Recent Advances in the Applications of Green Synthesized Nanoparticle based Nanofluids for the Environmental Remediation

Page: [188 - 198] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

With the ever-growing importance of green technology, the utilization of inorganic metal oxide nanoparticles and their nanofluids against microorganisms garnered more attention than organic metal oxides in recent years. Therefore, using safer, energy and cost-effective natural raw materials, stabilizing agents, and solvents are the fundamental considerations of the greener process. Due to their unique properties, larger surface area to volume ratio, higher stability and selective toxicity towards microbial pathogens, ZnO, TiO2 and silver nanoparticles are considered environmentally friendly and cost-effective antimicrobial agents. Furthermore, amine-based silica nanoparticles and carbon nanotubes are used for the carbon dioxide and hydrogen sulfide separation. The review mainly focuses on the green synthesis of the various nanoparticles to form nanofluids and their application in environmental remediation. In this light, the current paper briefly summarizes the preparation methods and the prospective environmental remediation applications of various nanofluids in the field of microorganisms controlling mechanisms, wastewater treatment methods and harmful gaseous removal methods.

Keywords: Nanoparticle, Nanofluid, Green synthesis, Antibacterial activity, environmental remediation.

Graphical Abstract

[1]
Kumar, N.; Sonawane, S.S.; Sonawane, S.H. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int. Commun. Heat Mass Transf., 2017, 2018(90), 1-10.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.10.001]
[2]
Asadi, A.; Pourfattah, F.; Miklós Szilágyi, I.; Afrand, M.; Żyła, G.; Seon Ahn, H.; Wongwises, S.; Minh Nguyen, H.; Arabkoohsar, A.; Mahian, O. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason. Sonochem., 2019, 58, 104701.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104701] [PMID: 31450312]
[3]
Sonawane, S.S.; Khedkar, R.S.; Wasewar, K.L. Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2-water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J. Exp. Nanosci., 2015, 10(4), 310-322.
[http://dx.doi.org/10.1080/17458080.2013.832421]
[4]
Sonawane, S.S.; Juwar, V. Development of nanobased thermic fluid: Thermal aspects of new energy system. In: Proceedings of the Sec-ond International Conference on Recent Advances in Bioenergy Research, 2018, pp. 107-114.
[http://dx.doi.org/10.1007/978-981-10-6107-3]
[5]
Kumar, N.; Sonawane, S.S. Convective heat transfer of metal oxide-based nanofluids in a shell and tube heat exchanger. In: Proceedings of the Second International Conference on Recent Advances in Bioenergy Research, 2018, pp. 183-192.
[http://dx.doi.org/10.1007/978-981-10-6107-3_14]
[6]
Basha, S.K.; Lakshmi, K.V.; Kumari, V.S. Ammonia sensor and antibacterial activitiesof green zinc oxide nanoparticles. Sens. Biosensing Res., 2016, 10, 34-40.
[http://dx.doi.org/10.1016/j.sbsr.2016.08.007]
[7]
Salari, Z.; Ameri, A.; Forootanfar, H.; Adeli-Sardou, M.; Jafari, M.; Mehrabani, M.; Shakibaie, M. Microwave-assisted biosynthesis of zinc nanoparticles and their cytotoxicand antioxidant activity. J. Trace Elem. Med. Biol., 2017, 39, 116-123.
[http://dx.doi.org/10.1016/j.jtemb.2016.09.001]
[8]
Madhumitha, G.; Elango, G.; Roopan, S.M. Biotechnological aspects of ZnO nanoparticles: Overview on synthesis and its applications. Appl. Microbiol. Biotechnol., 2016, 100(2), 571-581.
[http://dx.doi.org/10.1007/s00253-015-7108-x] [PMID: 26541334]
[9]
Ferreira, F.V.; Mariano, M.; Lepesqueur, L.S.S.; Pinheiro, I.F.; Santos, L.G.; Burga-Sánchez, J.; Souza, D.H.S.; Koga-Ito, C.Y.; Teixeira-Neto, A.A.; Mei, L.H.I.; Gouveia, R.F.; Lona, L.M.F. Silver nanoparticles coated with dodecanethiol used as fillers in non-cytotoxic and antifungal PBAT surface based on nanocomposites. Mater. Sci. Eng. C, 2019, 98, 800-807.
[http://dx.doi.org/10.1016/j.msec.2019.01.044] [PMID: 30813086]
[10]
Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S.S. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activi-ties of ZnO nanoparticles. J. Photochem. Photobiol. B. Biol., 2016, 160, 32-42.
[11]
Zhang, L.; Jiang, Y.; Ding, Y.; Daskalakis, N.; Jeuken, L.; Povey, M.; O’Neill, A.J.; York, D.W. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res., 2010, 12(5), 1625-1636.
[http://dx.doi.org/10.1007/s11051-009-9711-1]
[12]
Ziąbka, M.; Kiszka, J.; Trenczek-Zając, A.; Radecka, M.; Cholewa-Kowalska, K.; Bissenik, I.; Kyzioł, A.; Dziadek, M.; Niemiec, W.; Kró-licka, A. Antibacterial composite hybrid coatings of veterinary medical implants. Mater. Sci. Eng. C, 2020, 112, 110968.
[http://dx.doi.org/10.1016/j.msec.2020.110968] [PMID: 32409094]
[13]
Banasiuk, R.; Krychowiak, M.; Swigon, D.; Tomaszewicz, W.; Michalak, A.; Chylewska, A.; Ziabka, M.; Lapinski, M.; Koscielska, B.; Narajczyk, M.; Krolicka, A. Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activi-ty. Arab. J. Chem., 2020, 13(1), 1415-1428.
[http://dx.doi.org/10.1016/j.arabjc.2017.11.013]
[14]
Al-Garah, N.H.; Rashid, F.L.; Hadi, A.; Hashim, A. Synthesis and characterization of novel (organic-inorganic) nanofluids for antibacteri-al, antifungal and heat transfer applications. J. Bionanoscience, 2018, 12(3), 1-5.
[http://dx.doi.org/10.1166/jbns.2018.1538]
[15]
Krychowiak-Maśnicka, M.; Krauze-Baranowska, M.; Godlewska, S.; Kaczyński, Z.; Bielicka-Giełdoń, A.; Grzegorczyk, N.; Narajczyk, M.; Frackowiak, J.E.; Krolicka, A. Potential of silver nanoparticles in overcoming the intrinsic resistance of Pseudomonas aeruginosa to secondary metabolites from carnivorous plants. Int. J. Mol. Sci., 2021, 22(9), 4849.
[http://dx.doi.org/10.3390/ijms22094849] [PMID: 34063704]
[16]
Spisz, P.; Chylewska, A.; Królicka, A.; Ramotowska, S.; Dąbrowska, A.; Makowski, M. Stimulation of sulfonamides antibacterial drugs activity as a result of complexation with Ru (III): Physicochemical and biological study. Int. J. Mol. Sci., 2021, 22(24), 13482.
[http://dx.doi.org/10.3390/ijms222413482] [PMID: 34948278]
[17]
Makowski, W.; Królicka, A.; Nowicka, A.; Zwyrtková, J.; Tokarz, B.; Pecinka, A.; Banasiuk, R.; Tokarz, K.M. Transformed tissue of Dionaea muscipula J. Ellis as a source of biologically active phenolic compounds with bactericidal properties. Appl. Microbiol. Biotechnol., 2021, 105(3), 1215-1226.
[http://dx.doi.org/10.1007/s00253-021-11101-8] [PMID: 33447868]
[18]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 1-24.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 29321058]
[19]
Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Lukáčová Bujňáková, Z.; Balážová, Ľ.; Tkáčiková, Ľ. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials (Basel), 2021, 11(4), 1005.
[http://dx.doi.org/10.3390/nano11041005] [PMID: 33919801]
[20]
Pandit, R. Green synthesis of silver nanoparticles from seed extract of Brassica nigra and its antibacterial activity. Nusant. Biosci., 2015, 7, 15-19.
[21]
Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surfaces B Biointerf., 2013, 108, 80-84.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.033]
[22]
Baláž, M. Balážová, L’.; Daneu, N.; Dutková, E.; Balážová, M.; Buj ˇnáková, Z.; Shpotyuk, Y. Plant-mediated synthesis of silver nano-particles and their stabilization bywet stirred media milling. Nanoscale Res. Lett., 2017, 12, 83.
[http://dx.doi.org/10.1186/s11671-017-1860-z] [PMID: 28144916]
[23]
Shaik, M.R.; Khan, M.; Kuniyil, M.; Al-Warthan, A.; Alkhathlan, H.Z.; Siddiqui, M.R.H.; Shaik, J.P.; Ahamed, A.; Mahmood, A.; Khan, M.; Adil, S. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. Extract and theirmicrobicidal activi-ties. Sustainability (Basel), 2018, 10(4), 913.
[http://dx.doi.org/10.3390/su10040913]
[24]
Baláž, M. Balážová, L’.; Kováˇcová, M.; Daneu, N.; Salayová, A.; Bedloviˇcová, Z.; Tkáˇciková, L’ The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles. Adv. Nano Res., 2019, 7, 125-134.
[25]
Behravan, M.; Hossein Panahi, A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol., 2019, 124, 148-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101] [PMID: 30447360]
[26]
Villalpando, M.; Rosas, G. Effect of magnetic stirring on the green synthesis of silver nanoparticles using Lavandula angustifolia plant extract. Microsc. Microanal., 2019, 25(S2), 1976-1977.
[http://dx.doi.org/10.1017/S1431927619010614]
[27]
Belova, M.M.; Shipunova, V.O.; Kotelnikova, P.A.; Babenyshev, A.V.; Rogozhin, E.A.; Cherednichenko, M.Y.; Deyev, S.M. “Green” synthesis of cytotoxic silver nanoparticles based on secondary metabolites of Lavandula angustifolia mill. Acta Nat. (Engl. Ed.), 2019, 11(2), 47-53.
[http://dx.doi.org/10.32607/20758251-2019-11-2-47-53] [PMID: 31413879]
[28]
Bunghez, I.R.; Fierascu, R.C.; Dumitrescu, O.; Fierascu, I.; Ion, R.M. Characterization of silver nanoparticles obtained byLavandula an-gustifolia extract. Rev. Roum. Chim., 2015, 60, 515-519.
[29]
Gonçalves, R.A.; Toledo, R.P.; Joshi, N.; Berengue, O.M. Green synthesis and applications of ZnO and TiO2 nanostructures. Molecules, 2021, 26(8), 2236.
[http://dx.doi.org/10.3390/molecules26082236] [PMID: 33924397]
[30]
Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Struc-ture and optical properties. Mater. Res. Bull., 2011, 46(12), 2560-2566.
[http://dx.doi.org/10.1016/j.materresbull.2011.07.046]
[31]
Suresh, D.; Shobharani, R.M.; Nethravathi, P.C.; Pavan Kumar, M.A.; Nagabhushana, H.; Sharma, S.C. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 128-134.
[http://dx.doi.org/10.1016/j.saa.2015.01.048] [PMID: 25668693]
[32]
Diallo, A.; Ngom, B.; Park, E.; Maaza, M. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties. J. Alloys Compd., 2015, 646, 425-430.
[http://dx.doi.org/10.1016/j.jallcom.2015.05.242]
[33]
Elumalai, K.; Velmurugan, S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf ex-tract of Azadirachta indica (L.). Appl. Surf. Sci., 2015, 345, 329-336.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.176]
[34]
Hassan, S.S.; Abdel-Shafy, H.I.; Mansour, M.S. Removal of pharmaceutical compounds from urine via chemical coagulation by green synthesized ZnO-nanoparticles followed by microfiltration for safe reuse. Arab. J. Chem., 2019, 12(8), 4074-4083.
[http://dx.doi.org/10.1016/j.arabjc.2016.04.009]
[35]
Singh, R.P. Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mater. Lett., 2011, 2, 313-317.
[http://dx.doi.org/10.5185/amlett.indias.204]
[36]
Saikia, I.; Hazarika, M.; Tamuly, C. Synthesis, characterization of bio-derived ZnO nanoparticles and its catalytic activity. Mater. Lett., 2015, 161, 29-32.
[http://dx.doi.org/10.1016/j.matlet.2015.08.068]
[37]
Çolak, H.; Karaköse, E. Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia (lemon) peel extract by spin-coating method. J. Alloys Compd., 2017, 690, 658-662.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.090]
[38]
Yuvakkumar, R.; Suresh, J.; Nathanael, A.J.; Sundrarajan, M.; Hong, S.I. Novel green synthetic strategy to prepare ZnO nanocrystals us-ing rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C, 2014, 41, 17-27.
[http://dx.doi.org/10.1016/j.msec.2014.04.025] [PMID: 24907732]
[39]
Wang, D.; Liu, H.; Ma, Y.; Qu, J.; Guan, J.; Lu, N.; Lu, Y.; Yuan, X. Recycling of hyper-accumulator: Synthesis of ZnO nanoparticles and photocatalytic degradation for dichlorophenol. J. Alloys Compd., 2016, 680, 500-505.
[http://dx.doi.org/10.1016/j.jallcom.2016.04.100]
[40]
Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Raj, G.A. Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv. Powder Technol., 2015, 26(6), 1639-1651.
[http://dx.doi.org/10.1016/j.apt.2015.09.008]
[41]
Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for anti-bacterial and photocatalytic applications. Mater. Sci. Semicond. Process., 2015, 32, 55-61.
[http://dx.doi.org/10.1016/j.mssp.2014.12.053]
[42]
Lu, J.; Batjikh, I.; Hurh, J.; Han, Y.; Ali, H.; Mathiyalagan, R.; Ling, C.; Ahn, J.C.; Yang, D.C. Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus. Optik (Stuttg.), 2019, 182, 980-985.
[http://dx.doi.org/10.1016/j.ijleo.2018.12.016]
[43]
Liu, Y.C.; Li, J.; Ahn, J.; Pu, J.; Rupa, E.J.; Huo, Y.; Yang, D.C. Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst. Optik (Stuttg.), 2020, 218, 165245.
[http://dx.doi.org/10.1016/j.ijleo.2020.165245]
[44]
Kavitha, S.; Dhamodaran, M.; Prasad, R.; Ganesan, M. Synthesis and characterisation of zinc oxide nanoparticles using terpenoid frac-tions of Andrographis paniculata leaves. Int. Nano Lett., 2017, 7(2), 141-147.
[http://dx.doi.org/10.1007/s40089-017-0207-1]
[45]
Rupa, E.J.; Anandapadmanaban, G.; Mathiyalagan, R.; Yang, D-C. Synthesis of zinc oxide nanoparticles from immature fruits of Rubus coreanus and its catalytic activity for degradation of industrial dye. Optik (Stuttg.), 2018, 172, 1179-1186.
[http://dx.doi.org/10.1016/j.ijleo.2018.07.115]
[46]
Kalyanasundaram, S.; Prakash, M.J. Biosynthesis and characterization of titanium dioxide nanoparticles using Pithecellobium dulce and lagenaria siceraria aqueous leaf extract and screening their free radical scavenging and antibacterial properties. Int. Lett. Chem. Phys. Astron., 2015, 50, 80-95.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.50.80]
[47]
Ganesan, S.; Babu, I.G.; Mahendran, D.; Arulselvi, P.I.; Elangovan, N.; Geetha, N.; Venkatachalam, P. Green engineering of titanium diox-ide nanoparticles using Ageratina altissima (L.) King & H.E. Robines. medicinal plant aqueous leaf extracts for enhanced photocatalytic activity. Ann. Phytomed., 2016, 5(2), 69-75.
[http://dx.doi.org/10.21276/ap.2016.5.2.8]
[48]
Kaur, H.; Kaur, S.; Kumar, S.; Singh, J.; Rawat, M. Eco-friendly approach: Synthesis of novel green TiO2 nanoparticles for degradation of reactive green 19 dye and replacement of chemical synthesized TiO2. J. Clust. Sci., 2020, 1-14.
[49]
Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J., 2018, 336, 386-396.
[http://dx.doi.org/10.1016/j.cej.2017.12.029]
[50]
Madadi, Z.; Bagheri Lotfabad, T. Aqueous extract of Acanthophyllum laxiusculum roots as a renewable resource for green synthesis of nano-sized titanium dioxide using Sol-gel method. Adv. Ceram. Prog., 2016, 2, 26-31.
[51]
Singh, A.; Goyal, V.; Singh, J.; Rawat, M. Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs. Curr. Res. Green Sustain. Chem., 2020, 3, 100033.
[http://dx.doi.org/10.1016/j.crgsc.2020.100033]
[52]
Kaur, H.; Goyal, V.; Singh, J.; Kumar, S.; Rawat, M. Biomolecules encapsulated TiO2 nano-cubes using Tinospora cordifolia for photo-degradation of a textile dye. Micro & Nano Lett., 2019, 14(12), 1229-1232.
[http://dx.doi.org/10.1049/mnl.2019.0340]
[53]
Quevauviller, P. Quality Assurance, Production of Reference Materials, Paul Worsfold, Alan Townshend, Colin Poole, Encyclopedia of Analytical Science, 2nd ed; Elsevier, 2005, pp. 462-469.
[54]
Behzad, J.; Am, S. Antimicrobial effect of nanofluid including zinc oxide (Zno) nanoparticles and trachyspremum copticum essential oils on food-borne pathogens. biotechnol. An Indian J., 2016, 12(6), 1-9.
[55]
Pauzi, N.; Zain, N.M.; Yusof, N.A.A. Gum arabic as natural stabilizing agent in green synthesis of ZnO nanofluids for antibacterial appli-cation. J. Environ. Chem. Eng., 2019, 103331.
[56]
Fakhroueian, Z.; Katouzian, F.; Esmaeilzadeh, P.; Moradi Bidhendi, S.; Esmaeilzadeh, P. Enhanced engineered ZnO nanostructures and their antibacterial activity against urinary, gastrointestinal, respiratory and dermal genital infections. Appl. Nanosci., 2019, 9(8), 1759-1773.
[http://dx.doi.org/10.1007/s13204-019-00996-5]
[57]
Tayel, A.A.; El-Tras, W.F.; Moussa, S.; El-Baz, A.F.; Mahrous, H.; Salem, M.F.; Brimer, L. Antibacterial action of zinc oxide nanoparti-cles against foodborne pathogens. J. Food Saf., 2011, 31(2), 211-218.
[http://dx.doi.org/10.1111/j.1745-4565.2010.00287.x]
[58]
Zhang, L.; Li, Y.; Liu, X.; Zhao, L.; Ding, Y.; Povey, M.; Cang, D. The properties of ZnO nanofluids and the role of H2O2 in the disinfec-tion activity against Escherichia coli. Water Res., 2013, 47(12), 4013-4021.
[http://dx.doi.org/10.1016/j.watres.2012.10.054] [PMID: 23618315]
[59]
Yan, Z.; Zhang, L.; Zhao, Z.; Qi, H.; Li, Y.; Cang, D. Enhanced antimicrobial activity of ZnO nanofluids in sonophotocatalysis and its mechanism. Ultrason. Sonochem., 2018, 47(30), 133-140.
[http://dx.doi.org/10.1016/j.ultsonch.2018.03.020] [PMID: 29908602]
[60]
Zhang, L.; Qi, H.; Yan, Z.; Gu, Y.; Sun, W.; Zewde, A.A. Sonophotocatalytic inactivation of E. coli using ZnO nanofluids and its mecha-nism. Ultrason. Sonochem., 2017, 34, 232-238.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.045] [PMID: 27773240]
[61]
Jalal, R.; Goharshadi, E.K.; Abareshi, M.; Moosavi, M.; Yousefi, A.; Nancarrow, P. ZnO Nanofluids: Green synthesis, characterization, and antibacterial activity. Mater. Chem. Phys., 2010, 121(1–2), 198-201.
[http://dx.doi.org/10.1016/j.matchemphys.2010.01.020]
[62]
Saliani, M.; Jalal, R.; Kafshdare Goharshadi, E. Effects of pH and Temperature on Antibacterial Activity of Zinc Oxide Nanofluid Against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur J. Microbiol., 2015, 8(2), e17115.
[http://dx.doi.org/10.5812/jjm.17115] [PMID: 25825643]
[63]
Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res., 2007, 9(3), 479-489.
[http://dx.doi.org/10.1007/s11051-006-9150-1]
[64]
Zhang, L.; Li, S.; Liu, X.; Cang, D.; Ding, Y. Disinfection of water and wastewater using ZnO nanofluids - effect of shaking speed of in-cubator. Adv. Mat. Res., 2011, 183–185, 2298-2302.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.183-185.2298]
[65]
Jahanpanahi, M.; Sani, A.M. Antimicrobial effect of nanofluid including Zinc Oxide (ZnO). nanoparticles and Mentha pulegium essential oil. J. Appl. Biol. Biotechnol., 2016, 4, 85-89.
[66]
Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanopar-ticles. Mater. Sci. Eng. C, 2014, 44, 278-284.
[http://dx.doi.org/10.1016/j.msec.2014.08.031] [PMID: 25280707]
[67]
Malika, M.; Sonawane, S.S. Review on application of nanofluid/nano particle as water disinfectant. J. Indian Assoc. Environ. Manag., 2019, 39, 21-24.
[68]
Javedani Bafekr, J.; Jalal, R. In vitro antibacterial activity of ceftazidime, unlike ciprofloxacin, improves in the presence of ZnO nanofluids under acidic conditions. IET Nanobiotechnology, 2018, 12, pp. (5), 640-646.
[69]
Malika, M.; Sonawane, S.; Statistical, S. Modelling for the ultrasonic photodegradation of rhodamine B dye using aqueous based bi-metal doped TiO2 supported montmorillonite hybrid nanofluid via RSM. Sustain. Energy Technol. Assess., 2020, 2021, 44.
[70]
Malika, M.; Sonawane, S.S. Low-frequency ultrasound assisted synthesis of an aqueous aluminium hydroxide decorated graphitic car-bon nitride nanowires based hybrid nanofluid for the photocatalytic H 2 production from methylene blue dye. sustain. Energy Technol. Assessments, 2021, 442020, 100979.
[71]
Sen, N.; Ekhande, S.; Thakur, P.; Singh, K.K.; Mukhopadhyay, S.; Sirsam, R.; Patil, N.; Shenoy, K.T. Direct precipitation of uranium from loaded organic in a microreactor. Sep. Sci. Technol., 2019, 54(9), 1430-1442.
[http://dx.doi.org/10.1080/01496395.2018.1563158]
[72]
Thakur, P.; Sonawane, S. S.; Sonawane, S. H.; Bhanvase, B. A. Nanofluids-based delivery system, encapsulation of nanoparticles for stability to make stable nanofluids. Encapsul. Active Mol. Deliv. Syst., 2020, pp. 141-152.
[http://dx.doi.org/10.1016/B978-0-12-819363-1.00009-0]
[73]
Sonawane, S.S.; Thakur, P.P.; Paul, R. Study on visco-elastic properties enhancement of MWCNT based polypropylene nanocomposites. Mater. Today Proc., 2020, 29, 929-933.
[http://dx.doi.org/10.1016/j.matpr.2020.05.417]
[74]
Sonawane, S.; Thakur, P.; Paul, R. Study on thermal property enhancement of MWCNT based polypropylene (PP) nanocomposites. Mater. Today Proc., 2020, 27, 550-555.
[http://dx.doi.org/10.1016/j.matpr.2019.12.018]
[75]
Thakur, P.; Kumar, N.; Sonawane, S.S. Enhancement of pool boiling performance using MWCNT based nanofluids: A sustainable method for the wastewater and incinerator heat recovery. Sustain. Energy Technol. Assess., 2021, 45, 101115.
[http://dx.doi.org/10.1016/j.seta.2021.101115]
[76]
Thakur, P.; Ekhande, S.; Sirsam, R.; Sen, N.; Singh, K.K.; Mukhopadhyay, S.; Shenoy, K.T. Reactive stripping and precipitation of uranium in a microchannel. In: Proceedings of the eight biennial symposium on emerging trends in separation science and technology: Birla Institute of technology, Goa (India), 2018.
[77]
Jung, J.Y.; Lee, J.W.; Kang, Y.T. CO2 absorption characteristics of nanoparticle suspensions in methanol. J. Mech. Sci. Technol., 2012, 26(8), 2285-2290.
[http://dx.doi.org/10.1007/s12206-012-0609-y]
[78]
Ghosh, S.; Ramaprabhu, S. High-pressure investigation of ionic functionalized graphitic carbon nitride nanostructures for CO2 capture. J. CO2 Utilization, 2007, 21, 89-99.
[http://dx.doi.org/10.1016/j.jcou.2017.06.022]
[79]
Arshadi, M.; Taghvaei, H.; Abdolmaleki, M.K.; Lee, M.; Eskandarloo, H.; Abbaspourrad, A. Carbon dioxide absorption in water/Nano fluid by a symmetric amine-based nanodendritic adsorbent. Appl. Energy, 2019, 242, 1562-1572.
[http://dx.doi.org/10.1016/j.apenergy.2019.03.105]
[80]
Taheri, M.; Mohebbi, A.; Hashemipour, H.; Rashidi, A.M. Simultaneous absorption of carbon dioxide (CO2) and hydrogen sulfide (H2S) from CO2-H2S-CH4 gas mixture using amine-based Nano fluids in a wetted wall column. J. Nat. Gas Sci. Eng., 2016, 28, 410-417.
[http://dx.doi.org/10.1016/j.jngse.2015.12.014]
[81]
Sumin, L.U.; Min, X.I.N.G.; Yan, S.U.N.; Xiangjun, D.O.N.G. Experimental and theoretical studies of CO2 absorption enhancement by nano-Al2O3 and carbon nanotube particles. Chin. J. Chem. Eng., 2013, 21(9), 983-990.
[http://dx.doi.org/10.1016/S1004-9541(13)60550-9]
[82]
Lee, J.W.; Pineda, I.T.; Lee, J.H.; Kang, Y.T. Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents. Appl. Energy, 2016, 178, 164-176.
[http://dx.doi.org/10.1016/j.apenergy.2016.06.048]
[83]
Zhang, Z.; Cai, J.; Chen, F.; Li, H.; Zhang, W.; Qi, W. Progress in enhancement of CO2 absorption by Nano fluids: A mini review of mechanisms and current status. Renew. Energy, 2018, 118, 527-535.
[http://dx.doi.org/10.1016/j.renene.2017.11.031]
[84]
Liu, H.; Gao, H.; Idem, R.; Tontiwachwuthikul, P.; Liang, Z. Analysis of CO2 solubility and absorption heat into 1-dimethylamino-2-propanol solution. Chem. Eng. Sci., 2017, 170, 3-15.
[http://dx.doi.org/10.1016/j.ces.2017.02.032]
[85]
Rehman, Z.U.; Ghasem, N.; Al-Marzouqi, M.; Abdullatif, N. Enhancement of carbon dioxide absorption using nanofluids in hollow fiber membrane contactor. Chin. J. Chem. Eng., 2019.
[http://dx.doi.org/10.1016/j.cjche.2019.07.001]
[86]
Li, Q.; Zhang, R.; Wu, D.; Huang, Y.; Zhao, L.; Wang, D.; Ma, G. Cell-nanoparticle assembly fabricated for CO2 capture and in situ carbon conversion. J. CO2 Utilization, 2016, 13, 17-23.
[http://dx.doi.org/10.1016/j.jcou.2015.11.004]
[87]
Irani, V.; Maleki, A.; Tavasoli, A. CO2 absorption enhancement in graphene-oxide/MDEA Nano fluid. J. Environ. Chem. Eng., 2019, 7(1), 102782.
[http://dx.doi.org/10.1016/j.jece.2018.11.027]
[88]
Haghtalab, A.; Mohammadi, M.; Fakhroueian, Z. Absorption and solubility measurement of CO2 in water-based ZnO and SiO2 Nano flu-ids. Fluid Phase Equilib., 2015, 392, 33-42.
[http://dx.doi.org/10.1016/j.fluid.2015.02.012]
[89]
Nabipour, M.; Keshavarz, P.; Raeissi, S. Experimental investigation on CO2 absorption in Sulfinol-M based Fe3O4 and MWCNT Nano fluids. Int. J. Refrig., 2017, 73, 1-10.
[http://dx.doi.org/10.1016/j.ijrefrig.2016.09.010]
[90]
Lu, Y.; Yan, J.; Dahlquist, E. Experimental investigation on CO2 absorption using absorbent in hollow fiber membrane contactor. International Scientific Conference on" Green Energy management and IT", Stockholm, March 12-13, 2008.