Recent Advancement of Polymersomes as Drug Delivery Carrier

Page: [1621 - 1631] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Biomedical applications of polymersomes have been explored, including drug and gene delivery, insulin delivery, hemoglobin delivery, the delivery of anticancer agents, and various diagnostic purposes.

Objectives: Polymersomes, which are self-assembled amphiphilic block copolymers, have received a lot of attention in drug delivery approaches. This review represents the methods of preparation of polymersomes, including thin-film rehydration, electroformation, double emulsion, gel-assisted rehydration, PAPYRUS method, and solvent injection methods, including various therapeutic applications of polymersomes.

Methods: Data was searched from PubMed, Google Scholar, and Science Direct through searching of the following keywords: Polymersomes, methods of preparation, amphiphilic block copolymers, anticancer drug delivery.

Results: Polymersomes provide both hydrophilic and hydrophobic drug delivery to a targeted site, increasing the formulation's stability and reducing the cytotoxic side effects of drugs.

Conclusion: Polymersomes have the potential to be used in a variety of biological applications, including drug and gene delivery, insulin delivery, hemoglobin delivery, delivery of anticancer agents, as well as in various diagnostic purposes. Recently, polymersomes have been used more frequently because of their stability, reducing the encapsulated drug's leakage, site-specific drug delivery, and increasing the bioavailability of the drugs and different diagnostic purposes. The liposomes encapsulate only hydrophilic drugs, but polymersomes encapsulate both hydrophilic and hydrophobic drugs in their cores.

Keywords: Polymersomes, block copolymer, method of preparation, anticancer, drug delivery, thin-film rehydration, electroformation, double emulsion, PAPYRUS, solvent injection.

[1]
Zavvar T, Babaei M, Abnous K, et al. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int J Pharm 2020; 578: 119091.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119091] [PMID: 32007591]
[2]
Yin H, Kang HC, Huh KM, Bae YH. Effects of cholesterol incorporation on the physicochemical, colloidal, and biological characteristics of pH-sensitive AB2 miktoarm polymer-based polymersomes. Colloids Surf B Biointerfaces 2014; 116: 128-37.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.041] [PMID: 24463148]
[3]
Daubian D, Gaitzsch J, Meier W. Synthesis and complex self-assembly of amphiphilic block copolymers with a branched hydrophobic poly (2-oxazoline) into multicompartment micelles, pseudo-vesicles and yolk/shell nanoparticles. Polym Chem 2020; 11(6): 1237-48.
[http://dx.doi.org/10.1039/C9PY01559K]
[4]
Aibani N, Khan TN, Callan B. Liposome mimicking polymersomes; A comparative study of the merits of polymersomes in terms of formulation and stability. Int J Pharm X 2019; 2: 100040.
[http://dx.doi.org/10.1016/j.ijpx.2019.100040] [PMID: 31956860]
[5]
Soussan E, Cassel S, Blanzat M, Rico-Lattes I. Drug delivery by soft matter: Matrix and vesicular carriers. Angew Chem Int Ed Engl 2009; 48(2): 274-88.
[http://dx.doi.org/10.1002/anie.200802453] [PMID: 19072808]
[6]
Caon T, Porto LC, Granada A, et al. Chitosan-decorated polystyrene-b-poly(acrylic acid) polymersomes as novel carriers for topical delivery of finasteride. Eur J Pharm Sci 2014; 52: 165-72.
[http://dx.doi.org/10.1016/j.ejps.2013.11.008] [PMID: 24262075]
[7]
Najer A, Wu D, Vasquez D, Palivan CG, Meier W. Polymer nanocompartments in broad-spectrum medical applications. Nanomedicine (Lond) 2013; 8(3): 425-47.
[http://dx.doi.org/10.2217/nnm.13.11] [PMID: 23477335]
[8]
Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev 2012; 41(18): 5969-85.
[http://dx.doi.org/10.1039/c2cs35115c] [PMID: 22776960]
[9]
Bhagwat R, Vaidhya I. Novel drug delivery systems: An overview. Int J Pharm Sci Res 2013; 4(3): 970.
[10]
Gomez A. Development of soft-matter delivery systems: Coupling pH responsive polymers to porous silica particles. PhD Thesis. Albuquerque, New Mexico: The University of New Mexico 2015.
[11]
Anajafi T, Scott MD, You S, et al. Acridine orange conjugated polymersomes for simultaneous nuclear delivery of gemcitabine and dox-orubicin to pancreatic cancer cells. Bioconjug Chem 2016; 27(3): 762-71.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00694] [PMID: 26848507]
[12]
Hu M, Shen Y, Zhang L, Qiu L. Polymersomes via self-assembly of amphiphilic β-cyclodextrin-centered triarm star polymers for en-hanced oral bioavailability of water-soluble chemotherapeutics. Biomacromolecules 2016; 17(3): 1026-39.
[http://dx.doi.org/10.1021/acs.biomac.5b01676] [PMID: 26840277]
[13]
Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65(3): 259-69.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.009] [PMID: 17196803]
[14]
Lee JS, Feijen J. Polymersomes for drug delivery: Design, formation and characterization. J Control Release 2012; 161(2): 473-83.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.005] [PMID: 22020381]
[15]
Lee JCM, Bermudez H, Discher BM, et al. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol Bioeng 2001; 73(2): 135-45.
[http://dx.doi.org/10.1002/bit.1045] [PMID: 11255161]
[16]
Arifin DR, Palmer AF. Polymersome encapsulated hemoglobin: A novel type of oxygen carrier. Biomacromolecules 2005; 6(4): 2172-81.
[http://dx.doi.org/10.1021/bm0501454] [PMID: 16004460]
[17]
Rameez S, Bamba I, Palmer AF. Large scale production of vesicles by hollow fiber extrusion: A novel method for generating poly-mersome encapsulated hemoglobin dispersions. Langmuir 2010; 26(7): 5279-85.
[http://dx.doi.org/10.1021/la9036343] [PMID: 20000689]
[18]
Sharma AK, Prasher P, Aljabali AA, et al. Emerging era of “somes”: Polymersomes as versatile drug delivery carrier for cancer diagnos-tics and therapy. Drug Deliv Transl Res 2020; 10(5): 1171-90.
[http://dx.doi.org/10.1007/s13346-020-00789-2] [PMID: 32504410]
[19]
Pang Z, Lu W, Gao H, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release 2008; 128(2): 120-7.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.007] [PMID: 18436327]
[20]
Katz JS, Zhong S, Ricart BG, Pochan DJ, Hammer DA, Burdick JA. Modular synthesis of biodegradable diblock copolymers for design-ing functional polymersomes. J Am Chem Soc 2010; 132(11): 3654-5.
[http://dx.doi.org/10.1021/ja910606y] [PMID: 20184323]
[21]
Katz JS, Levine DH, Davis KP, Bates FS, Hammer DA, Burdick JA. Membrane stabilization of biodegradable polymersomes. Langmuir 2009; 25(8): 4429-34.
[http://dx.doi.org/10.1021/la803769q] [PMID: 19239232]
[22]
Ghoroghchian PP, Frail PR, Susumu K, et al. Near-infrared-emissive polymersomes: Self-assembled soft matter for in vivo optical imag-ing. Proc Natl Acad Sci USA 2005; 102(8): 2922-7.
[http://dx.doi.org/10.1073/pnas.0409394102] [PMID: 15708979]
[23]
Meng F, Engbers GH, Feijen J. Biodegradable polymersomes as a basis for artificial cells: Encapsulation, release and targeting. J Control Release 2005; 101(1-3): 187-98.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.026] [PMID: 15588904]
[24]
Zhao Y, Trewyn BG, Slowing II, Lin VS-Y. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J Am Chem Soc 2009; 131(24): 8398-400.
[http://dx.doi.org/10.1021/ja901831u] [PMID: 19476380]
[25]
Chen W, Meng F, Cheng R, Zhong Z. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. J Control Release 2010; 142(1): 40-6.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.023] [PMID: 19804803]
[26]
Sanson C, Schatz C, Le Meins J-F, et al. A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J Control Release 2010; 147(3): 428-35.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.123] [PMID: 20692308]
[27]
Lomas H, Massignani M, Abdullah KA, et al. Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss 2008; 139: 143-59.
[http://dx.doi.org/10.1039/b717431d] [PMID: 19048994]
[28]
Hearnden V, Lomas H, Macneil S, et al. Diffusion studies of nanometer polymersomes across tissue engineered human oral mucosa. Pharm Res 2009; 26(7): 1718-28.
[http://dx.doi.org/10.1007/s11095-009-9882-6] [PMID: 19387800]
[29]
Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 2007; 8(6): 1966-72.
[http://dx.doi.org/10.1021/bm070085x] [PMID: 17497921]
[30]
Napoli A, Boerakker MJ, Tirelli N, Nolte RJ, Sommerdijk NA, Hubbell JA. Glucose-oxidase based self-destructing polymeric vesicles. Langmuir 2004; 20(9): 3487-91.
[http://dx.doi.org/10.1021/la0357054] [PMID: 15875368]
[31]
Najafi F, Sarbolouki MN. Biodegradable micelles/polymersomes from fumaric/sebacic acids and poly(ethylene glycol). Biomaterials 2003; 24(7): 1175-82.
[http://dx.doi.org/10.1016/S0142-9612(02)00487-8] [PMID: 12527258]
[32]
Jun YJ, Park MK, Jadhav VB, et al. Tripodal amphiphiles tunable for self-assembly to polymersomes. J Control Release 2010; 142(1): 132-7.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.004] [PMID: 19822179]
[33]
Yin H, Kang S-W, Bae YH. Polymersome formation from Ab2 type 3-miktoarm star copolymers. Macromolecules 2009; 42(19): 7456-64.
[http://dx.doi.org/10.1021/ma901701w]
[34]
Jain JP, Jatana M, Chakrabarti A, Kumar N. Amphotericin-B-loaded polymersomes formulation (PAMBO) based on (PEG)3-PLA copol-ymers: An in vivo evaluation in a murine model. Mol Pharm 2011; 8(1): 204-12.
[http://dx.doi.org/10.1021/mp100267k] [PMID: 21138276]
[35]
Zheng C, Qiu L, Zhu K. Novel polymersomes based on amphiphilic graft polyphosphazenes and their encapsulation of water-soluble anti-cancer drug. Polymer (Guildf) 2009; 50(5): 1173-7.
[http://dx.doi.org/10.1016/j.polymer.2009.01.004]
[36]
Rideau E, Wurm FR, Landfester K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym Chem 2018; 9(44): 5385-94.
[http://dx.doi.org/10.1039/C8PY00992A]
[37]
Bartenstein JE, Robertson J, Battaglia G, Briscoe WH. Stability of polymersomes prepared by size exclusion chromatography and extru-sion. Colloids Surf A Physicochem Eng Asp 2016; 506: 739-46.
[http://dx.doi.org/10.1016/j.colsurfa.2016.07.032]
[38]
Sui X, Kujala P, Janssen G-J, de Jong E, Zuhorn IS, van Hest JC. Robust formation of biodegradable polymersomes by direct hydration. Polym Chem 2015; 6(5): 691-6.
[http://dx.doi.org/10.1039/C4PY01288G]
[39]
Kunzler C, Handschuh-Wang S, Roesener M, Schönherr H. Giant biodegradable poly(ethylene glycol)-block-Poly(ε-caprolactone) poly-mersomes by electroformation. Macromol Biosci 2020; 20(6): e2000014.
[http://dx.doi.org/10.1002/mabi.202000014] [PMID: 32363777]
[40]
Angelova MI, Dimitrov DS. Liposome electroformation. Faraday Discuss 1986; 81: 303-11.
[http://dx.doi.org/10.1039/dc9868100303]
[41]
Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W. Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes. Polymer (Guildf) 2005; 46(11): 3540-63.
[http://dx.doi.org/10.1016/j.polymer.2005.02.083]
[42]
Lefley J, Waldron C, Becer CR. Macromolecular design and preparation of polymersomes. Polym Chem 2020; 11(45): 7124-36.
[http://dx.doi.org/10.1039/D0PY01247E]
[43]
Danafar H, Rostamizadeh K, Davaran S, Hamidi M. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: Preparation and evaluation with atorvastatin and lisinopril. Drug Dev Ind Pharm 2014; 40(10): 1411-20.
[http://dx.doi.org/10.3109/03639045.2013.828223] [PMID: 23944838]
[44]
Saremi B. Synthesis of giant unilamellar vesicles (GUV) from RSE liposomes in high and low ionic strength buffers 2010.
[45]
Dao TPT, Fauquignon M, Fernandes F, et al. Membrane properties of giant polymer and lipid vesicles obtained by electroformation and PVA gel-assisted hydration methods. Colloids Surf A Physicochem Eng Asp 2017; 533: 347-53.
[http://dx.doi.org/10.1016/j.colsurfa.2017.09.005]
[46]
Kamat NP, Lee MH, Lee D, Hammer DA. Micropipette aspiration of double emulsion-templated polymersomes. Soft Matter 2011; 7(21): 9863-6.
[http://dx.doi.org/10.1039/c1sm06282d]
[47]
Shum HC, Zhao YJ, Kim SH, Weitz DA. Multicompartment polymersomes from double emulsions. Angew Chem Int Ed Engl 2011; 50(7): 1648-51.
[http://dx.doi.org/10.1002/anie.201006023] [PMID: 21308924]
[48]
Kim MR, Cheong IW. Stimuli-triggered formation of polymersomes from w/o/w multiple double emulsion droplets containing poly (sty-rene)-block-poly (n-isopropylacrylamide-co-spironaphth-oxazine methacryloyl). Langmuir 2016; 32(36): 9223-8.
[http://dx.doi.org/10.1021/acs.langmuir.6b02178] [PMID: 27584798]
[49]
Soomherun N, Kreua-Ongarjnukool N, Chumnanvej S, Thumsing S. Encapsulation of nicardipine hydrochloride and release from biodegradable poly (d, l-lactic-co-glycolic acid) microparticles by double emulsion process: Effect of emulsion stability and different parameters on drug entrapment. Int J Biomater 2017; 2017.
[50]
Winkler JS, Barai M, Tomassone MS. Dual drug-loaded biodegradable Janus particles for simultaneous co-delivery of hydrophobic and hydrophilic compounds. Exp Biol Med (Maywood) 2019; 244(14): 1162-77.
[http://dx.doi.org/10.1177/1535370219876554] [PMID: 31617755]
[51]
Hayward RC, Utada AS, Dan N, Weitz DA. Dewetting instability during the formation of polymersomes from block-copolymer-stabilized double emulsions. Langmuir 2006; 22(10): 4457-61.
[http://dx.doi.org/10.1021/la060094b] [PMID: 16649747]
[52]
Oltra NS, Nair P, Discher DE. From stealthy polymersomes and filomicelles to “self” peptide-nanoparticles for cancer therapy. Annu Rev Chem Biomol Eng 2014; 5(1): 281-99.
[http://dx.doi.org/10.1146/annurev-chembioeng-060713-040447] [PMID: 24910917]
[53]
Mirzaei Garakani T, Liu Z, Glebe U, et al. In situ monitoring of membrane protein insertion into block copolymer vesicle membranes and their spreading via potential-assisted approach. ACS Appl Mater Interfaces 2019; 11(32): 29276-89.
[http://dx.doi.org/10.1021/acsami.9b09302] [PMID: 31329408]
[54]
Vijayakrishna K, Mecerreyes D, Gnanou Y, Taton D. Polymeric vesicles and micelles obtained by self-assembly of ionic liquid-based block copolymers triggered by anion or solvent exchange. Macromolecules 2009; 42(14): 5167-74.
[http://dx.doi.org/10.1021/ma900549k]
[55]
Volodkin D, Mohwald H, Voegel J-C, Ball V. Coating of negatively charged liposomes by polylysine: Drug release study. J Control Release 2007; 117(1): 111-20.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.021] [PMID: 17169458]
[56]
Greene AC, Sasaki DY, Bachand GD. Forming giant-sized polymersomes using gel-assisted rehydration. J Vis Exp 2016; 111(111): 1-7.
[PMID: 27285812]
[57]
Greene AC, Bachand M, Bachand GD, et al. Building robust protocells from giant polymersomes made with gel-assisted rehydration Sandia National Lab. Albuquerque, NM, United States: SNL-NM 2016.
[58]
Ahmed M. Effects of salt concentrations on the size distribution of giant unilamellar vesicles. Dhaka: Bangladesh University of Engi-neering and Technology 2019.
[59]
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem Soc Rev 2018; 47(23): 8572-610.
[http://dx.doi.org/10.1039/C8CS00162F] [PMID: 30177983]
[60]
Go YK, Kambar N, Leal C. Hybrid unilamellar vesicles of phospholipids and block copolymers with crystalline domains. Polymers (Basel) 2020; 12(6): 1232.
[http://dx.doi.org/10.3390/polym12061232] [PMID: 32485809]
[61]
Pazzi J, Xu M, Subramaniam AB. Size distributions and yields of giant vesicles assembled on cellulose papers and cotton fabric. Langmuir 2019; 35(24): 7798-804.
[http://dx.doi.org/10.1021/acs.langmuir.8b03076] [PMID: 30444125]
[62]
Li A, Pazzi J, Xu M, Subramaniam AB. Cellulose abetted assembly and temporally decoupled loading of cargo into vesicles synthesized from functionally diverse lamellar phase forming amphiphiles. Biomacromolecules 2018; 19(3): 849-59.
[http://dx.doi.org/10.1021/acs.biomac.7b01645] [PMID: 29465981]
[63]
Kresse KM, Xu M, Pazzi J, García-Ojeda M, Subramaniam AB. Novel application of cellulose paper as a platform for the macromolecu-lar self-assembly of biomimetic giant liposomes. ACS Appl Mater Interfaces 2016; 8(47): 32102-7.
[http://dx.doi.org/10.1021/acsami.6b11960] [PMID: 27933839]
[64]
Pazzi JE III. A comprehensive characterization of surfaceassembled populations of giant liposomes using novel confocal microscopy- based methods. University of California, Merced 2021.
[65]
Simón-Gracia L, Scodeller P, Fuentes SS, et al. Application of polymersomes engineered to target p32 protein for detection of small breast tumors in mice. Oncotarget 2018; 9(27): 18682-97.
[http://dx.doi.org/10.18632/oncotarget.24588] [PMID: 29721153]
[66]
Liu S, Deng S, Li X, Cheng D. Size-and surface-dual engineered small polyplexes for efficiently targeting delivery of SiRNA. Molecules 2021; 26(11): 3238.
[http://dx.doi.org/10.3390/molecules26113238] [PMID: 34072265]
[67]
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target 2016; 24(3): 179-91.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[68]
Sharma A, Biharee A, Kumar A, Jaitak V. Antimicrobial terpenoids as a potential substitute in overcoming antimicrobial resistance. Curr Drug Targets 2020; 21(14): 1476-94.
[http://dx.doi.org/10.2174/1389450121666200520103427] [PMID: 32433003]
[69]
Biharee A, Sharma A, Kumar A, Jaitak V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020; 146: 104720.
[http://dx.doi.org/10.1016/j.fitote.2020.104720] [PMID: 32910994]
[70]
Wayakanon K, Thornhill MH, Douglas CW, et al. Polymersome-mediated intracellular delivery of antibiotics to treat Porphyromonas gingivalis-infected oral epithelial cells. FASEB J 2013; 27(11): 4455-65.
[http://dx.doi.org/10.1096/fj.12-225219] [PMID: 23921377]
[71]
Fenaroli F, Robertson JD, Scarpa E, et al. Polymersomes eradicating intracellular bacteria. ACS Nano 2020; 14(7): 8287-98.
[http://dx.doi.org/10.1021/acsnano.0c01870] [PMID: 32515944]
[72]
Rameez S, Alosta H, Palmer AF. Biocompatible and biodegradable polymersome encapsulated hemoglobin: A potential oxygen carrier. Bioconjug Chem 2008; 19(5): 1025-32.
[http://dx.doi.org/10.1021/bc700465v] [PMID: 18442283]
[73]
Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009; 10(2): 197-209.
[http://dx.doi.org/10.1021/bm801127d] [PMID: 19123775]
[74]
Alibolandi M, Alabdollah F, Sadeghi F, et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: In vitro and in vivo evaluation. J Control Release 2016; 227: 58-70.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.031] [PMID: 26907831]
[75]
Xie S, Gong YC, Xiong XY, Li ZL, Luo YY, Li YP. Targeted folate-conjugated pluronic P85/poly(lactide-co-glycolide) polymersome for the oral delivery of insulin. Nanomedicine (Lond) 2018; 13(19): 2527-44.
[http://dx.doi.org/10.2217/nnm-2017-0372] [PMID: 30338724]
[76]
Cheng Z, Thorek DL, Tsourkas A. Porous polymersomes with encapsulated gd-labeled dendrimers as highly efficient MRI contrast agents. Adv Funct Mater 2009; 19(23): 3753-9.
[http://dx.doi.org/10.1002/adfm.200901253] [PMID: 23293575]
[77]
Guan L, Rizzello L, Battaglia G. Polymersomes and their applications in cancer delivery and therapy. Nanomedicine (Lond) 2015; 10(17): 2757-80.
[http://dx.doi.org/10.2217/nnm.15.110] [PMID: 26328898]
[78]
Barenholz Y. Liposome application: Problems and prospects. Curr Opin Colloid Interface Sci 2001; 6(1): 66-77.
[http://dx.doi.org/10.1016/S1359-0294(00)00090-X]
[79]
Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: Doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 2004; 100(1): 135-44.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.007] [PMID: 15491817]
[80]
Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010; 6(6): 714-29.
[http://dx.doi.org/10.1016/j.nano.2010.05.005] [PMID: 20542144]
[81]
Wang C-H, Wang C-H, Hsiue G-H. Polymeric micelles with a pH-responsive structure as intracellular drug carriers. J Control Release 2005; 108(1): 140-9.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.017] [PMID: 16182401]
[82]
Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X. Thermo-sensitive polymeric micelles based on poly (n-isopropylacrylamide) as drug carriers. Prog Polym Sci 2009; 34(9): 893-910.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.05.002]
[83]
Anajafi T, Mallik S. Polymersome-based drug-delivery strategies for cancer therapeutics. Ther Deliv 2015; 6(4): 521-34.
[http://dx.doi.org/10.4155/tde.14.125] [PMID: 25996048]
[84]
Chandrawati R, Caruso F. Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 2012; 28(39): 13798-807.
[http://dx.doi.org/10.1021/la301958v] [PMID: 22831559]
[85]
Feng J, Wen W, Jia Y-G, Liu S, Guo J. pH-responsive micelles assembled by three-armed degradable block copolymers with a cholic acid core for drug controlled-release. Polymers (Basel) 2019; 11(3): 511.
[http://dx.doi.org/10.3390/polym11030511] [PMID: 30960495]
[86]
Zhu D, Wu S, Hu C, et al. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater 2017; 58: 399-412.
[http://dx.doi.org/10.1016/j.actbio.2017.06.017] [PMID: 28627436]
[87]
Zhou D, Fei Z, Jin L, et al. Dual-responsive polymersomes as anticancer drug carriers for the co-delivery of doxorubicin and paclitaxel. J Mater Chem B Mater Biol Med 2021; 9(3): 801-8.
[http://dx.doi.org/10.1039/D0TB02462G] [PMID: 33336680]
[88]
Van Gheluwe L, Chourpa I, Gaigne C, Munnier E. Polymer-based smart drug delivery systems for skin application and demonstration of stimuli-responsiveness. Polymers (Basel) 2021; 13(8): 1285.
[http://dx.doi.org/10.3390/polym13081285] [PMID: 33920816]
[89]
Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45(5): 1457-501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[90]
Deng Z, Qian Y, Yu Y, et al. Engineering intracellular delivery nanocarriers and nanoreactors from oxidation-responsive polymersomes via synchronized bilayer cross-linking and permeabilizing inside live cells. J Am Chem Soc 2016; 138(33): 10452-66.
[http://dx.doi.org/10.1021/jacs.6b04115] [PMID: 27485779]
[91]
Colley HE, Hearnden V, Avila-Olias M, et al. Polymersome-mediated delivery of combination anticancer therapy to head and neck can-cer cells: 2D and 3D in vitro evaluation. Mol Pharm 2014; 11(4): 1176-88.
[http://dx.doi.org/10.1021/mp400610b] [PMID: 24533501]
[92]
Zhang X-Y, Zhang P-Y. Polymersomes in nanomedicine-a review. Curr Nanosci 2017; 13(2): 124-9.
[http://dx.doi.org/10.2174/1573413712666161018144519]
[93]
Tuguntaev RG, Okeke CI, Xu J, et al. Nanoscale polymersomes as anti-cancer drug carriers applied for pharmaceutical delivery. Curr Pharm Des 2016; 22(19): 2857-65.
[http://dx.doi.org/10.2174/1381612822666160217142319] [PMID: 26898733]
[94]
Schulz M, Olubummo A, Binder WH. Beyond the lipid-bilayer: Interaction of polymers and nanoparticles with membranes. Soft Matter 2012; 8(18): 4849-64.
[http://dx.doi.org/10.1039/c2sm06999g]
[95]
Al-Hatamleh MAI, Hatmal MM, Alshaer W, et al. COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. Eur J Pharmacol 2021; 896: 173930.
[http://dx.doi.org/10.1016/j.ejphar.2021.173930] [PMID: 33545157]
[96]
Le Meins J-F, Sandre O, Lecommandoux S. Recent trends in the tuning of polymersomes’ membrane properties. Eur Phys J E 2011; 34(2): 14.
[http://dx.doi.org/10.1140/epje/i2011-11014-y] [PMID: 21337017]
[97]
Peterca M, Percec V, Leowanawat P, Bertin A. Predicting the size and properties of dendrimersomes from the lamellar structure of their amphiphilic Janus dendrimers. J Am Chem Soc 2011; 133(50): 20507-20.
[http://dx.doi.org/10.1021/ja208762u] [PMID: 22066981]
[98]
Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol 2018; 9: 2224.
[http://dx.doi.org/10.3389/fimmu.2018.02224] [PMID: 30337923]
[99]
Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: Approaches and challeng-es. Expert Opin Drug Deliv 2017; 14(2): 201-14.
[http://dx.doi.org/10.1080/17425247.2016.1213238] [PMID: 27426638]
[100]
Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014; 190: 485-99.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.038] [PMID: 24984011]
[101]
Canalle LA, Löwik DW, van Hest JC. Polypeptide-polymer bioconjugates. Chem Soc Rev 2010; 39(1): 329-53.
[http://dx.doi.org/10.1039/B807871H] [PMID: 20023856]
[102]
Singh V, Md S, Alhakamy NA, Kesharwani P. Taxanes loaded polymersomes as an emerging polymeric nanocarrier for cancer therapy. Eur Polym J 2022; 162: 110883.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110883]