. Bacterial genome instability. Microbiol. Mol. Biol. Rev., 2014, 78(1), 1-39.
[http://dx.doi.org/10.1128/MMBR.00035-13] [PMID: 24600039]
[16]
Kumar, K.; Prakash, A.; Anjum, F.; Islam, A.; Ahmad, F.; Hassan, M. I. Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: A quest for potential drug targets. 3 Biotech, 2015, 5(4), 561-576.
[17]
Doré, J.; Perraud, M.; Dieryckx, C.; Kohler, A.; Morin, E.; Henrissat, B.; Lindquist, E.; Zimmermann, S.D.; Girard, V.; Kuo, A.; Grigoriev, I.V.; Martin, F.; Marmeisse, R.; Gay, G. Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis. New Phytol., 2015, 208(4), 1169-1187.
[http://dx.doi.org/10.1111/nph.13546] [PMID: 26171947]
[18]
Ansari, S.; Jha, R.K.; Mishra, S.K.; Tiwari, B.R.; Asaad, A.M. Recent advances in Staphylococcus aureus infection: Focus on vaccine de-velopment. Infect. Drug Resist., 2019, 12, 1243-1255.
[http://dx.doi.org/10.2147/IDR.S175014] [PMID: 31190912]
[19]
Thomer, L.; Schneewind, O.; Missiakas, D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annu. Rev. Pathol., 2016, 11, 343-364.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044351] [PMID: 26925499]
[20]
Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Jr Staphylococcus aureus infections: Epidemiology, pathophysio-logy, clinical manifestations, and management. Clin. Microbiol. Rev., 2015, 28(3), 603-661.
[http://dx.doi.org/10.1128/CMR.00134-14] [PMID: 26016486]
[21]
Chua, K.Y.; Stinear, T.P.; Howden, B.P. Functional genomics of Staphylococcus aureus. Brief. Funct. Genomics, 2013, 12(4), 305-315.
[http://dx.doi.org/10.1093/bfgp/elt006] [PMID: 23430683]
[22]
School, K.; Marklevitz, J.; Schram, K. Predictive characterization of hypothetical proteins in Staphylococcus aureus NCTC 8325 Bioinformation, 2016, 209-220.
[23]
Prava, J.G.P.; Pan, A. Functional assignment for essential hypothetical proteins of Staphylococcus aureus N315. Int. J. Biol. Macromol., 2018, 108, 765-774.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.169] [PMID: 29111265]
[24]
Kobayashi, S.D.; Malachowa, N.; DeLeo, F.R. Pathogenesis of Staphylococcus aureus abscesses. Am. J. Pathol., 2015, 185(6), 1518-1527.
[http://dx.doi.org/10.1016/j.ajpath.2014.11.030] [PMID: 25749135]
[25]
Al-Obaidi, M.M.J.; Desa, M.N.M. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interac-tions facilitate the bacterial pathogen invading the brain. Cell. Mol. Neurobiol., 2018, 38(7), 1349-1368.
[http://dx.doi.org/10.1007/s10571-018-0609-2] [PMID: 30117097]
[26]
Teng, T.S.; Ji, A.l.; Ji, X.Y.; Li, Y.Z. Neutrophils and immunity: From bactericidal action to being conquered. J. Immunol. Res., 2017, 2017, 9671604.
[http://dx.doi.org/10.1155/2017/9671604]
[27]
Dey, S.; Bishayi, B. Riboflavin along with antibiotics balances reactive oxygen species and inflammatory cytokines and controls Staphylo-coccus aureus infection by boosting murine macrophage function and regulates inflammation. J. Inflamm. (Lond.), 2016, 13(1), 36-36.
[http://dx.doi.org/10.1186/s12950-016-0145-0] [PMID: 27932936]
[28]
Da, F.; Joo, H-S.; Cheung, G.Y.C.; Villaruz, A.E.; Rohde, H.; Luo, X.; Otto, M. Phenol-soluble modulin toxins of Staphylococcus haemolyticus. Front. Cell. Infect. Microbiol., 2017, 7, 206.
[http://dx.doi.org/10.3389/fcimb.2017.00206] [PMID: 28596942]
[29]
Krakauer, T.; Pradhan, K.; Stiles, B.G. Staphylococcal superantigens spark host-mediated danger signals. Front. Immunol., 2016, 7, 23-23.
[http://dx.doi.org/10.3389/fimmu.2016.00023] [PMID: 26870039]
[30]
Thammavongsa, V.; Kim, H.K.; Missiakas, D.; Schneewind, O. Staphylococcal manipulation of host immune responses. Nat. Rev. Microbiol., 2015, 13(9), 529-543.
[http://dx.doi.org/10.1038/nrmicro3521] [PMID: 26272408]
[31]
Hasan, M.A.; Khan, M.A.; Sharmin, T.; Hasan Mazumder, M.H.; Chowdhury, A.S. Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis. Gene, 2016, 575(1), 132-143.
[http://dx.doi.org/10.1016/j.gene.2015.08.044] [PMID: 26319513]
[32]
Watkins, R.R.; Holubar, M.; David, M.Z. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob. Agents Chemother., 2019, 63(12), AAC.01216-19.
[http://dx.doi.org/10.1128/AAC.01216-19] [PMID: 31527033]
[33]
Gnanamani, A.; Hariharan, P.; Paul-Satyaseela, M. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. In: Frontiers in Staphylococcus aureus; Enany, S.; Alexander, L.C., Eds.; IntechOpen: London, 2017; pp. 4-28.
[34]
Belluzo, B.S.; Abriata, L.A.; Giannini, E.; Mihovilcevic, D.; Dal Peraro, M.; Llarrull, L.I. An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance. Sci. Rep., 2019, 9(1), 19558.
[http://dx.doi.org/10.1038/s41598-019-55923-z] [PMID: 31862951]
[35]
Parastan, R.; Kargar, M.; Solhjoo, K.; Kafilzadeh, F. Staphylococcus aureus biofilms: Structures, antibiotic resistance, inhibition, and vac-cines. Gene Rep., 2020, 20, 100739.
[http://dx.doi.org/10.1016/j.genrep.2020.100739]
[36]
Bull, S.C.; Doig, A.J. Properties of protein drug target classes. PLoS One, 2015, 10(3), e0117955.
[http://dx.doi.org/10.1371/journal.pone.0117955] [PMID: 25822509]
[37]
Naveed, M.; Imran, K.; Mushtaq, A.; Mumtaz, A.S.; Janjua, H.A.; Khalid, N. In silico functional and tumor suppressor role of hypothetical protein PCNXL2 with regulation of the Notch signaling pathway. RSC Advances, 2018, 8(38), 21414-21430.
[http://dx.doi.org/10.1039/C8RA00589C]
[38]
Rasmussen, K.J.; Mattsson, A.H.; Pilely, K.; Asferg, C.A.; Ciofu, O.; Vitved, L.; Koch, C.; Kemp, M. Proteome-wide antigen discovery of novel protective vaccine candidates against Staphylococcus aureus infection. Vaccine, 2016, 34(38), 4602-4609.
[http://dx.doi.org/10.1016/j.vaccine.2016.07.016] [PMID: 27496278]
[39]
Hafner, L.M.; Wilson, D.P.; Timms, P. Development status and future prospects for a vaccine against Chlamydia trachomatis infection. Vaccine, 2014, 32(14), 1563-1571.
[http://dx.doi.org/10.1016/j.vaccine.2013.08.020] [PMID: 23973245]
[40]
Naveed, M.; Mehboob, M.Z.; Hussain, A.; Ikram, K.; Talat, A.; Zeeshan, N. Structural and functional annotation of conserved virulent hypothetical proteins in Chlamydia trachomatis: An in-silico approach. Curr. Bioinform., 2019, 14(4), 344-352.
[http://dx.doi.org/10.2174/1574893613666181107111259]
[41]
Elwell, C.; Mirrashidi, K.; Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol., 2016, 14(6), 385-400.
[http://dx.doi.org/10.1038/nrmicro.2016.30] [PMID: 27108705]
[42]
Sixt, B.S.; Valdivia, R.H. Molecular genetic analysis of Chlamydia species. Annu. Rev. Microbiol., 2016, 70, 179-198.
[http://dx.doi.org/10.1146/annurev-micro-102215-095539] [PMID: 27607551]
[43]
Nie, D.; Hu, Y.; Chen, Z.; Li, M.; Hou, Z.; Luo, X.; Mao, X.; Xue, X. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J. Biomed. Sci., 2020, 27(1), 26-26.
[http://dx.doi.org/10.1186/s12929-020-0617-7] [PMID: 31954394]
[44]
Hänel, F.; Saluz, H.P. Chlamydiacae: Polymorphic membrane proteins make the difference. Virulence, 2016, 7(1), 3-4.
[http://dx.doi.org/10.1080/21505594.2015.1122168] [PMID: 26606544]
[45]
Larzábal, M.; Marques Da Silva, W.; Riviere, N.A.; Cataldi, Á.A. Novel effector protein EspY3 of type III secretion system from entero-hemorrhagic Escherichia coli is localized in actin pedestals. Microorganisms, 2018, 6(4), 112.
[http://dx.doi.org/10.3390/microorganisms6040112] [PMID: 30373243]
[46]
Hoter, A.; Rizk, S.; Naim, H.Y. Heat shock protein 60 in hepatocellular carcinoma: Insights and perspectives. Front. Mol. Biosci., 2020, 7, 60-60.
[http://dx.doi.org/10.3389/fmolb.2020.00060] [PMID: 32351972]
[47]
Snavely, E.A.; Kokes, M.; Dunn, J.D.; Saka, H.A.; Nguyen, B.D.; Bastidas, R.J.; McCafferty, D.G.; Valdivia, R.H. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog. Dis., 2014, 71(3), 336-351.
[http://dx.doi.org/10.1111/2049-632X.12179] [PMID: 24838663]
[48]
Shao, L.; You, C.; Cao, J.; Jiang, Y.; Liu, Y.; Liu, Q. High treatment failure rate is better explained by resistant gene detection than by mi-nimal inhibitory concentrations in patients with urogenital Chlamydia trachomatis infection. Int. J. Infect. Dis., 2020, 96, 121-127.
[http://dx.doi.org/10.1016/j.ijid.2020.03.015]
[49]
Dyawanapelly, S.; Ghodke, S.B.; Vishwanathan, R.; Dandekar, P.; Jain, R. RNA interference-based therapeutics: molecular platforms for infectious diseases. J. Biomed. Nanotechnol., 2014, 10(9), 1998-2037.
[http://dx.doi.org/10.1166/jbn.2014.1929] [PMID: 25992447]
[50]
Poston, T.; Gottlieb, S.; Darville, T. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection. Vaccine, 2019, 37(50), 7289-7294.
[http://dx.doi.org/10.1016/j.vaccine.2017.01.023] [PMID: 28111145]
[51]
Hafner, L.M.; Timms, P. Development of a vaccine for Chlamydia trachomatis: Challenges and current progress. Vaccine (Auckl.), 2015, 5, 45-58.
[52]
Zanzoni, A.; Spinelli, L.; Braham, S.; Brun, C. Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. Microbiome, 2017, 5(1), 89-89.
[http://dx.doi.org/10.1186/s40168-017-0307-1] [PMID: 28793925]
[53]
Corona, P.S.; Lung, M.; Rodriguez-Pardo, D.; Pigrau, C.; Soldado, F.; Amat, C.; Carrera, L. Acute periprosthetic joint infection due to Fu-sobacterium nucleatum in a non-immunocompromised patient. Failure using a Debridement, Antibiotics + Implant retention approach. Anaerobe, 2018, 49, 116-120.
[http://dx.doi.org/10.1016/j.anaerobe.2017.12.010] [PMID: 29307651]
[54]
Sun, C-H.; Li, B-B.; Wang, B.; Zhao, J.; Zhang, X-Y.; Li, T-T.; Li, W-B.; Tang, D.; Qiu, M-J.; Wang, X-C.; Zhu, C-M.; Qian, Z-R. The role of Fusobacterium nucleatum in colorectal cancer: From carcinogenesis to clinical management. Chronic Dis. Transl. Med., 2019, 5(3), 178-187.
[http://dx.doi.org/10.1016/j.cdtm.2019.09.001] [PMID: 31891129]
[55]
Patel, S.; Mathivanan, N.; Goyal, A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed. Pharmacother., 2017, 93, 763-771.
[http://dx.doi.org/10.1016/j.biopha.2017.06.102] [PMID: 28709130]
[56]
Anand, S.; Kaur, H.; Mande, S.S. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front. Microbiol., 2016, 7, 1945-1945.
[http://dx.doi.org/10.3389/fmicb.2016.01945] [PMID: 27994578]
[57]
Liu, J.; Hsieh, C-L.; Gelincik, O.; Devolder, B.; Sei, S.; Zhang, S.; Lipkin, S.M.; Chang, Y-F. Proteomic characterization of outer membrane vesicles from gut mucosa-derived Fusobacterium nucleatum. J. Proteomics, 2019, 195, 125-137.
[http://dx.doi.org/10.1016/j.jprot.2018.12.029] [PMID: 30634002]
[58]
Taddese, R.; Garza, D.R.; Ruiter, L.N.; de Jonge, M.I.; Belzer, C.; Aalvink, S.; Nagtegaal, I.D.; Dutilh, B.E.; Boleij, A. Growth rate altera-tions of human colorectal cancer cells by 157 gut bacteria. Gut Microbes, 2020, 12(1), 1-20.
[http://dx.doi.org/10.1080/19490976.2020.1799733] [PMID: 32915102]
[59]
Munshi, R. Characterization of Outer Membrane Vesicles from Fusobacterium nucleatum. Indian J. Sci. Technol., 2020, 13(2), 161-192.
[http://dx.doi.org/10.17485/ijst/2020/v13i02/148492]
[60]
Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor− κB, and up-regulating expression of microRNA-21. Gastroenterology, 2017, 152(4), 851-866.
[61]
Wu, J.; Li, Q.; Fu, X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl. Oncol., 2019, 12(6), 846-851.
[http://dx.doi.org/10.1016/j.tranon.2019.03.003] [PMID: 30986689]
[62]
Mohammed, M.M.A.; Pettersen, V.K.; Nerland, A.H.; Wiker, H.G.; Bakken, V. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. Anaerobe, 2017, 44, 133-142.
[http://dx.doi.org/10.1016/j.anaerobe.2017.03.002] [PMID: 28285095]
[63]
Ben Lagha, A.; Haas, B.; Grenier, D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci. Rep., 2017, 7, 44815.
[http://dx.doi.org/10.1038/srep44815] [PMID: 28322293]
[64]
Tantivitayakul, P.; Kaypetch, R.; Muadchiengka, T. Thymoquinone inhibits biofilm formation and virulence properties of periodontal bacteria. Arch. Oral Biol., 2020, 115, 104744.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104744] [PMID: 32416351]
[65]
Guevarra, L.A., Jr; Boado, K.J.O.; Ceñidoza, F.B.B.; Imbao, M.R.L.M.; Sia, M.J.G.; Dalmacio, L.M.M. A synthetic peptide analog of in silico-predicted immunogenic epitope unique to dengue virus serotype 2 NS1 antigen specifically binds immunoglobulin G antibodies rai-sed in rabbits. Microbiol. Immunol., 2020, 64(2), 153-161.
[http://dx.doi.org/10.1111/1348-0421.12757] [PMID: 31710119]
[66]
de Andrade, K.Q.; Almeida-da-Silva, C.L.C.; Coutinho-Silva, R. Immunological pathways triggered by Porphyromonas gingivalis and Fusobacterium nucleatum: Therapeutic possibilities? Mediators Inflamm., 2019, 2019, 7241312.
[http://dx.doi.org/10.1155/2019/7241312] [PMID: 31341421]
[67]
Vlăsceanu, G.M.; Holban, A.M.; Grumezescu, A.M. 9 - Alternative strategies to reduce the incidence of severe infections. In: Biofilms and Implantable Medical Devices; Deng, Y.; Lv, W., Eds.; Woodhead Publishing: Sawston, 2017; pp. 195-221.
[68]
Ramos, A.; Hemann, M.T. Drugs, bugs, and cancer: Fusobacterium nucleatum promotes chemoresistance in colorectal cancer. Cell, 2017, 170(3), 411-413.
[http://dx.doi.org/10.1016/j.cell.2017.07.018] [PMID: 28753421]
[69]
Abed, J.; Emgård, J.E.; Zamir, G.; Faroja, M.; Almogy, G.; Grenov, A.; Sol, A.; Naor, R.; Pikarsky, E.; Atlan, K.A.; Mellul, A.; Chaushu, S.; Manson, A.L.; Earl, A.M.; Ou, N.; Brennan, C.A.; Garrett, W.S.; Bachrach, G. Fap2 mediates Fusobacterium nucleatum colorectal ade-nocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe, 2016, 20(2), 215-225.
[http://dx.doi.org/10.1016/j.chom.2016.07.006] [PMID: 27512904]
[70]
Guevarra, L. A.; Afable, A. C. F.; Belza, P. J. O.; Dy, K. J. S.; Lee, S. J. Q.; Sy-Ortin, T. T.; Albano, P. M. S. P. Immunogenicity of a Fap2 peptide mimotope of Fusobacterium nucleatum and its potential use in the diagnosis of colorectal cancer., 2018, 11-11.
[http://dx.doi.org/10.1186/s13027-018-0184-7]
[71]
Ditchburn, J-L.; Hodgkins, R. Yersinia pestis, a problem of the past and a re-emerging threat. Biosafety and Health, 2019, 1(2), 65-70.
[http://dx.doi.org/10.1016/j.bsheal.2019.09.001]
[72]
Zhou, H.; Guo, S. Two cases of imported pneumonic plague in Beijing, China. Medicine (Baltimore), 2020, 99(44), e22932.
[http://dx.doi.org/10.1097/MD.0000000000022932] [PMID: 33126357]
[73]
Reuter, S.; Connor, T.R.; Barquist, L.; Walker, D.; Feltwell, T.; Harris, S.R.; Fookes, M.; Hall, M.E.; Petty, N.K.; Fuchs, T.M.; Corander, J.; Dufour, M.; Ringwood, T.; Savin, C.; Bouchier, C.; Martin, L.; Miettinen, M.; Shubin, M.; Riehm, J.M.; Laukkanen-Ninios, R.; Sihvonen, L.M.; Siitonen, A.; Skurnik, M.; Falcão, J.P.; Fukushima, H.; Scholz, H.C.; Prentice, M.B.; Wren, B.W.; Parkhill, J.; Carniel, E.; Achtman, M.; McNally, A.; Thomson, N.R. Parallel independent evolution of pathogenicity within the genus Yersinia. Proc. Natl. Acad. Sci. USA, 2014, 111(18), 6768-6773.
[http://dx.doi.org/10.1073/pnas.1317161111] [PMID: 24753568]
[74]
Eichelberger, K.R.; Sepúlveda, V.E.; Ford, J.; Selitsky, S.R.; Mieczkowski, P.A.; Parker, J.S.; Goldman, W.E. Tn-Seq analysis identifies genes important for Yersinia pestis adherence during primary pneumonic plague. MSphere, 2020, 5(4), e00715-e00720.
[http://dx.doi.org/10.1128/mSphere.00715-20] [PMID: 32759339]
[75]
Ponnusamy, D.; Fitts, E.C.; Sha, J.; Erova, T.E.; Kozlova, E.V.; Kirtley, M.L.; Tiner, B.L.; Andersson, J.A.; Chopra, A.K. High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect. Immun., 2015, 83(5), 2065-2081.
[http://dx.doi.org/10.1128/IAI.02913-14] [PMID: 25754198]
[76]
Hänsch, S.; Cilli, E.; Catalano, G.; Gruppioni, G.; Bianucci, R.; Stenseth, N. C.; Bramanti, B.; Pallen, M. J. The pla gene, encoding plasmi-nogen activator, is not specific to Yersinia pestis., 2015, 8, 535-535.
[http://dx.doi.org/10.1186/s13104-015-1525-x]
[77]
Atkinson, S.; Williams, P. Yersinia virulence factors - a sophisticated arsenal for combating host defences. F1000 Res., 2016, 5, 5.
[http://dx.doi.org/10.12688/f1000research.8466.1] [PMID: 27347390]
[78]
Plano, G.V.; Schesser, K. The Yersinia pestis type III secretion system: Expression, assembly and role in the evasion of host defenses. Immunol. Res., 2013, 57(1-3), 237-245.
[http://dx.doi.org/10.1007/s12026-013-8454-3] [PMID: 24198067]
[79]
Sun, W.; Six, D.A.; Reynolds, C.M.; Chung, H.S.; Raetz, C.R.H.; Curtiss, R. Pathogenicity of Yersinia pestis synthesis of 1-dephosphorylated lipid A. Infect. Immun., 2013, 81(4), 1172-1185.
[80]
Nelson, C.A.; Fleck-Derderian, S.; Cooley, K.M.; Meaney-Delman, D.; Becksted, H.A.; Russell, Z.; Renaud, B.; Bertherat, E.; Mead, P.S. Antimicrobial treatment of human plague: A systematic review of the literature on individual cases, 1937-2019. Clin. Infect. Dis., 2020, 70(70)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1093/cid/ciz1226] [PMID: 32435802]
[81]
Yang, R. Plague: Recognition, treatment, and prevention. J. Clin. Microbiol., 2017, 56(1), e01519-e17.
[PMID: 29070654]
[82]
Shybut, T.B.; Puckett, E.R. Triceps ruptures after fluoroquinolone antibiotics: A report of 2 cases. Sports Health, 2017, 9(5), 474-476.
[http://dx.doi.org/10.1177/1941738117713686] [PMID: 28610536]
[83]
Oliveira, D.; Borges, A.; Simões, M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel), 2018, 10(6), E252.
[http://dx.doi.org/10.3390/toxins10060252] [PMID: 29921792]
[84]
Kaasch, A.J.; Barlow, G.; Edgeworth, J.D.; Fowler, V.G., Jr; Hellmich, M.; Hopkins, S.; Kern, W.V.; Llewelyn, M.J.; Rieg, S.; Rodriguez-Baño, J.; Scarborough, M.; Seifert, H.; Soriano, A.; Tilley, R.; Tőrők, M.E.; Weiß, V.; Wilson, A.P.R.; Thwaites, G.E. Staphylococcus au-reus bloodstream infection: A pooled analysis of five prospective, observational studies. J. Infect., 2014, 68(3), 242-251.
[http://dx.doi.org/10.1016/j.jinf.2013.10.015] [PMID: 24247070]
[85]
Aliberti, S.; Reyes, L.F.; Faverio, P.; Sotgiu, G.; Dore, S.; Rodriguez, A.H.; Soni, N.J.; Restrepo, M.I. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): An international, observational cohort study. Lancet Infect. Dis., 2016, 16(12), 1364-1376.
[http://dx.doi.org/10.1016/S1473-3099(16)30267-5] [PMID: 27593581]
[86]
Azari, A.A.; Barney, N.P. Conjunctivitis: A systematic review of diagnosis and treatment. JAMA, 2013, 310(16), 1721-1729.
[http://dx.doi.org/10.1001/jama.2013.280318] [PMID: 24150468]
[87]
Fairhead, C.E.L.; Hampson, A.; Dwyer-Hemmings, L.; Vasdev, N. Is non-chlamydial non-gonococcal urethritis associated with significant clinical complications in men? A systematic review. Curr. Urol., 2020, 14(1), 1-13.
[http://dx.doi.org/10.1159/000499266] [PMID: 32398991]
[88]
Dean, D. Chlamydia trachomatis Pathogenicity and Disease. In: Chlamydial Infection: A Clinical and Public Health Perspective; Black, C.M., Ed.; Karger: Basel, 2013; 7, pp. 25-60.