Design and Facile Synthesis of Spiro-s-tetrazine Derivatives of 2,4- diphenyl-3-azabicyclo[3.3.1]nonane-9-one

Page: [332 - 338] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Literature survey suggested various methods of synthesis of the 3- azabicyclo [3.3.1] nonanes which include, Mannich reaction, α, α'-Annelation of Cyclic Ketones or through Enamines, Michael addition, Intramolecular Cyclizations, etc. However, a mechanism following a Michael addition path through the formation of the dibenzylidene cyclohexanone intermediate can not be ignored. Thus to ensure the mechanistic pathway for the formation of 2,4-diphenyl- 3-azabicyclo[3.3.1]nonan-9-one and to understand the reactivity of a conformationally and biologically important molecule for the synthesis of spiro-s-tetrazine derivatives and its further functionalization with thiazole and thiazolidinone derivatives the present work has been undertaken.

Methods: Direct reaction of dibenzylidene cyclohexanone and ammonium acetate has been tried to get the confirmation of Mannich/ Michael reaction pathway for the formation of 2,4-diphenyl-3- azabicyclo[3.3.1]nonan-9-one. Synthesis of the spiro-s-tetrazine derivative has been accomplished by the simple condensation reaction of azabicyclic system and thiocarbohydrazide (TCH). Simple methods have been adopted for the installation of heterocyclic moieties like thiazolidinone, thiazole.

Results: Failure of the attempts to prepare 2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-onedirectly from dibenzylidene cyclohexanone ruins the possibility of Michael addition reaction and supports the formation of the product through Mannich reaction. Synthesis of the spiro derivatives containing tetrazine, thiazole, thiazolidinone moieties were achieved by using simple techniques and products were obtained in good yield. FTIR, NMR spectroscopy are used for the characterization of all the molecules. Formation of 2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-onewas confirmed by using some additional data like mass and single crystal XRD.

Conclusion: Confirmation of the mechanistic route for the 2 2,4-diphenyl-3- azabicyclo[3.3.1]nonan-9-one was achieved and simple methods for the formation of spiro derivatives containing tetrazine, thiazole, thiazolidinone were established.

Keywords: Diphenyl-3-azabicyclo[3.3.1]nonan-9-one, spiroheterocycles, tetrazines, thiazolidinone, mannich reaction, azabicyclic ketone.

Graphical Abstract

[1]
(a) Shen, D.M.; Shu, M.; Chapman, K.T. Versatile and efficient solid-phase syntheses of pyrazoles and isoxazoles. Org. Lett.,, 2000, 2(18), 2789-2792.
[http://dx.doi.org/10.1021/ol006197h] [PMID: 10964366];
(b) Chavan, V. P.; Mane, A. S.; Shingare, M. S. Synthesis of new O,O -dialkyl-O-coumarinophosphorothioates and their pesticidal bioassay against HeLicoverpa armigera. Indian J. Chem., 2001, 40(B), 339-341.
[2]
Haviv, F.; Ratajczyk, J.D.; DeNet, R.W.; Kerdesky, F.A.; Walters, R.L.; Schmidt, S.P.; Holms, J.H.; Young, P.R.; Carter, G.W. 3-[1-(2-Benzoxazolyl)hydrazino]propanenitrile derivatives: Inhibitors of immune complex induced inflammation. J. Med. Chem., 1988, 31(9), 1719-1728.
[http://dx.doi.org/10.1021/jm00117a010] [PMID: 2970549]
[3]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[4]
Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.; Geschke, F. seco-Cyclothialidines: New concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. J. Med. Chem., 2001, 44(4), 619-626.
[http://dx.doi.org/10.1021/jm0010623] [PMID: 11170652]
[5]
Ates, O.; Altintas, H.; Otuk, G. Synthesis and Antimicrobial Activity of 4-Carbethoxymethyl-2-[(a-haloacyl)amino] thiazoles and 5-Nonsubstituted/substituted 2-[(4-Carbethoxymethylthiazol-2-yl) imino]-4-thiazolidinones. Arzneim.-. Forsch. Drug Res., 2000, 50, 569-575.
[PMID: 10918953]
[6]
Kocabalkanli, A.; Ates, O.; Otük, G. Synthesis of Mannich bases of some 2,5-disubstituted 4-thiazolidinones and evaluation of their antimicrobial activities. Arch. Pharm. (Weinheim), 2001, 334(2), 35-39.
[http://dx.doi.org/10.1002/1521-4184(200102)334:2<35:AID-ARDP35>3.0.CO;2-4] [PMID: 11268772]
[7]
Küçükgüzel, S.G.; Oruç, E.E.; Rollas, S.; Sahin, F.; Ozbek, A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem., 2002, 37(3), 197-206.
[http://dx.doi.org/10.1016/S0223-5234(01)01326-5] [PMID: 11900864]
[8]
Bonde, C.G.; Gaikwad, N.J. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg. Med. Chem., 2004, 12(9), 2151-2161.
[http://dx.doi.org/10.1016/j.bmc.2004.02.024] [PMID: 15080915]
[9]
Marco, E.; Gago, F. DNA structural similarity in the 2:1 complexes of the antitumor drugs trabectedin (Yondelis) and chromomycin A3 with an oligonucleotide sequence containing two adjacent TGG binding sites on opposing strands. Mol. Pharmacol., 2005, 68(6), 1559-1567.
[http://dx.doi.org/10.1124/mol.105.015685] [PMID: 16150929]
[10]
Herrero, A.B.; Martín-Castellanos, C.; Marco, E.; Gago, F.; Moreno, S. Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin. Cancer Res., 2006, 66(16), 8155-8162.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0179] [PMID: 16912194]
[11]
Saczewski, F.; Maruszak, M.; Bednarski, P.J. Synthesis and cytotoxic activity of imidazo[1,2-a]-1,3,5-triazine analogues of 6-mercaptopurine. Arch. Pharm. (Weinheim), 2008, 341(2), 121-125.
[http://dx.doi.org/10.1002/ardp.200700176] [PMID: 18186543]
[12]
Venkatachalam, T.K.; Sudbeck, E.A.; Mao, C.; Uckun, F.M. Anti-HIV activity of aromatic and heterocyclic thiazolyl thiourea compounds. Bioorg. Med. Chem. Lett., 2001, 11(4), 523-528.
[http://dx.doi.org/10.1016/S0960-894X(01)00011-7] [PMID: 11229762]
[13]
Barreca, M.L.; Chimirri, A.; De Luca, L.; Monforte, A.M.; Monforte, P.; Rao, A.; Zappalà, M.; Balzarini, J.; De Clercq, E.; Pannecouque, C.; Witvrouw, M. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg. Med. Chem. Lett., 2001, 11(13), 1793-1796.
[http://dx.doi.org/10.1016/S0960-894X(01)00304-3] [PMID: 11425562]
[14]
Rao, A.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-(thi)one derivatives. Farmaco, 2002, 57(9), 747-751.
[http://dx.doi.org/10.1016/S0014-827X(02)01268-5] [PMID: 12385525]
[15]
Rao, A.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Synthesis and anti-HIV activity of 2,3-diaryl-1,3-thiazolidin-4-ones. Farmaco, 2003, 58(2), 115-120.
[http://dx.doi.org/10.1016/S0014-827X(02)00024-1] [PMID: 12581777]
[16]
Barreca, M.L.; Chimirri, A.; De Clercq, E.; De Luca, L.; Monforte, A.M.; Monforte, P.; Rao, A.; Zappalà, M. Anti-HIV agents: Design and discovery of new potent RT inhibitors. Farmaco, 2003, 58(3), 259-263.
[http://dx.doi.org/10.1016/S0014-827X(03)00024-7] [PMID: 12620421]
[17]
Rao, A.; Balzarini, J.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Synthesis of new 2,3-diaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Farmaco, 2004, 59(1), 33-39.
[http://dx.doi.org/10.1016/j.farmac.2003.09.001] [PMID: 14751314]
[18]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N.N. -(4-substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[19]
Hallas, G.; Choi, J.H. Synthesis and spectral properties of azo dyes derived from 2-aminothiophenes and 2-aminothiazoles. Dyes Pigments, 1999, 42(3), 249-265.
[http://dx.doi.org/10.1016/S0143-7208(99)00031-5]
[20]
Ergenç, N.; Capan, G.; Günay, N.S.; Ozkirimli, S.; Güngör, M.; Ozbey, S.; Kendi, E. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch. Pharm. (Weinheim), 1999, 332(10), 343-347.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199910)332:10<343:: AID-ARDP343>3.0.CO;2-0] [PMID: 10575366]
[21]
Xu, F.; Yang, Z.Z.; Jiang, J.R.; Pan, W.G.; Yang, X.L.; Wu, J.Y.; Zhu, Y.; Wang, J.; Shou, Q.Y.; Wu, H.G. Synthesis, antitumor evaluation and molecular docking studies of [1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine derivatives. Bioorg. Med. Chem. Lett., 2016, 26(13), 3042-3047.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.007] [PMID: 27184766]
[22]
Ramil, C.P.; Dong, M.; An, P.; Lewandowski, T.M.; Yu, Z.; Miller, L.J.; Lin, Q. Spirohexene-tetrazine ligation enables bioorthogonal labeling of class B G protein-coupled receptors in live cells. J. Am. Chem. Soc., 2017, 139(38), 13376-13386.
[http://dx.doi.org/10.1021/jacs.7b05674] [PMID: 28876923]
[23]
Mohanta, P.P.; Sahu, S.; Majumdar, P.; Behera, A.K. Diverse synthetic approach for sulfur and nitrogen-containing spiroheterocycles from dimedone and their pharmacological evaluation. Synth. Commun., 2019, 49, 2941-2951.
[http://dx.doi.org/10.1080/00397911.2019.1650281]
[24]
Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L. Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev., 2017, 46(16), 4895-4950.
[http://dx.doi.org/10.1039/C7CS00184C] [PMID: 28660957]
[25]
Li, Y.; Alain-Rizzo, V.; Galmiche, L.; Audebert, P.; Miomandre, F.; Louarn, G.; Bozlar, M.; Pope, M.A.; Dabbs, D.M.; Aksay, I.A. Functionalization of graphene oxide by tetrazine derivatives: A versatile approach toward covalent bridges between graphene sheets. Chem. Mater., 2015, 27(12), 4298-4310.
[http://dx.doi.org/10.1021/acs.chemmater.5b00672]
[26]
Behera, R.K.; Pati, A.; Patra, M.; Behera, A.K. Microwave-assisted synthesis of spiro(cycloalkane thiazolo-s-tetrazine). Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(11), 2827-2834.
[http://dx.doi.org/10.1080/10426500802590038]
[27]
Pati, A.; Mohapatra, S.; Behera, R.K. Synthesis of spiroheterocycles derived from benzo[f]chromanone. J. Heterocycl. Chem., 2011, 48(6), 1234-1237.
[http://dx.doi.org/10.1002/jhet.636]
[28]
Baliah, V.; Jeyaraman, R. Synthesis of some 3-azabicyclo [3.3.1] nonan-9-one. Indian J. Chem., 1971, 9, 1020-1022.
[29]
Jeyaraman, R.; Avila, S. Chemistry of 3-azabicyclo[3.3.1]nonanes. Chem. Rev., 1981, 81(2), 149-174.
[http://dx.doi.org/10.1021/cr00042a002]
[30]
Martinez, E.; Campo, C.; Trigo, G.G. Synthesis of spyrohydantoines derivatives of 2,4-diphenyl-3-azabicyclo[3.3.1]nonane and 7,9-Diphenyl-8-azabicyclo[4.3.1]decane via Bucherer Reaction in N,N-Dimethylformamide: Influence of the temperature and stereochemical path. Helv. Chim. Acta, 1983, 66, 338-341.
[http://dx.doi.org/10.1002/hlca.19830660129]
[31]
Campo, C.; Martinez, E.; Trigo, G.G. Facile synthesis of derivatives of 2,4-diphenyl-3-azabicyclo[3.3.1]nonane and 7,9-diphenyl-8-azabicyclo[4.3.1]decane. Helv. Chim. Acta, 1984, 67(5), 1291-1297.
[http://dx.doi.org/10.1002/hlca.19840670515]
[32]
Cox, P.J.; McCabe, P.H.; Milne, N.J.; Sim, G.A. Conformations of 3-azabicyclo[3.3.1]nonane derivatives. J. Chem. Soc. Chem. Commun., 1985, (10), 626-628.
[http://dx.doi.org/10.1039/c39850000626]
[33]
Arias, M.S.; Smeyers, Y.G.; Fernandez, M.J.; Smeyers, N.J.; Galvez, E.; Fonseca, I.; Sanz-Aparicio, J. Conformational Study of 2,4-Diaryl-3-azabicyclo[3.3.1]nonan-9-ones and their 3-Methyl derivatives by Quantum mechanical calculations, NMR, and X-ray crystallography. J. Org. Chem., 1994, 59(9), 2565-2569.
[http://dx.doi.org/10.1021/jo00088a044]
[34]
Ramachandran, R.; Rani, M.; Kabilan, S. Design, synthesis and biological evaluation of novel 2-[(2,4-diaryl-3-azabicyclo[3.3.1] nonan-9-ylidene)hydrazono]-1,3-thiazolidin-4-ones as a new class of antimicrobial agents. Bioorg. Med. Chem. Lett., 2009, 19(10), 2819-2823.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.093] [PMID: 19361987]
[35]
Rani, M.; Ramachandran, R.; Kabilan, S. Efficient synthesis, spectral analysis and antimicrobial studies of nitrogen and sulfur containing spiro heterocycles from 2,4-diaryl-3-azabicyclo[3.3.1] nonan-9-ones. Bioorg. Med. Chem. Lett., 2010, 20(22), 6637-6643.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.021] [PMID: 20933408]
[36]
Parthiban, P.; Rathika, P.; Park, K.S.; Jeong, Y.T. Synthesis, complete NMR spectral assignments, and antifungal screening of new 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-one oxime derivatives. Monatsh. Chem., 2010, 141(1), 79-93.
[http://dx.doi.org/10.1007/s00706-009-0221-8]
[37]
Sankar, C.; Pandiarajan, K. Synthesis and anti-tubercular and antimicrobial activities of some 2r,4c-diaryl-3-azabicyclo[3.3.1]nonan-9-one N-isonicotinoylhydrazone derivatives. Eur. J. Med. Chem., 2010, 45(11), 5480-5485.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.024] [PMID: 20822833]
[38]
Parthiban, P.; Subalakshmi, V.; Balasubramanian, K.; Islam, M.N.; Choi, J.S.; Jeong, Y.T. Facile synthesis and stereochemical investigation of Mannich base derivatives: Evaluation of antioxidant property and antituberculostic potency. Bioorg. Med. Chem. Lett., 2011, 21(8), 2287-2296.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.103] [PMID: 21429744]
[39]
Umamatheswari, S.; Kabilan, S. Synthesis and antimicrobial studies of novel 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-one 4'-phenyl-thiosemicarbazones. J. Enzyme Inhib. Med. Chem., 2011, 26(3), 430-439.
[http://dx.doi.org/10.3109/14756366.2010.525508] [PMID: 21028943]
[40]
Garcias-Morales, C.; Ortegón-Reyna, D.; Ariza-Castolo, A. Investigation of the role of stereoelectronic effects in the conformation of piperidones by NMR spectroscopy and X-ray diffraction. Beilstein J. Org. Chem., 2015, 11, 1973-1984.
[http://dx.doi.org/10.3762/bjoc.11.213] [PMID: 26664617]
[41]
Lamon, R.W. Monohydrazones of thiocarbohydrazide. Occurrence of 1,4,5,6-tetrahydro-3(2H)-s-tetrazinethione structures. J. Org. Chem., 1969, 34(3), 756-758.
[http://dx.doi.org/10.1021/jo01255a068]