Marine Cellulases and their Biotechnological Significance from Industrial Perspectives

Page: [3325 - 3336] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Marine microorganisms represent virtually unlimited sources of novel biological compounds and can survive extreme conditions. Cellulases, a group of enzymes that are able to degrade cellulosic materials, are in high demand in various industrial and biotechnological applications, such as in the medical and pharmaceutical industries, food, fuel, agriculture, and single-cell protein, and as probiotics in aquaculture. The cellulosic biopolymer is a renewable resource and is a linearly arranged polysaccharide of glucose, with repeating units of disaccharide connected via β-1,4-glycosidic bonds, which are broken down by cellulase. A great deal of biodiversity resides in the ocean, and marine systems produce a wide range of distinct, new bioactive compounds that remain available but dormant for many years. The marine environment is filled with biomass from known and unknown vertebrates and invertebrate microorganisms, with much potential for use in medicine and biotechnology. Hence, complex polysaccharides derived from marine sources are a rich resource of microorganisms equipped with enzymes for polysaccharides degradation. Marine cellulases’ extracts from the isolates are tested for their functional role in degrading seaweed and modifying wastes to low molecular fragments. They purify and renew environments by eliminating possible feedstocks of pollution. This review aims to examine the various types of marine cellulase producers and assess the ability of these microorganisms to produce these enzymes and their subsequent biotechnological applications.

Keywords: Cellulase activity, marine enzymes, complex polysaccharides, single-cell protein, polysaccharides degradation, biomass.

[1]
Bommarius AS, Sohn M, Kang Y, Lee JH, Realff MJ. Protein engineering of cellulases. Curr Opin Biotechnol 2014; 29: 139-45.
[http://dx.doi.org/10.1016/j.copbio.2014.04.007] [PMID: 24794535]
[2]
Fatokun EN, Nwodo UU, Okoh AI. Classical optimization of cellulase and xylanase production by a marine Streptomyces species. Appl Sci 2016; 6(10): 286.
[http://dx.doi.org/10.3390/app6100286]
[3]
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66(3): 506-77.
[http://dx.doi.org/10.1128/MMBR.66.3.506-577.2002] [PMID: 12209002]
[4]
Linton SM. Review: The structure and function of cellulase (endo-β-1,4-glucanase) and hemicellulase (β-1,3-glucanase and endo-β-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol 2020; 240: 110354.
[http://dx.doi.org/10.1016/j.cbpb.2019.110354] [PMID: 31647988]
[5]
Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnol Adv 2011; 29(6): 675-85.
[http://dx.doi.org/10.1016/j.biotechadv.2011.05.005] [PMID: 21624451]
[6]
Brigham C. Biopolymers: Biodegradable alternatives to traditional plastics.Green Chemistry. Elsevier 2018; pp. 753-70.
[7]
Kern M, McGeehan JE, Streeter SD, et al. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci USA 2013; 110(25): 10189-94.
[http://dx.doi.org/10.1073/pnas.1301502110] [PMID: 23733951]
[8]
Tanimura A, Liu W, Yamada K, Kishida T, Toyohara H. Animal cellulases with a focus on aquatic invertebrates. Fish Sci 2013; 79(1): 1-13.
[http://dx.doi.org/10.1007/s12562-012-0559-4]
[9]
Dhiman T, Zaman MS, Gimenez RR, Walters JL, Treacher R. Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim Feed Sci Technol 2002; 101(1-4): 115-25.
[http://dx.doi.org/10.1016/S0377-8401(02)00177-3]
[10]
Crawford AC, Richardson NR, Mather PB. A comparative study of cellulase and xylanase activity in freshwater crayfish and marine prawns. Aquacult Res 2005; 36(6): 586-92.
[http://dx.doi.org/10.1111/j.1365-2109.2005.01259.x]
[11]
Zhang PYH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 2006; 24(5): 452-81.
[http://dx.doi.org/10.1016/j.biotechadv.2006.03.003] [PMID: 16690241]
[12]
Ngugi DK, Antunes A, Brune A, Stingl U. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the red sea. Mol Ecol 2012; 21(2): 388-405.
[http://dx.doi.org/10.1111/j.1365-294X.2011.05378.x] [PMID: 22133021]
[13]
Fatani S. Investigation and Isolation Of Cellulase-Producing Microorganisms in the Red Sea. KAUST Research Repository, Phd Thesis 2016.
[14]
El-Bondkly AM, El-Gendy MM. Keratinolytic activity from new recombinant fusant AYA2000, derived from endophytic Micromono-spora strains. Can J Microbiol 2010; 56(9): 748-60.
[http://dx.doi.org/10.1139/W10-058] [PMID: 20921985]
[15]
El-Bondkly A. Successive construction of β-glucosidase hyperproducers of trichoderma harzianum using microbial biotechnology techniques. J Microbial Biochem Technol 1948; 2: 070-3.
[http://dx.doi.org/10.4172/1948-5948.1000026]
[16]
Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv 2000; 18(5): 355-83.
[http://dx.doi.org/10.1016/S0734-9750(00)00041-0] [PMID: 14538100]
[17]
Beygmoradi A, Homaei A. Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol 2017; 11: 131-52.
[http://dx.doi.org/10.1016/j.bcab.2017.06.013]
[18]
Maki ML, Idrees A, Leung KT, Qin W. Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass. J Mol Microbiol Biotechnol 2012; 22(3): 156-66.
[http://dx.doi.org/10.1159/000341107] [PMID: 22832891]
[19]
Beygmoradi A, Homaei A, Hemmati R, Santos-Moriano P, Hormigo D, Fernández-Lucas J. Marine chitinolytic enzymes, a biotechnologi-cal treasure hidden in the ocean? Appl Microbiol Biotechnol 2018; 102(23): 9937-48.
[http://dx.doi.org/10.1007/s00253-018-9385-7] [PMID: 30276711]
[20]
Sharifian S, Homaei A, Hemmati R, Luwor RB, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101: 74-86.
[http://dx.doi.org/10.1016/j.biopha.2018.02.065] [PMID: 29477474]
[21]
Sharifian S, Homaei A, Kamrani E, Etzerodt T, Patel S. New insights on the marine cytochrome P450 enzymes and their biotechnological importance. Int J Biol Macromol 2020; 142: 811-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.022] [PMID: 31622713]
[22]
Sharifian S, Homaei A, Kim S-K, Satari M. Production of newfound alkaline phosphatases from marine organisms with potential func-tions and industrial applications. Process Biochem 2018; 64: 103-15.
[http://dx.doi.org/10.1016/j.procbio.2017.10.005]
[23]
Fenical W. Chemical studies of marine bacteria: Developing a new resource. Chem Rev 1993; 93(5): 1673-83.
[http://dx.doi.org/10.1021/cr00021a001]
[24]
Mohapatra B, Bapuji M, Sree A. Production of industrial enzymes (amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms. Acta Biotechnol 2003; 23(1): 75-84.
[http://dx.doi.org/10.1002/abio.200390011]
[25]
Trischman JA, Tapiolas DM, Jensen PR, et al. Salinamides A and B: Anti-inflammatory depsipeptides from a marine streptomycete. J Am Chem Soc 1994; 116(2): 757-8.
[http://dx.doi.org/10.1021/ja00081a042]
[26]
Kobayashi J, Ishibashi M. Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 1993; 93(5): 1753-69.
[http://dx.doi.org/10.1021/cr00021a005]
[27]
Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 1997; 15(3-4): 583-620.
[http://dx.doi.org/10.1016/S0734-9750(97)00006-2] [PMID: 14538158]
[28]
Maki M, Leung KT, Qin W. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 2009; 5(5): 500-16.
[http://dx.doi.org/10.7150/ijbs.5.500] [PMID: 19680472]
[29]
Chandrashekara K. Computer Applications and Biostatistics. Basic Concept of Biotechnology, Laxmi Book Publication, Publisher: 2015; pp.51-85.
[30]
Kämpfer P, Glaeser SP, Parkes L, van Keulen G, Dyson P. The Family Streptomycetaceae.The Prokaryotes Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). Springer, Berlin, Heidelberg 2014; 1010: p. 889.
[http://dx.doi.org/10.1007/978-3-642-30138-4_184]
[31]
Anderson AS, Wellington EM. The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 2001; 51(Pt 3): 797-814.
[http://dx.doi.org/10.1099/00207713-51-3-797] [PMID: 11411701]
[32]
Dharmaraj S. Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 2010; 26(12): 2123-39.
[http://dx.doi.org/10.1007/s11274-010-0415-6]
[33]
Pathom-Aree W, Stach JE, Ward AC, Horikoshi K, Bull AT, Goodfellow M. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana trench. Extremophiles 2006; 10(3): 181-9.
[http://dx.doi.org/10.1007/s00792-005-0482-z] [PMID: 16538400]
[34]
de Menezes AB, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ. Cellulose degradation by micromonosporas recovered from freshwater lakes and classification of these actinomycetes by DNA gyrase B gene sequencing. Appl Environ Microbiol 2008; 74(22): 7080-4.
[http://dx.doi.org/10.1128/AEM.01092-08] [PMID: 18820070]
[35]
Muñoz C, Hidalgo C, Zapata M, Jeison D, Riquelme C, Rivas M. Use of cellulolytic marine bacteria for enzymatic pretreatment in micro-algal biogas production. Appl Environ Microbiol 2014; 80(14): 4199-206.
[http://dx.doi.org/10.1128/AEM.00827-14] [PMID: 24795376]
[36]
Rajagopal G, Kannan S. Systematic characterization of potential cellulolytic marine actinobacteria Actinoalloteichus sp. MHA15. Biotechnol Rep (Amst) 2016; 13: 30-6.
[http://dx.doi.org/10.1016/j.btre.2016.12.003] [PMID: 28352560]
[37]
Trincone A. Marine biocatalysts: Enzymatic features and applications. Mar Drugs 2011; 9(4): 478-99.
[http://dx.doi.org/10.3390/md9040478] [PMID: 21731544]
[38]
Gulve R, Deshmukh A. Enzymatic activity of actinomycetes isolated from marine sedimentes. Recent Res Sci Technol 2011; 3(5): 80-3.
[39]
Foreman PK, Brown D, Dankmeyer L, et al. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Tricho-derma reesei. J Biol Chem 2003; 278(34): 31988-97.
[http://dx.doi.org/10.1074/jbc.M304750200] [PMID: 12788920]
[40]
Dos Santos YQ, de Veras BO, de França AFJ, et al. A new salt-tolerant thermostable cellulase from a marine bacillus sp. strain. J Microbiol Biotechnol 2018; 28(7): 1078-85.
[http://dx.doi.org/10.4014/jmb.1802.02037] [PMID: 29926709]
[41]
Yassien MA, Jiman-Fatani AAM, Asfour HZ. Production, purification and characterization of cellulase from streptomyces sp. Afr J Microbiol Res 2014; 8(4): 348-54.
[http://dx.doi.org/10.5897/AJMR2013.6500]
[42]
van Solingen P, Meijer D, van der Kleij WA, et al. Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 2001; 5(5): 333-41.
[http://dx.doi.org/10.1007/s007920100198] [PMID: 11699647]
[43]
Immanuel G, Dhanusha R, Prema P, Palavesam A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol 2006; 3(1): 25-34.
[http://dx.doi.org/10.1007/BF03325904]
[44]
Bhalla A, Bischoff KM, Sani RK. Highly thermostable xylanase production from a thermophilic geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass. Front Bioeng Biotechnol 2015; 3: 84.
[http://dx.doi.org/10.3389/fbioe.2015.00084] [PMID: 26137456]
[45]
Techapun C, Charoenrat T, Poosaran N, Watanabe M, Sasak K. Thermostable and alkaline-tolerant cellulase-free xylanase produced by thermotolerant streptomyces sp. Ab106. J Biosci Bioeng 2002; 93(4): 431-3.
[http://dx.doi.org/10.1016/S1389-1723(02)80080-9] [PMID: 16233227]
[46]
Ray AK, Bairagi A, Ghosh KS, et al. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacil-lus circulans TP3 isolated from fish gut. Acta Ichthyol Piscat 2007; 1(37): 47-53.
[http://dx.doi.org/10.3750/AIP2007.37.1.07]
[47]
Olsson L, Christensen TMIE, Hansen KP, Palmqvist EA. Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme Microb Technol 2003; 33(5): 612-9.
[http://dx.doi.org/10.1016/S0141-0229(03)00181-9]
[48]
Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58(1): 1-26.
[http://dx.doi.org/10.1038/ja.2005.1] [PMID: 15813176]
[49]
Bull AT, Stach JE, Ward AC, Goodfellow M. Marine actinobacteria: Perspectives, challenges, future directions. Antonie van Leeuwenhoek 2005; 87(1): 65-79.
[http://dx.doi.org/10.1007/s10482-004-6562-8] [PMID: 15726293]
[50]
Yoshida A, Seo Y, Suzuki S, et al. Actinomycetal community structures in seawater and freshwater examined by DGGE analysis of 16S rRNA gene fragments. Mar Biotechnol 2008; 10(5): 554-63.
[http://dx.doi.org/10.1007/s10126-008-9092-y] [PMID: 18418650]
[51]
Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 2002; 52(Pt 6): 2261-9.
[PMID: 12508896]
[52]
Asha BM, Revathi M, Yadav A, Sakthivel N. Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol 2012; 22(11): 1501-9.
[http://dx.doi.org/10.4014/jmb.1202.02013] [PMID: 23124341]
[53]
Mackenzie CR, Bilous D, Schneider H, Johnson KG. Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl Environ Microbiol 1987; 53(12): 2835-9.
[http://dx.doi.org/10.1128/aem.53.12.2835-2839.1987] [PMID: 16347499]
[54]
Herai S, Hashimoto Y, Higashibata H, et al. Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci USA 2004; 101(39): 14031-5.
[http://dx.doi.org/10.1073/pnas.0406058101] [PMID: 15377796]
[55]
Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM. Saccharophagus degradans gen. nov., sp. nov., a versa-tile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 2005; 55(Pt 4): 1545-9.
[http://dx.doi.org/10.1099/ijs.0.63627-0] [PMID: 16014479]
[56]
Andrykovitch G, Marx I. Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl Environ Microbiol 1988; 54(4): 1061-2.
[http://dx.doi.org/10.1128/aem.54.4.1061-1062.1988] [PMID: 16347602]
[57]
Samira M, Mohammad R, Gholamreza G. Carboxymethyl-cellulase and filter-paperase activity of new strains isolated from Persian Gulf. Microbiol J 2011; 1(1): 8-16.
[http://dx.doi.org/10.3923/mj.2011.8.16]
[58]
Deckert G, Warren PV, Gaasterland T, et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 1998; 392(6674): 353-8.
[http://dx.doi.org/10.1038/32831] [PMID: 9537320]
[59]
McKee LS, Peña MJ, Rogowski A, et al. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains. Proc Natl Acad Sci USA 2012; 109(17): 6537-42.
[http://dx.doi.org/10.1073/pnas.1117686109] [PMID: 22492980]
[60]
Varnai A. Carbohydrate-binding modules of fungal cellulases: Occurrence in nature, function, and relevance in industrial biomass con-version. Adv Appl Microbiol 2014; 88: 103-65.
[61]
Wilson DB. Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 2008; 1125(1): 289-97.
[http://dx.doi.org/10.1196/annals.1419.026] [PMID: 18378599]
[62]
Bonugli-Santos RC, Dos Santos Vasconcelos MR, Passarini MR, et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front Microbiol 2015; 6: 269.
[http://dx.doi.org/10.3389/fmicb.2015.00269] [PMID: 25914680]
[63]
Balabanova L, Slepchenko L, Son O, Tekutyeva L. Biotechnology potential of marine fungi degrading plant and algae polymeric sub-strates. Front Microbiol 2018; 9: 1527.
[http://dx.doi.org/10.3389/fmicb.2018.01527] [PMID: 30050513]
[64]
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep 2014; 31(11): 1510-53.
[http://dx.doi.org/10.1039/C4NP00017J] [PMID: 25070776]
[65]
Jones EG, Suetrong S, Sakayaroj J, et al. Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. Fungal Divers 2015; 73(1): 1-72.
[http://dx.doi.org/10.1007/s13225-015-0339-4]
[66]
Kumar A, Henrissat B, Arvas M, et al. De novo assembly and genome analyses of the marine-derived Scopulariopsis brevicaulis strain LF580 unravels life-style traits and anticancerous scopularide biosynthetic gene cluster. PLoS One 2015; 10(10): e0140398.
[http://dx.doi.org/10.1371/journal.pone.0140398] [PMID: 26505484]
[67]
Richards TA, Leonard G, Mahé F, et al. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc Biol Sci 2015; 282(1819): 20152243.
[http://dx.doi.org/10.1098/rspb.2015.2243] [PMID: 26582030]
[68]
Rateb ME, Ebel R. Secondary metabolites of fungi from marine habitats. Nat Prod Rep 2011; 28(2): 290-344.
[http://dx.doi.org/10.1039/c0np00061b] [PMID: 21229157]
[69]
Santos DA, Oliveira MM, Curvelo AAS, Fonseca LP, Porto ALM. Hydrolysis of cellulose from sugarcane bagasse by cellulases from marine-derived fungi strains. Int Biodeterior Biodegradation 2017; 121: 66-78.
[http://dx.doi.org/10.1016/j.ibiod.2017.03.014]
[70]
Gessner R. Degradative enzyme production by salt-marsh fungi. Bot Mar 1980; 23(2): 133-9.
[http://dx.doi.org/10.1515/botm.1980.23.2.133]
[71]
MacDonald MJ, Speedie MK. Cell-associated and extracellular cellulolytic enzyme activity in the marine fungus Dendryphiella arenaria. Can J Bot 1982; 60(6): 838-44.
[http://dx.doi.org/10.1139/b82-107]
[72]
Heald EJ, Odum WE. The contribution of mangrove swamps to Florida fisheries. Proc Gulf Caribb Fish Inst 1970; 22: 130-5.
[73]
Gasol JM, Kirchman DL. Microbial Ecology of the Oceans. John Wiley & Sons 2018.
[74]
Yarden O. Fungal association with sessile marine invertebrates. Front Microbiol 2014; 5: 228.
[http://dx.doi.org/10.3389/fmicb.2014.00228] [PMID: 24860565]
[75]
Li X, Xu J-Z, Wang W-J, et al. Genome sequencing and evolutionary analysis of marine gut fungus aspergillus sp. z5 from ligia oceanica: Supplementary issue: Bioinformatics methods and applications for big metagenomics data. Evol Bioinf 2016; 12: EBO. S37532.
[http://dx.doi.org/10.4137/EBO.S37532]
[76]
Deshmukh SK, Prakash V, Ranjan N. Marine fungi: A source of potential anticancer compounds. Front Microbiol 2018; 8: 2536.
[http://dx.doi.org/10.3389/fmicb.2017.02536] [PMID: 29354097]
[77]
El-Bondkly AM, El-Gendy MM. Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. Antonie van Leeuwenhoek 2012; 101(2): 331-46.
[http://dx.doi.org/10.1007/s10482-011-9639-1] [PMID: 21898149]
[78]
Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv 2009; 27(3): 236-55.
[http://dx.doi.org/10.1016/j.biotechadv.2009.01.002] [PMID: 19215727]
[79]
van Nieuwenhuijzen EJ. Aureobasidium.Encyclopedia of Food Microbiology. (2nd ed.). Oxford: Academic Press 2014; pp. 105-9.
[http://dx.doi.org/10.1016/B978-0-12-384730-0.00017-3]
[80]
Chi Z, Liu GL, Lu Y, Jiang H, Chi ZM. Bio-products produced by marine yeasts and their potential applications. Bioresour Technol 2016; 202: 244-52.
[http://dx.doi.org/10.1016/j.biortech.2015.12.039] [PMID: 26724870]
[81]
Kudanga T, Mwenje E. Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Can J Microbiol 2005; 51(9): 773-6.
[http://dx.doi.org/10.1139/w05-053] [PMID: 16391656]
[82]
Barth G, Gaillardin C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 1997; 19(4): 219-37.
[http://dx.doi.org/10.1111/j.1574-6976.1997.tb00299.x] [PMID: 9167256]
[83]
Varghese G, Diwan AM. Simultaneous staining of proteins during polyacrylamide gel electrophoresis in acidic gels by countermigration of Coomassie brilliant blue R-250. Anal Biochem 1983; 132(2): 481-3.
[http://dx.doi.org/10.1016/0003-2697(83)90037-4] [PMID: 6312843]
[84]
Shanmughapriya S, Kiran GS, Selvin J, Thomas TA, Rani C. Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol 2010; 162(3): 625-40.
[http://dx.doi.org/10.1007/s12010-009-8747-0] [PMID: 19711200]
[85]
Collins CH, Lyne PM. Microbiological Methods. (3rd ed.), Arnold Publishers 1970.
[86]
Rani DS, Nand K. Production of thermostable cellulase-free xylanase by Clostridium absonum CFR-702. Process Biochem 2000; 36(4): 355-62.
[http://dx.doi.org/10.1016/S0032-9592(00)00224-7]
[87]
Xue D-S, Liang L, Zheng G, Lin D, Zhang Q, Yao S-J. Expression of Piromyces rhizinflata cellulase in marine Aspergillus niger to en-hance halostable cellulase activity by adjusting enzyme-composition. Biochem Eng J 2017; 117: 156-61.
[http://dx.doi.org/10.1016/j.bej.2016.10.008]
[88]
Schneider SH. Encyclopedia of Climate and Weather. Oxford University Press 2011.
[http://dx.doi.org/10.1093/acref/9780199765324.001.0001]
[89]
Bagchi B. Water in Biological and Chemical Processes: From Structure and Dynamics to Function. Cambridge University Press 2013.
[http://dx.doi.org/10.1017/CBO9781139583947]
[90]
Faber K. Immobilization.Biotransformations in Organic Chemistry: A Textbook. Berlin Heidelberg, Germany: Springer 2011.
[91]
Guerriero G, Sergeant K, Legay S, et al. Novel insights from comparative in silico analysis of green microalgal cellulases. Int J Mol Sci 2018; 19(6): 1782.
[http://dx.doi.org/10.3390/ijms19061782] [PMID: 29914107]
[92]
Arora P, Shukla VK, Tiwari A. Algal cellulases.New and Future Developments in Microbial Biotechnology and Bioengineering. Else-vier 2019; pp. 283-95.
[http://dx.doi.org/10.1016/B978-0-444-64223-3.00016-3]
[93]
Prochnik SE, Umen J, Nedelcu AM, et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 2010; 329(5988): 223-6.
[http://dx.doi.org/10.1126/science.1188800] [PMID: 20616280]
[94]
Baudelet P-H, Ricochon G, Linder M, Muniglia L. A new insight into cell walls of Chlorophyta. Algal Res 2017; 25: 333-71.
[http://dx.doi.org/10.1016/j.algal.2017.04.008]
[95]
Lewin RA, Borowitzka MA. Phycology. Wiley 2001.
[96]
Hsieh YSY, Harris PJ. Xylans of red and green algae: What is known about their structures and how they are synthesised? Polymers 2019; 11(2): 354.
[http://dx.doi.org/10.3390/polym11020354] [PMID: 30960338]
[97]
Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG. The cell walls of green algae: A journey through evolution and diversity. Front Plant Sci 2012; 3: 82.
[http://dx.doi.org/10.3389/fpls.2012.00082] [PMID: 22639667]
[98]
Suarez Ruiz CA, Baca SZ, van den Broek LAM, van den Berg C, Wijffels RH, Eppink MHM. Selective fractionation of free glucose and starch from microalgae using aqueous two-phase systems. Algal Res 2020; 46: 101801.
[http://dx.doi.org/10.1016/j.algal.2020.101801]
[99]
Shokrkar H, Ebrahimi S. Synergism of cellulases and amylolytic enzymes in the hydrolysis of microalgal carbohydrates. Biofuels Bioprod Biorefin 2018; 12(5): 749-55.
[http://dx.doi.org/10.1002/bbb.1886]
[100]
Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci USA 2017; 114(37): E7737-45.
[http://dx.doi.org/10.1073/pnas.1620089114] [PMID: 28808007]
[101]
Gitzendanner MA, Soltis PS, Wong GK, Ruhfel BR, Soltis DE. Plastid phylogenomic analysis of green plants: A billion years of evolu-tionary history. Am J Bot 2018; 105(3): 291-301.
[http://dx.doi.org/10.1002/ajb2.1048] [PMID: 29603143]
[102]
Spano L. Enzymatic hydrolysis of cellulose to fermentable sugar for production of ethanol. Energy in agriculture collectionMichigan State University, Department of Agricultural Engineering (USA). 1979; pp. 157-74.
[103]
Alam MA, Yuan T, Xiong W, Zhang B, Lv Y, Xu J. Process optimization for the production of high-concentration ethanol with Scenedesmus raciborskii biomass. Bioresour Technol 2019; 294: 122219.
[http://dx.doi.org/10.1016/j.biortech.2019.122219] [PMID: 31610487]
[104]
Blifernez-Klassen O, Klassen V, Doebbe A, et al. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nat Commun 2012; 3(1): 1214.
[http://dx.doi.org/10.1038/ncomms2210] [PMID: 23169055]
[105]
Tazawa M. Sixty Years Research with Characean Cells: Fascinating Material for Plant Cell Biology. Lüttge U, Beyschlag W, Büdel B, Francis D. (Eds.) Progress in Botany 72 Progress in Botany. Springer, Berlin, Heidelberg 2010; 72: pp. 5-34.
[http://dx.doi.org/10.1007/978-3-642-13145-5_1]
[106]
Davison A, Blaxter M. Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 2005; 22(5): 1273-84.
[http://dx.doi.org/10.1093/molbev/msi107] [PMID: 15703240]
[107]
Fawley KP, Fawley MW. Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descrip-tions of new taxa. Protist 2007; 158(3): 325-36.
[http://dx.doi.org/10.1016/j.protis.2007.03.003] [PMID: 17576099]
[108]
Scholz MJ, Weiss TL, Jinkerson RE, et al. Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 2014; 13(11): 1450-64.
[http://dx.doi.org/10.1128/EC.00183-14] [PMID: 25239976]
[109]
Vandavasi VG, Putnam DK, Zhang Q, et al. A structural study of CESA1 catalytic domain of Arabidopsis cellulose synthesis complex: Evidence for CESA trimers. Plant Physiol 2016; 170(1): 123-35.
[http://dx.doi.org/10.1104/pp.15.01356] [PMID: 26556795]
[110]
Charrier B, Coelho SM, Le Bail A, et al. Development and physiology of the brown alga Ectocarpus siliculosus: Two centuries of re-search. New Phytol 2008; 177(2): 319-32.
[http://dx.doi.org/10.1111/j.1469-8137.2007.02304.x] [PMID: 18181960]
[111]
Heimann K, Katsaros C. Advances in algal cell biology. Walter de Gruyter 2012.
[http://dx.doi.org/10.1515/9783110229615]
[112]
Michel G, Tonon T, Scornet D, Cock JM, Kloareg B. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 2010; 188(1): 82-97.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03374.x] [PMID: 20618907]
[113]
Lopes da Silva T, Moniz P, Silva C, Reis A. The dark side of microalgae biotechnology: A heterotrophic biorefinery platform directed to ω-3 rich lipid production. Microorganisms 2019; 7(12): 670.
[http://dx.doi.org/10.3390/microorganisms7120670] [PMID: 31835511]
[114]
Hamamoto Y, Honda D. Nutritional intake of Aplanochytrium (Labyrinthulea, Stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey-predator interactions in the grazing food web of the marine ecosystem. PLoS One 2019; 14(1): e0208941.
[http://dx.doi.org/10.1371/journal.pone.0208941] [PMID: 30625142]
[115]
Taoka Y, Nagano N, Kai H, Hayashi M. Degradation of distillery lees (Shochu kasu) by cellulase-producing thraustochytrids. J Oleo Sci 2017; 66(1): 31-40.
[http://dx.doi.org/10.5650/jos.ess16148] [PMID: 27928143]
[116]
Jiang Y, Xie C, Yang G, et al. Cellulase‐producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes). Aquacult Res 2011; 42(4): 499-505.
[http://dx.doi.org/10.1111/j.1365-2109.2010.02645.x]
[117]
Hodgson AN. The Ecology of Freshwater. Afr Zool 2000; 35(2): 301-2.
[http://dx.doi.org/10.1080/15627020.2000.11657104]
[118]
Burczyk J, Zych M, Ioannidis NE, Kotzabasis K. Polyamines in cell walls of chlorococcalean microalgae. Z Naturforsch C J Biosci 2014; 69(1-2): 75-80.
[http://dx.doi.org/10.5560/znc.2012-0215] [PMID: 24772826]
[119]
Hagen C, Siegmund S, Braune W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chloro-phyta) during aplanospore formation. Eur J Phycol 2002; 37(2): 217-26.
[http://dx.doi.org/10.1017/S0967026202003669]
[120]
Pandey A. Solid-state fermentation. Biochem Eng J 2003; 13(2-3): 81-4.
[http://dx.doi.org/10.1016/S1369-703X(02)00121-3]
[121]
Hölker U, Lenz J. Solid-state fermentation--are there any biotechnological advantages? Curr Opin Microbiol 2005; 8(3): 301-6.
[http://dx.doi.org/10.1016/j.mib.2005.04.006] [PMID: 15939353]
[122]
Cleveland LR. The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special ref-erence to Reticulitermes flavipes Kollar. Biol Bull 1924; 46(5): 203-27.
[http://dx.doi.org/10.2307/1536724]
[123]
Martin MM, Martin JS. Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science 1978; 199(4336): 1453-5.
[http://dx.doi.org/10.1126/science.199.4336.1453] [PMID: 17796679]
[124]
Linton SM, Greenaway P, Towle DW. Endogenous production of endo-β-1,4-glucanase by decapod crustaceans. J Comp Physiol B 2006; 176(4): 339-48.
[http://dx.doi.org/10.1007/s00360-005-0056-5] [PMID: 16408228]
[125]
Byrne KA, Lehnert SA, Johnson SE, Moore SS. Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 1999; 239(2): 317-24.
[http://dx.doi.org/10.1016/S0378-1119(99)00396-0] [PMID: 10548733]
[126]
Niiyama T, Toyohara H. Widespread distribution of cellulase and hemicellulase activities among aquatic invertebrates. Fish Sci 2011; 77(4): 649-55.
[http://dx.doi.org/10.1007/s12562-011-0361-8]
[127]
Adachi K, Toriyama K, Azekura T, Morioka K, Tongnunui P, Ikejima K. Potent cellulase activity in the hepatopancreas of mangrove crabs. Fish Sci 2012; 78(6): 1309-14.
[http://dx.doi.org/10.1007/s12562-012-0547-8]
[128]
Cannicci S, Burrows D, Fratini S, Smith TJ III, Offenberg J, Dahdouh-Guebas F. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquat Bot 2008; 89(2): 186-200.
[http://dx.doi.org/10.1016/j.aquabot.2008.01.009]
[129]
Lee S. Mangrove macrobenthos: Assemblages, services, and linkages. J Sea Res 2008; 59(1-2): 16-29.
[http://dx.doi.org/10.1016/j.seares.2007.05.002]
[130]
Prié V. Encyclopedia of caves. Elsevier 2019; pp. 725-31.
[131]
Zhang X. Virus Infection and Tumorigenesis: Hints from Marine Hosts’ Stress Responses. Springer 2019.
[http://dx.doi.org/10.1007/978-981-13-6198-2]
[132]
Pyron M, Brown KM. Introduction to mollusca and the class Gastropoda Thorp and Covich’s freshwater invertebrates. Elsevier 2015; pp. 383-421.
[http://dx.doi.org/10.1016/B978-0-12-385026-3.00018-8]
[133]
Okada G, Nisizawa T, Nisizawa K. Cellulases of a marine mollusc, Dolabella sp. Biochem J 1966; 99(1): 214-21.
[http://dx.doi.org/10.1042/bj0990214] [PMID: 5965338]
[134]
Tsuji A, Tominaga K, Nishiyama N, Yuasa K. Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase. PLoS One 2013; 8(6): e65418.
[http://dx.doi.org/10.1371/journal.pone.0065418] [PMID: 23762366]
[135]
Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1991; 280(Pt 2): 309-16.
[http://dx.doi.org/10.1042/bj2800309] [PMID: 1747104]
[136]
Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1993; 293(Pt 3): 781-8.
[http://dx.doi.org/10.1042/bj2930781] [PMID: 8352747]
[137]
Svennerholm L. The quantitative estimation of cerebrosides in nervous tissue. J Neurochem 1956; 1(1): 42-53.
[http://dx.doi.org/10.1111/j.1471-4159.1956.tb12053.x] [PMID: 13346373]
[138]
Nishida Y, Suzuki K, Kumagai Y, Tanaka H, Inoue A, Ojima T. Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie 2007; 89(8): 1002-11.
[http://dx.doi.org/10.1016/j.biochi.2007.03.015] [PMID: 17485156]
[139]
Hasegawa S, Ura K, Tanaka H, Ojima T, Takagi Y. Purification and biochemical characterization of a cellulase from the digestive organs of the short-spined sea urchin Strongylocentrotus intermedius. Fish Sci 2012; 78(5): 1107-15.
[http://dx.doi.org/10.1007/s12562-012-0528-y]
[140]
Molodtsov NV, Vafina MG, Kim A, Sundukova EV, Artyukov AA, Blinov YG. Glycosidases of marine invertebrates from Posiet Bay, Sea of Japan. Comp Biochem Physiol B 1974; 48(3): 463-70.
[http://dx.doi.org/10.1016/0305-0491(74)90281-8] [PMID: 4152617]
[141]
Araki GS, Giese AC. Carbohydrases in sea stars. Physiol Zool 1970; 43(4): 296-305.
[http://dx.doi.org/10.1086/physzool.43.4.30155541]
[142]
Charles F, Coston-Guarini J, Guarini J-M, Fanfard S. Wood decay at sea. J Sea Res 2016; 114: 22-5.
[http://dx.doi.org/10.1016/j.seares.2016.05.002]
[143]
Velásquez M, López IM. The presence of Teredo clappi (Bivalvia: Teredinidae) in Venezuelan coastal waters. Rev Mex Biodivers 2016; 87(2): 516-8.
[http://dx.doi.org/10.1016/j.rmb.2015.11.003]
[144]
Bornancin L, Bonnard I, Mills SC, Banaigs B. Chemical mediation as a structuring element in marine gastropod predator-prey interac-tions. Nat Prod Rep 2017; 34(6): 644-76.
[http://dx.doi.org/10.1039/C6NP00097E] [PMID: 28466897]
[145]
Kesler DH. Cellulase activity in gastropods: Should it be used in niche separation? Freshwater Invert Biol 1983; 2(4): 173-9.
[http://dx.doi.org/10.2307/1467148]
[146]
An T, Dong Z, Lv J, et al. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis. Acta Biochim Biophys Sin (Shanghai) 2015; 47(4): 299-305.
[http://dx.doi.org/10.1093/abbs/gmv015] [PMID: 25762797]
[147]
Sakamoto K, Toyohara H. A comparative study of cellulase and hemicellulase activities of brackish water clam Corbicula japonica with those of other marine Veneroida bivalves. J Exp Biol 2009; 212(17): 2812-8.
[http://dx.doi.org/10.1242/jeb.031567] [PMID: 19684215]
[148]
Chandrasekaran M. Industrial enzymes from marine microorganisms: The Indian scenario. J Mar Biotechnol 1997; 5(2-3): 86-9.
[149]
Bahrami M, Homaei A. Penaeus vannamei protease activating mechanism of sulfhydryl reducing compounds. Int J Biol Macromol 2018; 112: 1131-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.087] [PMID: 29454948]
[150]
Beygmoradi A, Homaei A, Hemmati R, Arco JD, Fernández-Lucas J. Identification of a novel tailor-made chitinase from white shrimp Fenneropenaeus merguiensis. Colloids Surf B Biointerfaces 2021; 203: 111747.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111747] [PMID: 33839476]
[151]
Diyanat S, Homaei A, Mosaddegh E. Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use. Int J Biol Macromol 2018; 118(Pt A): 92-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.075] [PMID: 29913192]
[152]
Razzaghi M, Homaei A, Mosaddegh E. Penaeus vannamei protease stabilizing process of ZnS nanoparticles. Int J Biol Macromol 2018; 112: 509-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.173] [PMID: 29382577]
[153]
Homaei A. Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain. J Mol Catal, B Enzym 2015; 118: 16-22.
[http://dx.doi.org/10.1016/j.molcatb.2015.04.013]
[154]
Homaei A. Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection. Ecotoxicol Environ Saf 2017; 136: 1-7.
[http://dx.doi.org/10.1016/j.ecoenv.2016.10.023] [PMID: 27810575]
[155]
Homaei AA, Mymandi AB, Sariri R, et al. Purification and characterization of a novel thermostable luciferase from Benthosema ptero-tum. J Photochem Photobiol B 2013; 125: 131-6.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.05.015] [PMID: 23811161]
[156]
Phillips AM Jr. Nutrition, digestion, and energy utilization Fish physiology. Elsevier 1969; pp. 391-432.
[157]
Moss S, Divakaran S, Kim B. Stimulating effects of pond water on digestive enzyme activity in the Pacific white shrimp, Litopenaeus vannamei (Boone). Aquacult Res 2001; 32(2): 125-31.
[http://dx.doi.org/10.1046/j.1365-2109.2001.00540.x]
[158]
Pavasovic M, Richardson NA, Anderson AJ, Mann D, Mather PB. Effect of pH, temperature and diet on digestive enzyme profiles in the mud crab, Scylla serrata. Aquaculture 2004; 242(1-4): 641-54.
[http://dx.doi.org/10.1016/j.aquaculture.2004.08.036]
[159]
Ali SA. Nutritional Feeding of Fish and Shrimps in India. MJP Publisher 2019.
[160]
Augustine A, Joseph I. Four novel strains of cellulolytic symbiotic bacteria isolated and characterized from GI tract of marine fishes of various feeding habits. Biocatal Agric Biotechnol 2018; 16: 706-14.
[http://dx.doi.org/10.1016/j.bcab.2018.05.009]
[161]
Chakrabarti I, Gani MA, Chaki KK, Sur R, Misra KK. Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comp Biochem Physiol A Comp Physiol 1995; 112(1): 167-77.
[http://dx.doi.org/10.1016/0300-9629(95)00072-F]
[162]
Lindsay G, Harris J. Carboxymethylcellulase activity in the digestive tracts of fish. J Fish Biol 1980; 16(3): 219-33.
[http://dx.doi.org/10.1111/j.1095-8649.1980.tb03700.x]
[163]
Stickney RR, Shumway SE. Occurrence of cellulase activity in the stomachs of fishes. J Fish Biol 1974; 6(6): 779-90.
[http://dx.doi.org/10.1111/j.1095-8649.1974.tb05120.x]
[164]
Menendez E, Garcia-Fraile P, Rivas R. Biotechnological applications of bacterial cellulases. AIMS Bioeng 2015; 2(3): 163-82.
[http://dx.doi.org/10.3934/bioeng.2015.3.163]
[165]
Trivedi N, Gupta V, Kumar M, Kumari P, Jha B. An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr Polym 2011; 83(2): 891-7.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.069]
[166]
Wang YB, Gao C, Zheng Z, Liu FM, Zang JY, Miao JL. Immobilization of cold-active cellulase from antarctic bacterium and its use for kelp cellulose ethanol fermentation. BioResources 2015; 10(1): 1757-72.
[http://dx.doi.org/10.15376/biores.10.1.1757-1772]
[167]
Kendir CE. Enhancement of biogas production from microalgae by enzymatic pretreatment 2019.
[168]
Ueda M, Tanaka A. Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 2000; 18(2): 121-40.
[http://dx.doi.org/10.1016/S0734-9750(00)00031-8] [PMID: 14538113]
[169]
Ochoa-Villarreal M, Aispuro-Hernndez E, Vargas-Arispuro I. ngel M. Plant cell wall polymers: Function, structure and biological activity of their derivatives. Polymerization 2012; 4: 63-86.
[http://dx.doi.org/10.5772/46094]
[170]
Smitha S, Correya NS, Philip R. Marine fungi as a potential source of enzymes and antibiotics. Int J Res Mar Sci 2014; 3(1): 5-10.
[171]
Moubasher A-AH, Ismail M, Husein NA, et al. Enzyme producing capabilities of some extremophilic fungal strains isolated from differ-ent habitats of Wadi El-Natrun, Egypt. Part 2: Cellulase, xylanase and pectinase. Eur J Biol Res 2016; 6(2): 103-11.
[172]
Baldrian P. Fungal laccases - occurrence and properties. FEMS Microbiol Rev 2006; 30(2): 215-42.
[http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x] [PMID: 16472305]
[173]
Atalla MM, Zeinab HK, Eman RH, Amani AY, Abeer AA. Characterization and kinetic properties of the purified Trematosphaeria man-grovei laccase enzyme. Saudi J Biol Sci 2013; 20(4): 373-81.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.001] [PMID: 24235874]
[174]
Atalla MM, Zeinab H, Abeer A, et al. Screening of some marine-derived fungal isolates for lignin degrading enzymes (LDEs) production. Agric Biol J N Am 2010; 1(4): 591-9.
[175]
Passarini MRZ, Ottoni CA, Santos C, Lima N, Sette LD. Induction, expression and characterisation of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330. AMB Express 2015; 5(1): 19.
[http://dx.doi.org/10.1186/s13568-015-0106-7] [PMID: 25852996]
[176]
Li L, Singh P, Liu Y, Pan S, Wang G. Diversity and biochemical features of culturable fungi from the coastal waters of Southern China. AMB Express 2014; 4(1): 60.
[http://dx.doi.org/10.1186/s13568-014-0060-9] [PMID: 25401065]
[177]
Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomedicine 2015; 10: 3389-401.
[PMID: 26005349]
[178]
Lee Y-H, Fan L. Properties and mode of action of cellulase Advances in Biochemical Engineering. Springer 1980; Vol. 17: pp. 101-29.
[179]
Crawford DL. Cultural, morphological, and physiological characteristics of Thermomonospora fusca (strain 190Th). Can J Microbiol 1975; 21(11): 1842-8.
[http://dx.doi.org/10.1139/m75-267] [PMID: 1201520]
[180]
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959; 31(3): 426-8.
[http://dx.doi.org/10.1021/ac60147a030]
[181]
Brock V. Crassostrea gigas (Thunberg) hepatopancreas-cellulase kinetics and cellulolysis of living monocellular algae with cellulose walls. J Exp Mar Biol Ecol 1989; 128(2): 157-64.
[http://dx.doi.org/10.1016/0022-0981(89)90143-3]
[182]
Zin HW, Park K-H, Choi TJ. Purification and characterization of a carboxymethyl cellulase from Artemia salina. Biochem Biophys Res Commun 2014; 443(1): 194-9.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.085] [PMID: 24291747]
[183]
Visviki I, Santikul D. The pH tolerance of Chlamydomonas applanata (Volvocales, Chlorophyta). Arch Environ Contam Toxicol 2000; 38(2): 147-51.
[http://dx.doi.org/10.1007/s002449910018] [PMID: 10629274]
[184]
Qu W, Show PL, Hasunuma T, Ho SH. Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production. Bioresour Technol 2020; 305: 123072.
[http://dx.doi.org/10.1016/j.biortech.2020.123072] [PMID: 32163881]
[185]
Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ. Chlamydomonas reinhardtii thermal tolerance enhancement medi-ated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J 2013; 7(8): 1544-55.
[http://dx.doi.org/10.1038/ismej.2013.43] [PMID: 23486253]
[186]
Dingle JT. Lysosomes: A laboratory handbook. North-Holland 1977.
[187]
Obrietan K, Drinkwine M, Williams D. Amylase, cellulase and protease activities in surface and gut tissues ofDendraster excentricus, Pisaster ochraceus andStrongylocentrotus droebachiensis (Echinodermata). Mar Biol 1991; 109(1): 53-7.
[http://dx.doi.org/10.1007/BF01320231]
[188]
Ura K, Tanaka E, Todo T, et al. Purification of subtilase from short-spined sea urchin Strongylocentrotus intermedius. Hokkaido Uni-versity (Japan). Bulletin of Fisheries Sciences 2009; 58: 21-8.