Characterization of a Novel Protease Inhibitor from the Edible Mushroom Agaricus bisporus

Page: [460 - 472] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Protease inhibitors inhibit the activity of protease enzymes; hence, they are essentially involved in the regulation of the metabolic processes involving protease enzymes and the protection of the host organism against external damage due to proteases. These inhibitors are abundantly present in all living organisms but have not been much reported in mushrooms. Mushrooms are one of the major food components of humans, with delicious taste and high nutritional value. Mushrooms also have therapeutic and economic significance. The edible mushrooms with medicinal properties are much in commercial demand. To date, the presence of protease inhibitors has not been reported much in edible mushrooms. The present study reports the characterization of a protease inhibitor isolated from the common white button mushroom Agaricus bisporus.

Objective: The objective of the present study is to characterize the novel protease inhibitor from Agaricus bisporus in order to determine its nature and activity under varying environmental conditions.

Methods: The protease inhibitor was characterized through SDS PAGE, gel filtration chromatography, and de novo sequencing in order to determine its molecular mass and sequence, respectively. The optimum pH, temperature, and thermal stability were studied to determine the optimum working range of the protease inhibitor. The protease inhibitory activity (%) was determined in the presence of metal ions, surfactants, oxidizing agents, and reducing agents. The kinetic parameters and the type of inhibition exhibited by the protease inhibitor were determined using casein and trypsin protease enzyme.

Results: The protease inhibitor was found to be a low molecular mass compound of 25 kDa. The de novo sequencing matched the inhibitor against a 227 amino acid containing peptide molecular mass of 24.6 kDa molecular mass. The protease inhibitory activity (%) was found highest at pH 7.0 and temperature 50 °C, and the inhibitor was stable from pH 4.0-9.0 and temperature 30-80 °C. In the presence of metal ions, the residual protease inhibitory activity (%) enhanced in the presence of Na+, Mg2+, and Fe3+. The residual activity increased in the presence of the surfactant SDS slightly in comparison to control, while it decreased in the case of Triton-X and Tween 20. The presence of oxidizing agents, hydrogen peroxide and dimethyl sulfoxide decreased the residual inhibitory activity. The protease inhibitor’s activity was unaffected by the reducing agents, dithiothreitol and β-mercaptoethanol, at up to 2mM concentration, but it decreased at higher concentrations. The inhibitor exhibited uncompetitive inhibition against trypsin with an inhibitory constant of 166 nM, indicating a strong affinity towards the protease, with a half-life of 93.90 minutes at 37 °C.

Conclusion: Protease inhibitors isolated from mushrooms are generally small in size, more stable, and tolerant towards varying external conditions. The protease inhibitor isolated from Agaricus bisporus also exhibited similar characteristics.

Keywords: Agaricus bisporus, protease inhibitor, characterization, SDS-PAGE, residual inhibitory activity, inhibition.

Graphical Abstract

[1]
López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem., 2008, 283(45), 30433-30437.
[http://dx.doi.org/10.1074/jbc.R800035200] [PMID: 18650443]
[2]
Rawlings, N.D.; Tolle, D.P.; Barrett, A.J. Evolutionary families of peptidase inhibitors. Biochem. J., 2004, 378(Pt 3), 705-716.
[http://dx.doi.org/10.1042/bj20031825] [PMID: 14705960]
[3]
Cateni, F.; Zilic, J.; Zacchigna, M.; Procida, G. Cerebrosides with antiproliferative activity from Euphorbia peplis L. Fitoterapia, 2010, 81(2), 97-103.
[http://dx.doi.org/10.1016/j.fitote.2009.08.022] [PMID: 19703528]
[4]
Avanzo, P.; Sabotič, J.; Anžlovar, S.; Popovič, T.; Leonardi, A.; Pain, R.H.; Kos, J.; Brzin, J. Trypsin-specific inhibitors from the basidiomycete Clitocybe nebularis with regulatory and defensive functions. Microbiology, 2009, 155(Pt 12), 3971-3981.
[http://dx.doi.org/10.1099/mic.0.032805-0] [PMID: 19696108]
[5]
Sabotič, J.; Bleuler-Martinez, S.; Renko, M.; Avanzo Caglič, P.; Kallert, S.; Štrukelj, B.; Turk, D.; Aebi, M.; Kos, J.; Künzler, M. Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of Coprinopsis cinerea fruiting bodies. J. Biol. Chem., 2012, 287(6), 3898-3907.
[http://dx.doi.org/10.1074/jbc.M111.285304] [PMID: 22167196]
[6]
Renko, M.; Sabotič, J.; Mihelič, M.; Brzin, J.; Kos, J.; Turk, D. Versatile loops in mycocypins inhibit three protease families. J. Biol. Chem., 2010, 285(1), 308-316.
[http://dx.doi.org/10.1074/jbc.M109.043331] [PMID: 19846555]
[7]
Odani, S.; Tominaga, K.; Kondou, S.; Hori, H.; Koide, T.; Hara, S.; Isemura, M.; Tsunasawa, S. The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete, Lentinus edodes. Eur. J. Biochem., 1999, 262(3), 915-923.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00463.x] [PMID: 10411656]
[8]
Dohmae, N.; Takio, K.; Tsumuraya, Y.; Hashimoto, Y. The complete amino acid sequences of two serine proteinase inhibitors from the fruiting bodies of a basidiomycete, Pleurotus ostreatus. Arch. Biochem. Biophys., 1995, 316(1), 498-506.
[http://dx.doi.org/10.1006/abbi.1995.1066] [PMID: 7840656]
[9]
Zuchowski, J.; Grzywnowicz, K. Partial purification of proteinase K inhibitors from liquid-cultured mycelia of the white rot basidiomycete Trametes versicolor. Curr. Microbiol., 2006, 53(4), 259-264.
[http://dx.doi.org/10.1007/s00284-005-0386-2] [PMID: 16972136]
[10]
Fear, G.; Komarnytsky, S.; Raskin, I. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol. Ther., 2007, 113(2), 354-368.
[http://dx.doi.org/10.1016/j.pharmthera.2006.09.001] [PMID: 17098288]
[11]
Aida, FM; Shuhaimi, M; Yazid, M; Chemical, AG Maaruf, 2009. Mushroom as a potential source composition and non-volatile components of prebiotics: A review. Trends Food Sci. Technol., Croatian wild edible mushrooms. Food Chem., 2011, 20, 567-575.
[12]
Guillamón, E.; García-Lafuente, A.; Lozano, M.; D’Arrigo, M.; Rostagno, M.A.; Villares, A.; Martínez, J.A. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia, 2010, 81(7), 715-723.
[http://dx.doi.org/10.1016/j.fitote.2010.06.005] [PMID: 20550954]
[13]
Chaturvedi, V.K.; Agarwal, S.; Gupta, K.K.; Ramteke, P.W.; Singh, M.P. Medicinal mushroom: Boon for therapeutic applications. 3 Biotech, 2018, 8(8), 1-20.
[14]
Ali, P.P.; Sapna, K.; Mol, K.R.; Bhat, S.G.; Chandrasekaran, M.; Elyas, K.K. Trypsin inhibitor from edible mushroom Pleurotus floridanus active against proteases of microbial origin. Appl. Biochem. Biotechnol., 2014, 173(1), 167-178.
[http://dx.doi.org/10.1007/s12010-014-0826-1] [PMID: 24615526]
[15]
Haq, S.K.; Rabbani, G.; Ahmad, E.; Atif, S.M.; Khan, R.H. Protease inhibitors: A panacea? J. Biochem. Mol. Toxicol., 2010, 24(4), 270-277.
[http://dx.doi.org/10.1002/jbt.20335] [PMID: 20135636]
[16]
Imbach, E.J. Fungal flora of the canton of Lucerne and the adjacent central Switzerland; Springer: Communications from the Natural Research Society, 1946.
[17]
Carluccio, A. The complete mushroom book; Quadrille: London, 2003, pp. 21-22.
[18]
González, A.; Cruz, M.; Losoya, C.; Nobre, C.; Loredo, A.; Rodríguez, R.; Contreras, J.; Belmares, R. Edible mushrooms as a novel protein source for functional foods. Food Funct., 2020, 11(9), 7400-7414.
[http://dx.doi.org/10.1039/D0FO01746A] [PMID: 32896845]
[19]
Atila, F.; Owaid, M.N.; Shariati, M.A. The nutritional and medical benefits of Agaricus bisporus: A review. J. Microbiol. Biotechnol. Food Sci., 2021, 2021, 281-286.
[20]
Vishvakarma, R.; Mishra, A. Production of a protease inhibitor from edible mushroom Agaricus bisporus and its statistical optimization by response surface methodology. Prep. Biochem. Biotechnol., 2017, 47(5), 450-457.
[http://dx.doi.org/10.1080/10826068.2017.1286851] [PMID: 28140750]
[21]
Kunitz, M. Crystalline soybean trypsin inhibitor II. General properties. J. Gen. Physiol., 1947, 30(4), 291-310.
[http://dx.doi.org/10.1085/jgp.30.4.291] [PMID: 19873496]
[22]
Bijina, B.; Chellappan, S.; Krishna, J.G.; Basheer, S.M.; Elyas, K.K.; Bahkali, A.H.; Chandrasekaran, M. Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative. Saudi J. Biol. Sci., 2011, 18(3), 273-281.
[http://dx.doi.org/10.1016/j.sjbs.2011.04.002] [PMID: 23961135]
[23]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[24]
Wingfield, P. Protein precipitation using ammonium sulfate. Curr. Protoc. Protein Sci., 1998, 13(1), A-3F.
[PMID: 18429073]
[25]
Andrew, S.M.; Titus, J.A.; Zumstein, L. Dialysis and concentration of protein solutions. Curr. Protoc. Toxicol., 2001, 10(1), A-3H.
[http://dx.doi.org/10.1002/0471140856.txa03hs10] [PMID: 20976673]
[26]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[27]
Medzihradszky, K.F.; Chalkley, R.J. Lessons in de novo peptide sequencing by tandem mass spectrometry. Mass Spectrom. Rev., 2015, 34(1), 43-63.
[http://dx.doi.org/10.1002/mas.21406] [PMID: 25667941]
[28]
Uranga, C.C.; Ghassemian, M.; Hernández-Martínez, R. Novel proteins from proteomic analysis of the trunk disease fungus Lasiodiplodia theobromae (Botryosphaeriaceae). Biochim. Open, 2017, 4, 88-98.
[http://dx.doi.org/10.1016/j.biopen.2017.03.001] [PMID: 29450146]
[29]
Butterworth, P.J. The use of Dixon plots to study enzyme inhibition. Biochim. Biophys. Acta Enzymology., 1972, 289(2), 251-253.
[30]
Brzin, J.; Rogelj, B.; Popovic, T.; Štrukelj, B.; Ritonja, A. Clitocypin, a new type of cysteine proteinase inhibitor from fruit bodies of mushroom Clitocybe nebularis. J. Biol. Chem., 2000, 275(26), 20104-20109.
[http://dx.doi.org/10.1074/jbc.M001392200] [PMID: 10748021]
[31]
Sabotič, J.; Popovič, T.; Puizdar, V.; Brzin, J. Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. FEBS J., 2009, 276(16), 4334-4345.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07138.x] [PMID: 19678836]
[32]
Tian, Y.; Zhang, K. Purification and characteristic of proteinase inhibitor GLPIA2 from Ganoderma lucidum by submerged fermentation. Se Pu, 2005, 23(3), 267-269.
[PMID: 16124571]
[33]
Lukanc, T.; Brzin, J.; Kos, J.; Sabotič, J. Trypsin-specific inhibitors from the Macrolepiota procera, Armillaria mellea and Amanita phalloides wild mushrooms. Acta Biochim. Pol., 2017, 64(1), 21-24.
[PMID: 28284022]
[34]
Otzen, D.E. Protein unfolding in detergents: Effect of micelle structure, ionic strength, pH, and temperature. Biophys. J., 2002, 83(4), 2219-2230.
[http://dx.doi.org/10.1016/S0006-3495(02)73982-9] [PMID: 12324439]
[35]
Greenwood, M.W. Utilization of Avizyme 1502 in corn-soybean meal diets with and without antibiotics. Poult. Sci., 2002, 81(1), 25.
[36]
Mogensen, J.E.; Sehgal, P.; Otzen, D.E. Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry, 2005, 44(5), 1719-1730.
[http://dx.doi.org/10.1021/bi0479757] [PMID: 15683256]
[37]
Seddon, A.M.; Curnow, P.; Booth, P.J. Membrane proteins, lipids and detergents: Not just a soap opera. Biochim. Biophys. Acta Biomembr., 2004, 1666(1-2), 105-117.
[http://dx.doi.org/10.1016/j.bbamem.2004.04.011]
[38]
Bressollier, P.; Letourneau, F.; Urdaci, M.; Verneuil, B. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl. Environ. Microbiol., 1999, 65(6), 2570-2576.
[http://dx.doi.org/10.1128/AEM.65.6.2570-2576.1999] [PMID: 10347045]
[39]
Choi, N.S.; Hahm, J.H.; Maeng, P.J.; Kim, S.H. Comparative study of enzyme activity and stability of bovine and human plasmins in electrophoretic reagents, β-mercaptoethanol, DTT, SDS, Triton X-100, and urea. J. Biochem. Mol. Biol., 2005, 38(2), 177-181.
[PMID: 15826494]
[40]
Krishnan, V.M.; Murugan, K. Purification, characterization and kinetics of protease inhibitor from fruits of Solanum aculeatissimum Jacq. Food Sci. Hum. Wellness, 2015, 4(3), 97-107.
[http://dx.doi.org/10.1016/j.fshw.2015.06.003]
[41]
Bacha, AB; Jemel, I; Moubayed, NM; Abdelmalek, IB Purification and characterization of a newly serine protease inhibitor from Rhamnus frangula with potential for use as therapeutic drug. 3 Biotech, 2017, 7(2), 1-3.
[42]
Johnson, D.; Travis, J. The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. J. Biol. Chem., 1979, 254(10), 4022-4026.
[http://dx.doi.org/10.1016/S0021-9258(18)50689-X] [PMID: 312289]
[43]
Qi, R.F.; Song, Z.W.; Chi, C.W. QI, RF Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application. Acta Biochim. Biophys. Sin. (Shanghai), 2005, 37(5), 283-292.
[http://dx.doi.org/10.1111/j.1745-7270.2005.00048.x] [PMID: 15880256]
[44]
Trivedi, M.V.; Laurence, J.S.; Siahaan, T.J. The role of thiols and disulfides on protein stability. Curr. Protein Pept. Sci., 2009, 10(6), 614-625.
[http://dx.doi.org/10.2174/138920309789630534] [PMID: 19538140]
[45]
Krahn, J.; Stevens, F.C. Stoichiometry of the interaction of lima bean protease inhibitor with trypsin and/or chymotrypsin. FEBS Lett., 1971, 13(6), 339-341.
[http://dx.doi.org/10.1016/0014-5793(71)80255-7] [PMID: 11945701]
[46]
Prasad, E.R.; Merzendorfer, H.; Madhurarekha, C.; Dutta-Gupta, A.; Padmasree, K. Bowman-Birk proteinase inhibitor from Cajanus cajan seeds: Purification, characterization, and insecticidal properties. J. Agric. Food Chem., 2010, 58(5), 2838-2847.
[http://dx.doi.org/10.1021/jf903675d] [PMID: 20146519]
[47]
Prasad, E.R.; Dutta-Gupta, A.; Padmasree, K. Purification and characterization of a Bowman-Birk proteinase inhibitor from the seeds of black gram (Vigna mungo). Phytochemistry, 2010, 71(4), 363-372.
[http://dx.doi.org/10.1016/j.phytochem.2009.11.006] [PMID: 20018332]