Potential for Application of Lignin Based Micro/Nanostructures as a Micro/Nanocarrier in the Controlled Release Systems: A Review

Page: [220 - 239] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: A promising strategy is to apply biodegradable and biocompatibility lignin micro/nanoparticles (LMPs/LNPs) as carriers or coating materials for biological active agent delivery in agriculture medicine and pharmaceuticals. Controlled release systems (CRSs) based on LMPs/LNPs are suitable systems to target specific tissues, cells, or plant roots by taking advantage of the unique properties of LMPs/LNPs.

Methods: This review discusses changes in the properties of LNPs caused by different parameters in the synthesis method, such as the type of biologically active agent, loading/release method, modification method, encapsulation efficiency, and release rate of the CRSs based on LMPs/LNPs. Results: Research shows that during the LMPs/LNPs synthesis, nanospheres with a porous surface, nanocapsules, or hollow nanospheres with excellent stability and chemical properties are produced, which causes high loading capacity and reduced release rates of active agents. Moreover, the advantages and technical challenges of lignin application as a micro/ nanocarrier were investigated.

Conclusion: Finally, several suggestions for the future trend of research and development were recommended.

Keywords: Lignin nanostructures, nanocarrier, controlled release, drug delivery, encapsulation, synthesis.

Graphical Abstract

[1]
Zhao, W.; Simmons, B.; Singh, S.; Ragauskas, A.; Cheng, G. From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chem., 2016, 18(21), 5693-5700.
[http://dx.doi.org/10.1039/C6GC01813K]
[2]
Thakur, V.K.; Thakur, M.K.; Raghavan, P.; Kessler, M.R. Progress in green polymer composites from lignin for multifunctional applica-tions: a review. ACS Sustain. Chem.& Eng., 2014, 2(5), 1072-1092.
[http://dx.doi.org/10.1021/sc500087z]
[3]
Huynh, C.T.; Lee, D.S. Controlled release. Encyclopedia of Polymeric Nanomaterials; , 2014, 2014, pp. 1-12.
[http://dx.doi.org/10.1007/978-3-642-29648-2_314]
[4]
Mathews, A.S.; Narine, S. Poly [N‐isopropyl acrylamide]‐copolyurethane copolymers for controlled release of urea. J. Polym. Sci. A Polym. Chem., 2010, 48(15), 3236-3243.
[http://dx.doi.org/10.1002/pola.24090]
[5]
Bortoletto‐Santos, R.; Ribeiro, C.; Polito, W.L. Controlled release of nitrogen‐source fertilizers by natural‐oil‐based poly (urethane) coat-ings: The kinetic aspects of urea release. J. Appl. Polym. Sci., 2016, 133(33), 43790.
[http://dx.doi.org/10.1002/app.43790]
[6]
Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol., 2015, 77, 36-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039 ] [PMID: 25748851]
[7]
Shanmuganathan, R.; Edison, T.N.J.I. LewisOscar, F.; Kumar, P.; Shanmugam, S.; Pugazhendhi, A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int. J. Biol. Macromol., 2019, 130, 727-736.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.060 ] [PMID: 30771392]
[8]
Ali, I.; Mukhtar, S.D.; Ali, H.S.; Scotti, M.T.; Scotti, L. Advances in nanoparticles as anticancer drug delivery vector: need of this century. Curr. Pharm. Des., 2020, 26(15), 1637-1649.
[http://dx.doi.org/10.2174/1381612826666200203124330 ] [PMID: 32013826]
[9]
Chauhan, P.S. Lignin nanoparticles: Eco-friendly and versatile tool for new era. Bioresour. Technol. Rep., 2020, 9, 100374.
[http://dx.doi.org/10.1016/j.biteb.2019.100374]
[10]
Sipponen, M.H.; Lange, H.; Crestini, C.; Henn, A.; Österberg, M. Lignin for Nano- and Microscaled Carrier Systems: Applications, Trends, and Challenges. ChemSusChem, 2019, 12(10), 2039-2054.
[http://dx.doi.org/10.1002/cssc.201900480 ] [PMID: 30933420]
[11]
Machado, T.O.; Beckers, S.J.; Fischer, J.; Müller, B.; Sayer, C.; de Araújo, P.H.H.; Landfester, K.; Wurm, F.R. Bio-Based Lignin Nanocar-riers Loaded with Fungicides as a Versatile Platform for Drug Delivery in Plants. Biomacromolecules, 2020, 21(7), 2755-2763.
[http://dx.doi.org/10.1021/acs.biomac.0c00487 ] [PMID: 32543851]
[12]
Chen, J.; Fan, X.; Zhang, L.; Chen, X.; Sun, S.; Sun, R.C. Research progress in lignin‐based slow/controlled release fertilizer. ChemSusChem, 2020, 13(17), 4356-4366.
[http://dx.doi.org/10.1002/cssc.202000455 ] [PMID: 32291938]
[13]
Calvo-Flores, F.G.; Dobado, J.A. Lignin as renewable raw material. ChemSusChem, 2010, 3(11), 1227-1235.
[http://dx.doi.org/10.1002/cssc.201000157 ] [PMID: 20839280]
[14]
Kai, D.; Tan, M.J.; Chee, P.L.; Chua, Y.K.; Yap, Y.L.; Loh, X.J. Towards lignin-based functional materials in a sustainable world. Green Chem., 2016, 18(5), 1175-1200.
[http://dx.doi.org/10.1039/C5GC02616D]
[15]
Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Malucelli, G.; Guan, J.P. An overview on the use of lignin and its derivatives in fire retardant polymer systems.In: Lignin-Trends and Applications; InTech. Matheus Poletto, IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.72963]
[16]
Grossman, A.; Vermerris, W. Lignin-based polymers and nanomaterials. Curr. Opin. Biotechnol., 2019, 56, 112-120.
[http://dx.doi.org/10.1016/j.copbio.2018.10.009 ] [PMID: 30458357]
[17]
Gao, W.; Fatehi, P. Lignin for polymer and nanoparticle production: Current status and challenges. Can. J. Chem. Eng., 2019, 97(11), 2827-2842.
[http://dx.doi.org/10.1002/cjce.23620]
[18]
Sameni, J.K. Physico-chemical characterization of lignin isolated from industrial sources for advanced applications, PhD thesis Faculty of Forestry 2015.Available from: http://hdl.handle.net/ 1807/70871
[19]
Tang, Q.; Qian, Y.; Yang, D.; Qiu, X.; Qin, Y.; Zhou, M. Lignin-based nanoparticles: a review on their preparations and applications. Polymers (Basel), 2020, 12(11), 2471.
[http://dx.doi.org/10.3390/polym12112471 ] [PMID: 33113775]
[20]
Jiang, C.; He, H.; Jiang, H.; Ma, L.; Jia, D. Nano-lignin filled natural rubber composites: Preparation and characterization. Express Polym. Lett., 2013, 7(5), 480-493.
[http://dx.doi.org/10.3144/expresspolymlett.2013.44]
[21]
Sameni, J.; Jaffer, S.A.; Tjong, J.; Sain, M. Advanced applications for lignin micro-and nano-based materials. Curr. For. Rep., 2020, 6(2), 159-171.
[http://dx.doi.org/10.1007/s40725-020-00117-4]
[22]
Tortora, M.; Cavalieri, F.; Mosesso, P.; Ciaffardini, F.; Melone, F.; Crestini, C. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules, 2014, 15(5), 1634-1643.
[http://dx.doi.org/10.1021/bm500015j ] [PMID: 24720505]
[23]
Yiamsawas, D.; Baier, G.; Thines, E.; Landfester, K.; Wurm, F.R. Biodegradable lignin nanocontainers. RSC Advances, 2014, 4(23), 11661-11663.
[http://dx.doi.org/10.1039/C3RA47971D]
[24]
Qian, Y.; Deng, Y.; Qiu, X.; Li, H.; Yang, D. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem., 2014, 16(4), 2156-2163.
[http://dx.doi.org/10.1039/c3gc42131g]
[25]
Sameni, J.; Krigstin, S.; Jaffer, S.A.; Sain, M. Preparation and characterization of biobased microspheres from lignin sources. Ind. Crops Prod., 2018, 117, 58-65.
[http://dx.doi.org/10.1016/j.indcrop.2018.02.078]
[26]
Xiong, F.; Wang, H.; Xu, H.; Qing, Y.; Wu, Z.; Wu, Y. Self-assembled lignin nanospheres with solid and hollow tunable structures. Ind. Crops Prod., 2020, 144, 112063.
[http://dx.doi.org/10.1016/j.indcrop.2019.112063]
[27]
Yan, Z.; Liao, G.; Zou, X.; Zhao, M.; Wu, T.; Chen, Y.; Fang, G. Size-Controlled and super long-term stable lignin nanospheres through a facile self-assembly strategy from kraft lignin. J. Agric. Food Chem., 2020, 68(31), 8341-8349.
[http://dx.doi.org/10.1021/acs.jafc.0c01262 ] [PMID: 32662998]
[28]
Frangville, C.; Rutkevičius, M.; Richter, A.P.; Velev, O.D.; Stoyanov, S.D.; Paunov, V.N. Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem, 2012, 13(18), 4235-4243.
[http://dx.doi.org/10.1002/cphc.201200537 ] [PMID: 23047584]
[29]
Garcia Gonzalez, M.N.; Levi, M.; Turri, S.; Griffini, G. Lignin nanoparticles by ultrasonication and their incorporation in waterborne pol-ymer nanocomposites. J. Appl. Polym. Sci., 2017, 134(38), 45318.
[http://dx.doi.org/10.1002/app.45318]
[30]
Ten, E.; Ling, C.; Wang, Y.; Srivastava, A.; Dempere, L.A.; Vermerris, W. Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules, 2014, 15(1), 327-338.
[http://dx.doi.org/10.1021/bm401555p ] [PMID: 24308459]
[31]
Gao, G.; Dallmeyer, J.I.; Kadla, J.F. Synthesis of lignin nanofibers with ionic-responsive shells: water-expandable lignin-based nano-fibrous mats. Biomacromolecules, 2012, 13(11), 3602-3610.
[http://dx.doi.org/10.1021/bm301039f ] [PMID: 22988814]
[32]
Baker, D.A.; Rials, T.G. Recent advances in low‐cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci., 2013, 130(2), 713-728.
[http://dx.doi.org/10.1002/app.39273]
[33]
Gilca, I.A.; Popa, V.I.; Crestini, C. Obtaining lignin nanoparticles by sonication. Ultrason. Sonochem., 2015, 23, 369-375.
[http://dx.doi.org/10.1016/j.ultsonch.2014.08.021 ] [PMID: 25218770]
[34]
Yin, H.; Liu, L.; Wang, X.; Wang, T.; Zhou, Y.; Liu, B.; Shan, Y.; Wang, L.; Lü, X. A novel flocculant prepared by lignin nanoparticles-gelatin complex from switchgrass for the capture of Staphylococcus aureus and Escherichia coli. Colloids Surf. A Physicochem. Eng. Asp., 2018, 545, 51-59.
[http://dx.doi.org/10.1016/j.colsurfa.2018.02.033]
[35]
Nair, S.S.; Sharma, S.; Pu, Y.; Sun, Q.; Pan, S.; Zhu, J.Y.; Deng, Y.; Ragauskas, A.J. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends. ChemSusChem, 2014, 7(12), 3513-3520.
[http://dx.doi.org/10.1002/cssc.201402314 ] [PMID: 25319811]
[36]
Dawy, M.; Shabaka, A.; Nada, A. Molecular structure and dielectric properties of some treated lignins. Polym. Degrad. Stabil., 1998, 62(3), 455-462.
[http://dx.doi.org/10.1016/S0141-3910(98)00026-3]
[37]
Aro, T.; Fatehi, P. Production and application of lignosulfonates and sulfonated lignin. ChemSusChem, 2017, 10(9), 1861-1877.
[http://dx.doi.org/10.1002/cssc.201700082 ] [PMID: 28253428]
[38]
Zhang, X.; Lu, Z.; Tan, H.; Bao, L.; He, Y.; Sun, C.; Lohse, D. Formation of surface nanodroplets under controlled flow conditions. Proc. Natl. Acad. Sci. USA, 2015, 112(30), 9253-9257.
[http://dx.doi.org/10.1073/pnas.1506071112 ] [PMID: 26159418]
[39]
Cailotto, S.; Gigli, M.; Bonini, M.; Rigoni, F.; Crestini, C. Sustainable strategies in the synthesis of lignin nanoparticles for the release of active compounds: a comparison. ChemSusChem, 2020, 13(17), 4759-4767.
[http://dx.doi.org/10.1002/cssc.202001140 ] [PMID: 32697394]
[40]
Lievonen, M.; Valle-Delgado, J.J.; Mattinen, M-L.; Hult, E-L.; Lintinen, K.; Kostiainen, M.A.; Paananen, A.; Szilvay, G.R.; Setälä, H.; Österberg, M. A simple process for lignin nanoparticle preparation. Green Chem., 2016, 18(5), 1416-1422.
[http://dx.doi.org/10.1039/C5GC01436K]
[41]
Sipponen, M.H.; Smyth, M.; Leskinen, T.; Johansson, L-S.; Österberg, M. All-lignin approach to prepare cationic colloidal lignin particles: stabilization of durable Pickering emulsions. Green Chem., 2017, 19(24), 5831-5840.
[http://dx.doi.org/10.1039/C7GC02900D]
[42]
Sipponen, M.H.; Farooq, M.; Koivisto, J.; Pellis, A.; Seitsonen, J.; Österberg, M. Spatially confined lignin nanospheres for biocatalytic ester synthesis in aqueous media. Nat. Commun., 2018, 9(1), 2300.
[http://dx.doi.org/10.1038/s41467-018-04715-6 ] [PMID: 29895870]
[43]
Xiong, K.; Jin, C.; Liu, G.; Wu, G.; Chen, J.; Kong, Z. Preparation and characterization of lignin nanoparticles with controllable size by nanoprecipitation method. Linchan Huaxue Yu Gongye, 2015, 35(5), 85-92.
[http://dx.doi.org/10.3969/j.issn.0253-2417.2015.05.014]
[44]
Figueiredo, P.; Ferro, C.; Kemell, M.; Liu, Z.; Kiriazis, A.; Lintinen, K.; Florindo, H.F.; Yli-Kauhaluoma, J.; Hirvonen, J.; Kostiainen, M.A.; Santos, H.A. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine (Lond.), 2017, 12(21), 2581-2596.
[http://dx.doi.org/10.2217/nnm-2017-0219 ] [PMID: 28960138]
[45]
Figueiredo, P.; Lintinen, K.; Kiriazis, A.; Hynninen, V.; Liu, Z.; Bauleth-Ramos, T.; Rahikkala, A.; Correia, A.; Kohout, T.; Sarmento, B.; Yli-Kauhaluoma, J.; Hirvonen, J.; Ikkala, O.; Kostiainen, M.A.; Santos, H.A. In vitro evaluation of biodegradable lignin-based nanoparti-cles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 2017, 121, 97-108.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.034 ] [PMID: 28081462]
[46]
Li, H.; Deng, Y.; Liu, B.; Ren, Y.; Liang, J.; Qian, Y.; Qiu, X.; Li, C.; Zheng, D. Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources. ACS Sustain. Chem. Eng., 2016, 4(4), 1946-1953.
[http://dx.doi.org/10.1021/acssuschemeng.5b01066]
[47]
Xing, Q.; Buono, P.; Ruch, D.; Dubois, P.; Wu, L.; Wang, W-J. Biodegradable UV-blocking films through core–shell lignin–melanin nano-particles in poly (butylene adipate-co-terephthalate). ACS Sustain. Chem. Eng., 2019, 7(4), 4147-4157.
[http://dx.doi.org/10.1021/acssuschemeng.8b05755]
[48]
Wang, M.; Zhao, Y.; Li, J. From hollow lignin microsphere preparation to simultaneous preparation of urea encapsulation for controlled release using industrial kraft lignin via slow and exhaustive acetone-water evaporation. Holzforschung, 2019, 74(1), 77-87.
[http://dx.doi.org/10.1515/hf-2019-0062]
[49]
Zikeli, F.; Vinciguerra, V.; D’Annibale, A.; Capitani, D.; Romagnoli, M.; Scarascia Mugnozza, G. Preparation of lignin nanoparticles from wood waste for wood surface treatment. Nanomaterials (Basel), 2019, 9(2), 281.
[http://dx.doi.org/10.3390/nano9020281 ] [PMID: 30781574]
[50]
Tian, D.; Hu, J.; Bao, J.; Chandra, R.P.; Saddler, J.N.; Lu, C. Lignin valorization: lignin nanoparticles as high-value bio-additive for multi-functional nanocomposites. Biotechnol. Biofuels, 2017, 10(1), 192.
[http://dx.doi.org/10.1186/s13068-017-0876-z ] [PMID: 28747994]
[51]
Landfester, K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem. Int. Ed. Engl., 2009, 48(25), 4488-4507.
[http://dx.doi.org/10.1002/anie.200900723 ] [PMID: 19455531]
[52]
Li, Z.; Ge, Y.; Wan, L. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. J. Hazard. Mater., 2015, 285, 77-83.
[http://dx.doi.org/10.1016/j.jhazmat.2014.11.033 ] [PMID: 25481702]
[53]
Nypelö, T.E.; Carrillo, C.A.; Rojas, O.J. Lignin supracolloids synthesized from (W/O) microemulsions: use in the interfacial stabilization of Pickering systems and organic carriers for silver metal. Soft Matter, 2015, 11(10), 2046-2054.
[http://dx.doi.org/10.1039/C4SM02851A ] [PMID: 25629687]
[54]
Chen, N.; Dempere, L.A.; Tong, Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic mole-cules. ACS Sustain. Chem. Eng., 2016, 4(10), 5204-5211.
[http://dx.doi.org/10.1021/acssuschemeng.6b01209]
[55]
Moradi, S.; Shayesteh, K.; Behbudi, G. Preparation and characterization of biodegradable lignin-sulfonate nanoparticles using the micro-emulsion method to enhance the acetylation efficiency of lignin-sulfonate. Int. J. Biol. Macromol., 2020, 160, 632-641.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.157 ] [PMID: 32446897]
[56]
Neto, V.O.S.; Freire, T.M.; Saraiva, G.D.; Muniz, C.R.; Cunha, M.S.; Fechine, P.B.A.; do Nascimento, R.F. Water Treatment Devices Based on Zero-Valent Metal and Metal Oxide Nanomaterials.In: Nanomaterials Applications for Environmental Matrices; Elsevier, 2019, pp. 187-225.
[http://dx.doi.org/10.1016/B978-0-12-814829-7.00005-7]
[57]
Gilca, I.A.; Ghitescu, R.E.; Puitel, A.C.; Popa, V.I. Preparation of lignin nanoparticles by chemical modification. Iran. Polym. J., 2014, 23(5), 355-363.
[http://dx.doi.org/10.1007/s13726-014-0232-0]
[58]
Ur Rahman, O.; Shi, S.; Ding, J.; Wang, D.; Ahmad, S.; Yu, H. Lignin nanoparticles: synthesis, characterization and corrosion protection performance. New J. Chem., 2018, 42(5), 3415-3425.
[http://dx.doi.org/10.1039/C7NJ04103A]
[59]
Li, L.; Tong, Z.; Meng, S.; Li, T.; Wang, H.; Chen, Y. Lignin-Based Nanocapsules with Tunable Size for Cu (II) Ion Absorption. ACS Appl. Nano Mater., 2020, 3(11), 10835-10843.
[http://dx.doi.org/10.1021/acsanm.0c01483]
[60]
Yang, W.; Kenny, J.M.; Puglia, D. Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparti-cles. Ind. Crops Prod., 2015, 74, 348-356.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.032]
[61]
Yang, W.; Rallini, M.; Wang, D-Y.; Gao, D.; Dominici, F.; Torre, L.; Kenny, J.M.; Puglia, D. Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Compos., Part A Appl. Sci. Manuf., 2018, 107, 61-69.
[http://dx.doi.org/10.1016/j.compositesa.2017.12.030]
[62]
Yang, W.; Owczarek, J.; Fortunati, E.; Kozanecki, M.; Mazzaglia, A.; Balestra, G.; Kenny, J.; Torre, L.; Puglia, D. Antioxidant and antibac-terial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind. Crops Prod., 2016, 94, 800-811.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.061]
[63]
Xiong, F.; Han, Y.; Wang, S.; Li, G.; Qin, T.; Chen, Y.; Chu, F. Preparation and formation mechanism of size-controlled lignin nano-spheres by self-assembly. Ind. Crops Prod., 2017, 100, 146-152.
[http://dx.doi.org/10.1016/j.indcrop.2017.02.025]
[64]
Chang, X.; Sun, J.; Xu, Z.; Zhang, F.; Wang, J.; Lv, K.; Dai, Z. A novel nano-lignin-based amphoteric copolymer as fluid-loss reducer in water-based drilling fluids. Colloids Surf. A Physicochem. Eng. Asp., 2019, 583, 123979.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123979]
[65]
Alkanawati, M.S.; Wurm, F.R.; Thérien‐Aubin, H.; Landfester, K. Large‐scale preparation of polymer nanocarriers by high‐pressure mi-crofluidization. Macromol. Mater. Eng., 2018, 303(1), 1700505.
[http://dx.doi.org/10.1002/mame.201700505]
[66]
Ago, M.; Huan, S.; Borghei, M.; Raula, J.; Kauppinen, E.I.; Rojas, O.J. High-throughput synthesis of lignin particles (∼ 30 nm to∼ 2 μm) via aerosol flow reactor: Size fractionation and utilization in pickering emulsions. ACS Appl. Mater. Interfaces, 2016, 8(35), 23302-23310.
[http://dx.doi.org/10.1021/acsami.6b07900 ] [PMID: 27538013]
[67]
Tian, D.; Hu, J.; Chandra, R.P.; Saddler, J.N.; Lu, C. Valorizing recalcitrant cellulolytic enzyme lignin via lignin nanoparticles fabrication in an integrated biorefinery. ACS Sustain. Chem.& Eng., 2017, 5(3), 2702-2710.
[http://dx.doi.org/10.1021/acssuschemeng.6b03043]
[68]
Xiong, F.; Han, Y.; Wang, S.; Li, G.; Qin, T.; Chen, Y.; Chu, F. Preparation and formation mechanism of renewable lignin hollow nano-spheres with a single hole by self-assembly. ACS Sustain. Chem. Eng., 2017, 5(3), 2273-2281.
[http://dx.doi.org/10.1021/acssuschemeng.6b02585]
[69]
Myint, A.A.; Lee, H.W.; Seo, B.; Son, W-S.; Yoon, J.; Yoon, T.J.; Park, H.J.; Yu, J.; Yoon, J.; Lee, Y-W. One pot synthesis of environ-mentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem., 2016, 18(7), 2129-2146.
[http://dx.doi.org/10.1039/C5GC02398J]
[70]
Bertolo, M.R.; de Paiva, L.B.B.; Nascimento, V.M.; Gandin, C.A.; Neto, M.O.; Driemeier, C.E.; Rabelo, S.C. Lignins from sugarcane ba-gasse: Renewable source of nanoparticles as Pickering emulsions stabilizers for bioactive compounds encapsulation. Ind. Crops Prod., 2019, 140, 111591.
[http://dx.doi.org/10.1016/j.indcrop.2019.111591]
[71]
Lu, Q.; Zhu, M.; Zu, Y.; Liu, W.; Yang, L.; Zhang, Y.; Zhao, X.; Zhang, X.; Zhang, X.; Li, W. Comparative antioxidant activity of na-noscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin. Food Chem., 2012, 135(1), 63-67.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.070]
[72]
Yearla, S.R.; Padmasree, K. Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J. Exp. Nanosci., 2016, 11(4), 289-302.
[http://dx.doi.org/10.1080/17458080.2015.1055842]
[73]
Mu, L.; Feng, S.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vita-min E TPGS. J. Control. Release, 2003, 86(1), 33-48.
[http://dx.doi.org/10.1016/S0168-3659(02)00320-6 ] [PMID: 12490371]
[74]
De Muynck, C.; Lefebvre, R.; Remon, J.P. Study of the bioavailability of four indomethacin suppository formulations in healthy volun-teers. Int. J. Pharm., 1994, 104(1), 87-91.
[http://dx.doi.org/10.1016/0378-5173(94)90339-5]
[75]
Sasidharan, S.; Saudagar, P. Encapsulation and delivery of antiparasitic drugs: A review.In: Encapsulation of Active Molecules and Their Delivery System; Shirish H., Sonawane; Manickam Sivakumar, B. A. B., Eds.; Elsevier; , 2020, 323, pp. 323-342.
[http://dx.doi.org/10.1016/B978-0-12-819363-1.00017-X]
[76]
Huang, J.; Fu, S.; Gan, L. Chemical Modification of Lignin.In: Lignin Chemistry and Applications; Jin, Huang; Fu, Shiyu; Lin, Gan, Eds.; Elsevier, 2019, pp. 51-78.
[http://dx.doi.org/10.1016/B978-0-12-813941-7.00003-5]
[77]
Behin, J.; Sadeghi, N. Utilization of waste lignin to prepare controlled-slow release urea. Int. J. Recycl. Org. Waste Agric., 2016, 5(4), 289-299.
[http://dx.doi.org/10.1007/s40093-016-0139-1]
[78]
Sadeghi, N.; Shayesteh, K.; Lotfiman, S. Effect of modified lignin sulfonate on controlled-release urea in soil. J. Polym. Environ., 2017, 25(3), 792-799.
[http://dx.doi.org/10.1007/s10924-016-0848-6]
[79]
Fertahi, S.; Bertrand, I.; Ilsouk, M.; Oukarroum, A.; Amjoud, M.; Zeroual, Y.; Barakat, A. New generation of controlled release phospho-rus fertilizers based on biological macromolecules: Effect of formulation properties on phosphorus release. Int. J. Biol. Macromol., 2020, 143, 153-162.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.005 ] [PMID: 31812750]
[80]
Li, T.; Lü, S.; Zhang, S.; Gao, C.; Liu, M. Lignin-based multifunctional fertilizer for immobilization of Pb (II) in contaminated soil. J. Taiwan Inst. Chem. Eng., 2018, 91, 643-652.
[http://dx.doi.org/10.1016/j.jtice.2018.06.025]
[81]
Fertahi, S.; Bertrand, I.; Ilsouk, M.; Oukarroum, A.; Amjoud, M.B.; Zeroual, Y.; Barakat, A. Impact of plasticizers on lignin–carrageenan formulation properties and on phosphorus release from a coated triple superphosphate fertilizer. Ind. Eng. Chem. Res., 2020, 59(31), 14172-14179.
[http://dx.doi.org/10.1021/acs.iecr.0c03143]
[82]
Jiao, G-J.; Xu, Q.; Cao, S-L.; Peng, P.; She, D. Controlled-release fertilizer with lignin used to trap urea/hydroxymethylurea/urea-formaldehyde polymers. BioResources, 2018, 13(1), 1711-1728.https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_1_1711_Jiao_Controlled_Release_Fertilizer_Lignin/5845
[http://dx.doi.org/10.15376/biores.13.1.1711-1728]
[83]
Legras-Lecarpentier, D.; Stadler, K.; Weiss, R.; Guebitz, G.M.; Nyanhongo, G.S. Enzymatic synthesis of 100% lignin biobased granules as fertilizer storage and controlled slow release systems. ACS Sustain. Chem. Eng., 2019, 7(14), 12621-12628.
[http://dx.doi.org/10.1021/acssuschemeng.9b02689]
[84]
Rotondo, F.; Coniglio, R.; Cantera, L.; Di Pascua, I.; Clavijo, L.; Dieste, A. Lignin-based coatings for controlled P-release fertilizer consist-ing of granulated simple superphosphate. Holzforschung, 2018, 72(8), 637-643.
[http://dx.doi.org/10.1515/hf-2017-0176]
[85]
Li, T.; Lü, S.; Wang, Z.; Huang, M.; Yan, J.; Liu, M. Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers. Sci. Total Environ., 2020., 142745.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142745 ] [PMID: 33071130]
[86]
Majeed, Z.; Mansor, N.; Ajab, Z.; Man, Z. Lignin macromolecule’s implication in slowing the biodegradability of urea‐crosslinked starch films applied as slow‐release fertilizer. Stärke, 2017, 69(11-12), 1600362.
[http://dx.doi.org/10.1002/star.201600362]
[87]
Sipponen, M.H.; Rojas, O.J.; Pihlajaniemi, V.; Lintinen, K.; Österberg, M. Calcium chelation of lignin from pulping spent liquor for water-resistant slow-release urea fertilizer systems. ACS Sustain. Chem. Eng., 2017, 5(1), 1054-1061.
[http://dx.doi.org/10.1021/acssuschemeng.6b02348]
[88]
Majeed, Z.; Mansor, N.; Ajab, Z.; Man, Z.; Sarwono, A. Kraft lignin ameliorates degradation resistance of starch in urea delivery biocom-posites. Polym. Test., 2018, 65, 398-406.
[http://dx.doi.org/10.1016/j.polymertesting.2017.12.011]
[89]
Cui, Z.; Zhang, X.; Mo, H. Research on application of controlled released fertilizers coated by industrial lignin and its releasing character-istics. J. Funct. Mater, 2013, 44(22), 3271-3274.http://caod.oriprobe.com/articles/41173064/Research_on_application_of_controlled_released_fertilizers_coated_by_i.htm
[90]
Mulder, W.; Gosselink, R.; Vingerhoeds, M.; Harmsen, P.; Eastham, D. Lignin based controlled release coatings. Ind. Crops Prod., 2011, 34(1), 915-920.
[http://dx.doi.org/10.1016/j.indcrop.2011.02.011]
[91]
Fernández‐Pérez, M.; Garrido‐Herrera, F.; González‐Pradas, E.; Villafranca‐Sánchez, M.; Flores‐Céspedes, F. Lignin and ethylcellulose as polymers in controlled release formulations of urea. J. Appl. Polym. Sci., 2008, 108(6), 3796-3803.
[http://dx.doi.org/10.1002/app.27987]
[92]
Dai, L.; Li, Y.; Kong, F.; Liu, K.; Si, C.; Ni, Y. Lignin-based nanoparticles stabilized Pickering emulsion for stability improvement and thermal-controlled release of trans-resveratrol. ACS Sustain. Chem.& Eng., 2019, 7(15), 13497-13504.
[http://dx.doi.org/10.1021/acssuschemeng.9b02966]
[93]
Dai, L.; Zhu, W.; Liu, R.; Si, C. Lignin‐containing self‐nanoemulsifying drug delivery system for enhance stability and oral absorption of trans‐resveratrol. Part. Part. Syst. Charact., 2018, 35(4), 1700447.
[http://dx.doi.org/10.1002/ppsc.201700447]
[94]
Dai, L.; Liu, R.; Hu, L-Q.; Zou, Z-F.; Si, C-L. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain. Chem.& Eng., 2017, 5(9), 8241-8249.
[http://dx.doi.org/10.1021/acssuschemeng.7b01903]
[95]
Alqahtani, M.S.; Alqahtani, A.; Al-Thabit, A.; Roni, M.; Syed, R. Novel lignin nanoparticles for oral drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(28), 4461-4473.
[http://dx.doi.org/10.1039/C9TB00594C]
[96]
Alqahtani, M.S.; Alqahtani, A.; Kazi, M.; Ahmad, M.Z.; Alahmari, A.; Alsenaidy, M.A.; Syed, R. Wound-healing potential of curcumin loaded lignin nanoparticles. J. Drug Deliv. Sci. Technol., 2020, 60, 102020.
[http://dx.doi.org/10.1016/j.jddst.2020.102020]
[97]
Cheng, L.; Deng, B.; Luo, W.; Nie, S.; Liu, X.; Yin, Y.; Liu, S.; Wu, Z.; Zhan, P.; Zhang, L.; Chen, J. pH-responsive lignin-based nanomi-celles for oral drug delivery. J. Agric. Food Chem., 2020, 68(18), 5249-5258.
[http://dx.doi.org/10.1021/acs.jafc.9b08171 ] [PMID: 32286845]
[98]
Li, Y.; Qiu, X.; Qian, Y.; Xiong, W.; Yang, D. pH-responsive lignin-based complex micelles: Preparation, characterization and application in oral drug delivery. Chem. Eng. J., 2017, 327, 1176-1183.
[http://dx.doi.org/10.1016/j.cej.2017.07.022]
[99]
Liu, R.; Dai, L.; Zou, Z.; Si, C. Drug-loaded poly(L-lactide)/lignin stereocomplex film for enhancing stability and sustained release of trans-resveratrol. Int. J. Biol. Macromol., 2018, 119, 1129-1136.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.040 ] [PMID: 30098362]
[100]
Rai, S.; Singh, B.K.; Bhartiya, P.; Singh, A.; Kumar, H.; Dutta, P.; Mehrotra, G. Lignin derived reduced fluorescence carbon dots with theranostic approaches: nano-drug-carrier and bioimaging. J. Lumin., 2017, 190, 492-503.
[http://dx.doi.org/10.1016/j.jlumin.2017.06.008]
[101]
Fischer, J.; Beckers, S.J.; Yiamsawas, D.; Thines, E.; Landfester, K.; Wurm, F.R. Targeted drug delivery in plants: enzyme-responsive lignin nanocarriers for the curative treatment of the worldwide grapevine trunk disease Esca. Adv. Sci. (Weinh.), 2019, 6(15), 1802315.
[http://dx.doi.org/10.1002/advs.201802315 ] [PMID: 31406660]
[102]
Wurm, F.; Landfester, K.; Doungporn, Y-S.; Thines, E.; Fischer, J. Lignin biomaterial as agricultural drug carrier. U.S.A Patents, 2,017,134,308, 2017.Available from: https://patents.google.com/patent/WO2017134308A1/de
[103]
Liu, X.; Yin, H.; Zhang, Z.; Diao, B.; Li, J. Functionalization of lignin through ATRP grafting of poly(2-dimethylaminoethyl methacrylate) for gene delivery. Colloids Surf. B Biointerfaces, 2015, 125, 230-237.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.018 ] [PMID: 25506805]
[104]
Jiang, S.; Kai, D.; Dou, Q.Q.; Loh, X.J. Multi-arm carriers composed of an antioxidant lignin core and poly(glycidyl methacrylate-co-poly(ethylene glycol)methacrylate) derivative arms for highly efficient gene delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(34), 6897-6904.
[http://dx.doi.org/10.1039/C5TB01202C ] [PMID: 32262538]
[105]
Figueiredo, P.; Sipponen, M.H.; Lintinen, K.; Correia, A.; Kiriazis, A.; Yli-Kauhaluoma, J.; Österberg, M.; George, A.; Hirvonen, J.; Kostiainen, M.A.; Santos, H.A. Preparation and characterization of dentin phosphophoryn-derived peptide-functionalized lignin nanopar-ticles for enhanced cellular uptake. Small, 2019, 15(24), e1901427.
[http://dx.doi.org/10.1002/smll.201901427 ] [PMID: 31062448]
[106]
Liu, K.; Zheng, D.; Lei, H.; Liu, J.; Lei, J.; Wang, L.; Ma, X. Development of novel lignin-based targeted polymeric nanoparticle platform for efficient delivery of anticancer drugs. ACS Biomater. Sci. Eng., 2018, 4(5), 1730-1737.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00260 ] [PMID: 33445330]
[107]
Siddiqui, L.; Bag, J. Seetha; Mittal, D.; Leekha, A.; Mishra, H.; Mishra, M.; Verma, A.K.; Mishra, P.K.; Ekielski, A.; Iqbal, Z.; Talegaon-kar, S. Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies. Int. J. Biol. Macromol., 2020, 152, 786-802.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.311 ] [PMID: 32114178]
[108]
Sipponen, M.H.; Lange, H.; Ago, M.; Crestini, C. Understanding lignin aggregation processes. A case study: budesonide entrapment and stimuli controlled release from lignin nanoparticles. ACS Sustain. Chem. Eng., 2018, 6(7), 9342-9351.
[http://dx.doi.org/10.1021/acssuschemeng.8b01652 ] [PMID: 30271691]
[109]
Richter, A.P.; Brown, J.S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E.A.; Paunov, V.N.; Stoyanov, S.D.; Velev, O.D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol., 2015, 10(9), 817-823.
[http://dx.doi.org/10.1038/nnano.2015.141 ] [PMID: 26167765]
[110]
Marulasiddeshwara, M.B.; Dakshayani, S.S.; Sharath Kumar, M.N.; Chethana, R.; Raghavendra Kumar, P.; Devaraja, S. Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: A promising therapeu-tic agent. Mater. Sci. Eng. C, 2017, 81, 182-190.
[http://dx.doi.org/10.1016/j.msec.2017.07.054 ] [PMID: 28887963]
[111]
Chen, L.; Zhou, X.; Shi, Y.; Gao, B.; Wu, J.; Kirk, T.B.; Xu, J.; Xue, W. Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application. Chem. Eng. J., 2018, 346, 217-225.
[http://dx.doi.org/10.1016/j.cej.2018.04.020]
[112]
Zhou, Y.; Han, Y.; Li, G.; Yang, S.; Xiong, F.; Chu, F. Preparation of targeted ligninbased hollow nanoparticles for the delivery of doxo-rubicin. Nanomaterials (Basel), 2019, 9(2), 188.
[http://dx.doi.org/10.3390/nano9020188 ] [PMID: 30717357]
[113]
Yearla, S.R.; Padmasree, K. Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: a case study with herbicide diuron. Environ. Sci. Pollut. Res. Int., 2016, 23(18), 18085-18098.
[http://dx.doi.org/10.1007/s11356-016-6983-8 ] [PMID: 27259957]
[114]
Capecchi, E.; Piccinino, D.; Delfino, I.; Bollella, P.; Antiochia, R.; Saladino, R. Functionalized tyrosinase-lignin nanoparticles as sustaina-ble catalysts for the oxidation of phenols. Nanomaterials (Basel), 2018, 8(6), 438.
[http://dx.doi.org/10.3390/nano8060438 ] [PMID: 29914085]
[115]
Kim, S.; Fernandes, M.M.; Matamá, T.; Loureiro, A.; Gomes, A.C.; Cavaco-Paulo, A. Chitosan-lignosulfonates sono-chemically prepared nanoparticles: characterisation and potential applications. Colloids Surf. B Biointerfaces, 2013, 103, 1-8.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.033 ] [PMID: 23178385]
[116]
Alqahtani, M.S.; Kazi, M.; Ahmad, M.Z.; Syed, R.; Alsenaidy, M.A.; Albraiki, S.A. Lignin nanoparticles as a promising vaccine adjuvant and delivery system for ovalbumin. Int. J. Biol. Macromol., 2020, 163, 1314-1322.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.026 ] [PMID: 32645499]
[117]
Wang, X.; Zhao, J. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials. J. Agric. Food Chem., 2013, 61(16), 3789-3796.
[http://dx.doi.org/10.1021/jf4004658 ] [PMID: 23544987]
[118]
Taverna, M.E.; Busatto, C.A.; Lescano, M.R.; Nicolau, V.V.; Zalazar, C.S.; Meira, G.R.; Estenoz, D.A. Microparticles based on ionic and organosolv lignins for the controlled release of atrazine. J. Hazard. Mater., 2018, 359, 139-147.
[http://dx.doi.org/10.1016/j.jhazmat.2018.07.010 ] [PMID: 30014909]
[119]
Deng, Y.; Zhao, H.; Qian, Y.; Lü, L.; Wang, B.; Qiu, X. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Ind. Crops Prod., 2016, 87, 191-197.
[http://dx.doi.org/10.1016/j.indcrop.2016.03.056]
[120]
Liu, Z.; Qie, R.; Li, W.; Hong, N.; Li, Y.; Li, C.; Wang, R.; Shi, Y.; Guo, X.; Jia, X. Preparation of avermectin microcapsules with anti-photodegradation and slow-release by the assembly of lignin derivatives. New J. Chem., 2017, 41(8), 3190-3195.
[http://dx.doi.org/10.1039/C6NJ03795J]
[121]
Li, Y.; Yang, D.; Lu, S.; Lao, S.; Qiu, X. Modified lignin with anionic surfactant and its application in controlled release of avermectin. J. Agric. Food Chem., 2018, 66(13), 3457-3464.
[http://dx.doi.org/10.1021/acs.jafc.8b00393 ] [PMID: 29533641]
[122]
Bartzoka, E.D.; Lange, H.; Thiel, K.; Crestini, C. Coordination complexes and one-step assembly of lignin for versatile nanocapsule engi-neering. ACS Sustain. Chem. Eng., 2016, 4(10), 5194-5203.
[http://dx.doi.org/10.1021/acssuschemeng.6b00904]
[123]
Lebo, S.E., Jr Method for microencapsulation of agriculturally active substances U.S.A Patents, 5,552,149 2013.https://patents.google.com/patent/US5552149A/en
[124]
Yiamsawas, D.; Beckers, S.J.; Lu, H.; Landfester, K.; Wurm, F.R. Morphology-controlled synthesis of lignin nanocarriers for drug deliv-ery and carbon materials. ACS Biomater. Sci. Eng., 2017, 3(10), 2375-2383.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00278 ] [PMID: 33445295]
[125]
Qiu, X.; Li, Y.; Qian, Y.; Wang, J.; Zhu, S. Long-acting and safe sunscreens with ultrahigh Sun protection factor via natural lignin encapsu-lation and synergy. ACS Appl. Bio Mater., 2018, 1(5), 1276-1285.
[http://dx.doi.org/10.1021/acsabm.8b00138 ] [PMID: 34996231]
[126]
Qian, Y.; Qiu, X.; Zhu, S. Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem., 2015, 17(1), 320-324.
[http://dx.doi.org/10.1039/C4GC01333F]
[127]
Kai, D.; Chua, Y.K.; Jiang, L.; Owh, C.; Chan, S.Y.; Loh, X.J. Dual functional anti-oxidant and SPF enhancing lignin-based copolymers as additives for personal and healthcare products. RSC Adv, 2016, 6(89), 86420-86427.
[http://dx.doi.org/10.1039/C6RA21433A]
[128]
Microencapsulated agriculturally active agents and method of producing same U.S.A Patents, 1,992,019,102 1992.https://patents.google.com/patent/WO1992019102A1
[129]
Zdarta, J.; Klapiszewski, L.; Jedrzak, A.; Nowicki, M.; Moszynski, D.; Jesionowski, T. Lipase B from Candida antarctica immobilized on a silica-lignin matrix as a stable and reusable biocatalytic system. Catalysts, 2017, 7(1), 14.
[http://dx.doi.org/10.3390/catal7010014]
[130]
Park, S.; Kim, S.H.; Kim, J.H.; Yu, H.; Kim, H.J.; Yang, Y-H.; Kim, H.; Kim, Y.H.; Ha, S.H.; Lee, S.H. Application of cellulose/lignin hy-drogel beads as novel supports for immobilizing lipase. J. Mol. Catal., B Enzym., 2015, 119, 33-39.
[http://dx.doi.org/10.1016/j.molcatb.2015.05.014]
[131]
Zdarta, J.; Klapiszewski, Ł.; Wysokowski, M.; Norman, M.; Kołodziejczak-Radzimska, A.; Moszyński, D.; Ehrlich, H.; Maciejewski, H.; Stelling, A.L.; Jesionowski, T. Chitin-lignin material as a novel matrix for enzyme immobilization. Mar. Drugs, 2015, 13(4), 2424-2446.
[http://dx.doi.org/10.3390/md13042424 ] [PMID: 25903282]
[132]
Gong, W.; Ran, Z.; Ye, F.; Zhao, G. Lignin from bamboo shoot shells as an activator and novel immobilizing support for α-amylase. Food Chem., 2017, 228, 455-462.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.017 ] [PMID: 28317749]
[133]
Zhang, J.; Cui, J-H.; Yin, T.; Sun, L.; Li, G. Activated effect of lignin on α-amylase. Food Chem., 2013, 141(3), 2229-2237.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.047 ] [PMID: 23870952]
[134]
Pan, J.; Yin, Y.; Gan, M.; Meng, M.; Dai, X.; Wu, R.; Shi, W.; Yan, Y. Fabrication and evaluation of molecularly imprinted multi-hollow microspheres adsorbents with tunable inner pore structures derived from templating Pickering double emulsions. Chem. Eng. J., 2015, 266, 299-308.
[http://dx.doi.org/10.1016/j.cej.2014.11.126]
[135]
van Beinum, W.; Beulke, S.; Brown, C.D. Pesticide sorption and desorption by lignin described by an intraparticle diffusion model. Environ. Sci. Technol., 2006, 40(2), 494-500.
[http://dx.doi.org/10.1021/es051940s ] [PMID: 16468394]
[136]
Ludvík, J.; Zuman, P. Adsorption of 1, 2, 4-triazine pesticides metamitron and metribuzin on lignin. Microchem. J., 2000, 64(1), 15-20.
[http://dx.doi.org/10.1016/S0026-265X(99)00015-6]
[137]
Wahba, S.M.; Darwish, A.S.; Shehata, I.H.; Abd Elhalem, S.S. Sugarcane bagasse lignin, and silica gel and magneto-silica as drug vehicles for development of innocuous methotrexate drug against rheumatoid arthritis disease in albino rats. Mater. Sci. Eng. C, 2015, 48, 599-610.
[http://dx.doi.org/10.1016/j.msec.2014.12.054 ] [PMID: 25579963]
[138]
Abdel-Mottaleb, M.M.; Lamprecht, A. Polymeric nano (and micro) particles as carriers for enhanced skin penetration.In: Percutaneous penetration enhancers chemical methods in penetration Enhancement; Springer, 2016, pp. 187-199.
[http://dx.doi.org/10.1007/978-3-662-47862-2_12]
[139]
Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007, 2(1), 147-157.
[http://dx.doi.org/10.1177/117739280700200002 ] [PMID: 21901071]
[140]
Dadwal, M.; Solan, D.; Pradesh, H. Polymeric nanoparticles as promising novel carriers for drug delivery: an overview. J. Adv. Pharm. Educ. Res., 2014, 4(1), 20-30.https://japer.in/storage/models/article/mbNGbNTXwWmh6fTKuEpxrnB04VCnGfdmsbX1SYeSrocshE2KljeSylt9ZbzI/polymeric-nanoparticles-as-promising-novel-carriers-for-drug-delivery-an-overview.pdf
[141]
Cano-Sarabia, M.M.D. Nanoencapsulation.In: Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, 2015.
[http://dx.doi.org/10.1007/978-94-007-6178-0_50-2]
[142]
Behboudi, G.; Shayesteh, K.; Tavakkoli Yaraki, M.; Ebrahimi, H.A.; Moradi, S. Optimized synthesis of lignin sulfonate nanoparticles by solvent shifting method and their application for adsorptive removal of dye pollutant. Chemosphere, 2021, 285, 131576.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131576 ] [PMID: 34329134]
[143]
Li, X.; Li, H.; Zhang, C.; Pich, A.; Xing, L.; Shi, X. Intelligent nanogels with self-adaptive responsiveness for improved tumor drug deliv-ery and augmented chemotherapy. Bioact. Mater., 2021, 6(10), 3473-3484.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.021 ] [PMID: 33869898]
[144]
Li, X.; Sun, H.; Li, H.; Hu, C.; Luo, Y.; Shi, X.; Pich, A. Multi‐responsive biodegradable cationic nanogels for highly efficient treatment of tumors. Adv. Funct. Mater., 2021., 2100227.
[http://dx.doi.org/10.1002/adfm.202100227]
[145]
Li, X.; Yang, M.; Shi, X.; Chu, X.; Chen, L.; Wu, Q.; Wang, Y. Effect of the intramolecular hydrogen bond on the spectral and optical properties in chitosan oligosaccharide. Physica E, 2015, 69, 237-242.
[http://dx.doi.org/10.1016/j.physe.2015.01.043]
[146]
Li, X.; Yu, S.; Yang, M.; Xu, C.; Wang, Y.; Chen, L. Electronic structure analysis of glycine oligopeptides and glycine–tryptophan oligo-peptides. Physica E, 2014, 57, 63-68.https://ui.adsabs.harvard.edu/link_gateway/2014PhyE...57...63L/doi:10.1016/j.physe.2013.10.028
[http://dx.doi.org/10.1016/j.physe.2013.10.028]
[147]
Li, H.; Li, X.; Jain, P.; Peng, H.; Rahimi, K.; Singh, S.; Pich, A. Dual-degradable biohybrid microgels by direct cross-linking of chitosan and dextran using azide–alkyne cycloaddition. Biomacromolecules, 2020, 21(12), 4933-4944.
[http://dx.doi.org/10.1021/acs.biomac.0c01158 ] [PMID: 33210916]
[148]
Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G.Y. Microencapsulation techniques, factors influ-encing encapsulation efficiency. J. Microencapsul., 2010, 27(3), 187-197.
[http://dx.doi.org/10.3109/02652040903131301 ] [PMID: 20406093]
[149]
FU, F.; Hu, L. Temperature sensitive colour-changed composites.In: Advanced high strength natural fibre composites in construction; Woodhead Publishing, 2017, pp. 405-423.
[http://dx.doi.org/10.1016/B978-0-08-100411-1.00015-7]
[150]
Uhrich, K.; Abdelhamid, D. Biodegradable and bioerodible polymers for medical applications.In: Biosynthetic Polymers for Medical Applications; Elsevier, 2016, pp. 63-83.
[http://dx.doi.org/10.1016/B978-1-78242-105-4.00003-1]
[151]
Stewart, S.S.; Roldan, J.E.; Lvov, Y.M.; Mills, D.K. Layer-by-Layer adsorption of biocompatible polyelectrolytes onto dexamethasone aggregates 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 1474-1477.
[http://dx.doi.org/10.1109/IEMBS.2006.260097]
[152]
Elizarova, I.S.; Luckham, P.F. Layer-by-layer adsorption: Factors affecting the choice of substrates and polymers. Adv. Colloid Interface Sci., 2018, 262, 1-20.
[http://dx.doi.org/10.1016/j.cis.2018.11.003 ] [PMID: 30448237]
[153]
Bruschi, M. 4—Main mechanisms to control the drug release. Strategies to modify the drug release from pharmaceutical systems; Bruschi, M.L., Ed.; , 2015, pp. 37-62.
[http://dx.doi.org/10.1016/B978-0-08-100092-2.00004-7]
[154]
Wei, X.; Chen, J.; Gao, B.; Wang, Z. Role of controlled and slow release fertilizers in fruit crop nutrition.In: Fruit Crops; Srivastava, A.K.; Hu, C., Eds.; Elsevier, 2020, pp. 555-566.
[http://dx.doi.org/10.1016/B978-0-12-818732-6.00039-3]
[155]
Shaviv, A. Advances in controlled-release fertilizers.In: Advances in Agronomy; Academic Press; , 2001, 71, pp. 1-49.
[http://dx.doi.org/10.1016/S0065-2113(01)71011-5]
[156]
Saravanan, M.; Domb, A.J. A contemporary review on–polymer stereocomplexes and its biomedical application. Eur. J. Nanomed., 2013, 5(2), 81-96.
[http://dx.doi.org/10.1515/ejnm-2012-0017]
[157]
Vishtal, A.G.; Kraslawski, A. Challenges in industrial applications of technical lignins. BioResources, 2011, 6(3), 3547-3568.https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_3_c_Vishtal_K_Challenges_Indus_Appl_Technical_Lignins/1112
[http://dx.doi.org/10.15376/biores.6.3.3547-3568]
[158]
Farooq, M.; Zou, T.; Riviere, G.; Sipponen, M.H.; Österberg, M. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules, 2019, 20(2), 693-704.
[http://dx.doi.org/10.1021/acs.biomac.8b01364 ] [PMID: 30358992]
[159]
Gil-Chávez, G.J.; Padhi, S.S.P.; Pereira, C.V.; Guerreiro, J.N.; Matias, A.A.; Smirnova, I. Cytotoxicity and biological capacity of sulfur-free lignins obtained in novel biorefining process. Int. J. Biol. Macromol., 2019, 136, 697-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.021 ] [PMID: 31173828]
[160]
Ugartondo, V.; Mitjans, M.; Vinardell, M.P. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol., 2008, 99(14), 6683-6687.
[http://dx.doi.org/10.1016/j.biortech.2007.11.038 ] [PMID: 18187323]
[161]
Vinardell, M.P.; Mitjans, M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci., 2017, 18(6), 1219.
[http://dx.doi.org/10.3390/ijms18061219 ] [PMID: 28590454]