Drug Metabolism and Bioanalysis Letters

Author(s): Merin Babu and Keechilat Pavithran*

DOI: 10.2174/1872312815666220405122021

Therapeutic Drug Monitoring as a Tool for Therapy Optimization

Page: [93 - 100] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

The use of pharmacotherapy for improving healthcare in society is increasing. A vast majority of patients have either received subtherapeutic treatment (which could result from low pharmacokinetics) or experienced adverse effects due to the toxic levels of the drug. The medicines used to treat chronic conditions, such as epilepsy; cardiovascular diseases; oncological, neurological, and psychiatric disorders, require routine monitoring. New targeted therapies suggest an individualized treatment that can slowly move practitioners away from the concept of a one-sizefits- all-fixed-dosing approach. Therapeutic drug use can be monitored based on pharmacokinetic, pharmacodynamic, and pharmacometric methods. Based on the experiences of therapeutic drug monitoring of various agents across the globe, we can look ahead to the possible developments of therapeutic drug monitoring in India.

Keywords: Pharmacokinetic TDM, pharmacodynamic TDM, pharmacometrics, sampling techniques, analytical methods, therapy optimization.

Graphical Abstract

[1]
Gentry, C.A.; Rodvold, K.A. How important is therapeutic drug monitoring in the prediction and avoidance of adverse reactions? Drug Saf., 1995, 12(6), 359-363.
[http://dx.doi.org/10.2165/00002018-199512060-00001] [PMID: 8527010]
[2]
Clarke, W. Overview of Therapeutic Drug Monitoring. In: Clinical Challenges in Therapeutic Drug Monitoring: Special Populations, Physiological Conditions, and Pharmacogenomics; Elsevier Inc., 2016; pp. 1-15.
[http://dx.doi.org/10.1016/B978-0-12-802025-8.00001-5]
[3]
Gogtay, N.J.; Kshirsagar, N.A.; Dalvi, S.S. Therapeutic drug monitoring in a developing country: An overview. Br. J. Clin. Pharmacol., 1999, 48(5), 649-654.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00088.x] [PMID: 10594465]
[4]
Ruiz, J.G.; Array, S.; Lowenthal, D.T. Therapeutic drug monitoring in the elderly. Am. J. Ther., 1996, 3(12), 839-860.
[http://dx.doi.org/10.1097/00045391-199612000-00008] [PMID: 11862246]
[5]
Zakrzewski-Jakubiak, H.; Doan, J.; Lamoureux, P.; Singh, D.; Turgeon, J.; Tannenbaum, C. Detection and prevention of drug-drug interactions in the hospitalized elderly: Utility of new cytochrome p450-based software. Am. J. Geriatr. Pharmacother., 2011, 9(6), 461-470.
[http://dx.doi.org/10.1016/j.amjopharm.2011.09.006] [PMID: 22019006]
[6]
Stout, N.L.; Wagner, S.S. Antineoplastic therapy side effects and polypharmacy in older adults with cancer. Top. Geriatr. Rehabil., 2019, 35(1), 15-30.
[http://dx.doi.org/10.1097/TGR.0000000000000212] [PMID: 31011239]
[7]
Dostalek, M.; Akhlaghi, F.; Puzanovova, M. Effect of diabetes mellitus on pharmacokinetic and pharmacodynamic properties of drugs. Clin. Pharmacokinet., 2012, 51(8), 481-499.
[http://dx.doi.org/10.1007/BF03261926] [PMID: 22668340]
[8]
Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet., 2009, 48(3), 143-157.
[http://dx.doi.org/10.2165/00003088-200948030-00001] [PMID: 19385708]
[9]
Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex differences in pharmacokinetics and pharmacodynamics. Annu. Rev. Pharmacol. Toxicol., 2004, 44(1), 499-523.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121453] [PMID: 14744256]
[10]
Kroon, L.A. Drug interactions with smoking. Am. J. Heal. Pharm., 2007, 64(18), 1917-1921.
[http://dx.doi.org/10.2146/ajhp060414] [PMID: 17823102]
[11]
Groenland, S.L.; Mathijssen, R.H.J.; Beijnen, J.H.; Huitema, A.D.R.; Steeghs, N. Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine. Eur. J. Clin. Pharmacol., 2019, 75(9), 1309-1318.
[http://dx.doi.org/10.1007/s00228-019-02704-2] [PMID: 31175385]
[12]
Watson, I.; Potter, J.; Yatscoff, R.; Fraser, A.; Himberg, J.J.; Wenk, M. Editorial. Ther. Drug Monit., 1997, 19(2), 125.
[http://dx.doi.org/10.1097/00007691-199704000-00001]
[13]
Joshi, M.V.; Pohujani, S.M.; Kshirsagar, N.A.; Shah, P.U.; Acharya, V.N. Simultaneous estimation of phenytoin, phenobarbitone, and carbamazepine. Indian J. Pharmacol., 1990, 22, 177-179.
[14]
Cardoso, P.; Santos, C.; Rocha-Gonçalves, F. Therapeutic drug monitoring by pharmacists: Does it reduce costs? Glob. J. Qua.l Saf. Healthc., 2020, 3(2), 69-71.
[http://dx.doi.org/10.36401/JQSH-19-40]
[15]
Aydin, O.; Yasar Ellidag, H.; Eren, E.; Yilmaz, N. The laboratory should actively be involved in the Therapeutic Drug Monitoring (TDM). Process. Indian J. Pharm. Pract., 2016, 9(1), 9-13.
[http://dx.doi.org/10.5530/ijopp.9.1.3]
[16]
Harivenkatesh, N.; Haribalaji, N.; David, D.C.; Kumar, C.M.P. Therapeutic drug monitoring of antiepileptic drugs in a tertiary care hospital in India. Clin. Neuropharmacol., 2015, 38(1), 1-5.
[http://dx.doi.org/10.1097/WNF.0000000000000057] [PMID: 25580918]
[17]
Jose, V.M.; Medhi, B.; Pandhi, P. Antiepileptic TDM pattern at a tertiary care hospital in India. Nepal Med. Coll. J., 2006, 8(2), 107-110.
[PMID: 17017400]
[18]
Dahiya, K.; Bansal, P.; Ghalaut, V.S.; Dhankhar, R.; Ghalaut, P.S. Therapeutic drug monitoring for antiepileptic drugs using HPLC: An experience at a tertiary care hospital in India. Neurol. Asia, 2010, 15(3), 233-237.
[19]
Adil, M.; Farhat, S.; Rather, M.Y. Therapeutic drug monitoring of phenytoin using high performance liquid chromatography in a tertiary care hospital of Kashmir, India. Int. J. Basic Clin. Pharmacol., 2019, 8(5), 995.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20191590]
[20]
Bandagi, D.R. Therapeutic drug monitoring of carbamazepine and phenytoin: Monotherapy versus combination therapy. J Med Sci Clin Res., 2017, 05(05), 22674-22680.
[http://dx.doi.org/10.18535/jmscr/v5i5.230]
[21]
Karande, S.C.; Dalvi, S.S.; Kshirsagar, N.A. Shortcomings in the pharmacotherapy of epileptic children in Bombay, India. J. Trop. Pediatr., 1995, 41(4), 247-249.
[http://dx.doi.org/10.1093/tropej/41.4.247] [PMID: 7563281]
[22]
Nicholas, D.; Sarriff, A. Bin; Palanivelu, T.; Nelson, K.; George, S.P. Evaluation of therapeutic drug monitoring (TDM) on older antiepileptic medications. Pharm. Lett., 2015, 7(2), 243-250.
[23]
Soanker, D.R.; J.C., Udutha D.S.; Kumar Rao T, D.R. Readdressing the role of therapeutic drug monitoring for antiepileptic drugs – A tertiary care hospital experience. Int J Med Res Rev., 2016, 4(1), 75-82.
[http://dx.doi.org/10.17511/ijmrr.2016.i01.012]
[24]
Sachdeva, S.; Sulania, A.; Dwivedi, N. Knowledge, attitude, and practices regarding organ donation among adult visitors in a Public Hospital in Delhi. Indian J. Transplant, 2017, 8-14.
[25]
Medhi, B.; Prakash, O.; Jose, V.M.; Pradhan, B.; Chakrabarty, S.; Pandhi, P. Seasonal variation in plasma levels of lithium in the Indian population: Is there a need to modify the dose? Singapore Med. J., 2008, 49(9), 724-727.
[PMID: 18830549]
[26]
Sharma, S.; Joshi, S.; Chadda, R.K. Therapeutic drug monitoring of lithium in patients with bipolar affective disorder: Experiences from a tertiary care hospital in India. Am. J. Ther., 2009, 16(5), 393-397.
[http://dx.doi.org/10.1097/MJT.0b013e31818a88da] [PMID: 19262359]
[27]
Advani, M.; Seetharaman, R.; Pawar, S.; Mali, S.; Lokhande, J. Past, present and future perspectives of therapeutic drug monitoring in India. Int. J. Clin. Pract., 2021, 75(8), e14189.
[http://dx.doi.org/10.1111/ijcp.14189] [PMID: 33774900]
[28]
Schork, N. J. Personalized medicine: Time for one-person trials. Nature, 2015, 520(7549), 609-611.
[http://dx.doi.org/10.1038/520609a] [PMID: 25925459]
[29]
Saleem, M.A.; Basharat, R.; Rana, N.A.; Khattak, S.A.K. Role of clinician in therapeutic drug monitoring practice. Clin. Pract., 2020, 17(1), 1429-1435.
[30]
Hallworth, M. Therapeutic drug monitoring. In: Clinical Biochemistry: Metabolic and Clinical Aspects; Elsevier Ltd., 2014; 2014, pp. 767-786.
[http://dx.doi.org/10.1016/B978-0-7020-5140-1.00039-0]
[31]
Kang, J.S.; Lee, M.H. Overview of therapeutic drug monitoring. Korean J. Intern. Med., 2009, 24(1), 1-10.
[http://dx.doi.org/10.3904/kjim.2009.24.1.1] [PMID: 19270474]
[32]
Clarke, W. Chapter 51 - Therapeutic drug monitoring. In: Marzinke MABT-CP in CC; Fourth, E.; Clarke, W., Eds.; Academic Press, 2020; pp. 905-916.
[33]
Wadhwa, R.R.; Cascella, M. steady state concentration In: StatPearls; StatPearls Publishing: Treasure Island, FL; , 2021.
[34]
Birkett, D.J. Therapeutic drug monitoring. Aust. Prescr., 1997, 20(1), 9-11.
[35]
Gross, A.S. Best practice in therapeutic drug monitoring. Br. J. Clin. Pharmacol., 2001, 52(Suppl. 1), 5S-10S.
[36]
Schumacher, G.E. Choosing optimal sampling times for therapeutic drug monitoring. Clin. Pharm., 1985, 4(1), 84-92.
[PMID: 3971691]
[37]
Plebani, M.; Banfi, G.; Bernardini, S.; Bondanini, F.; Conti, L.; Dorizzi, R.; Ferrara, F.E.; Mancini, R.; Trenti, T. Serum or plasma? An old question looking for new answers. Clin. Chem. Lab. Med., 2020, 58(2), 178-187.
[http://dx.doi.org/10.1515/cclm-2019-0719] [PMID: 31525152]
[38]
Menz, B.D.; Stocker, S.L.; Verougstraete, N.; Kocic, D.; Galettis, P.; Stove, C.P. Barriers and opportunities for the clinical implementation of therapeutic drug monitoring in oncology. Br. J. Clin. Pharmacol., 2020, 87(2), 227-236.
[39]
De Kesel, P.M.; Sadones, N.; Capiau, S.; Lambert, W.E.; Stove, C.P. Hemato-critical issues in quantitative analysis of dried blood spots: Challenges and solutions. Bioanalysis, 2013, 5(16), 2023-2041.
[http://dx.doi.org/10.4155/bio.13.156] [PMID: 23937137]
[40]
Luo, Y.R.; Chakraborty, I.; Lazar-Molnar, E.; Wu, A.H.B.; Lynch, K.L. Development of label-free immunoassays as novel solutions for the measurement of monoclonal antibody drugs and antidrug antibodies. Clin. Chem., 2020, 66(10), 1319-1328.
[http://dx.doi.org/10.1093/clinchem/hvaa179] [PMID: 32918468]
[41]
Milone, M.C. Analytical techniques used in therapeutic drug monitoring. academic press: Boston , 2012; pp. 49-73.
[http://dx.doi.org/10.1016/B978-0-12-385467-4.00003-8]
[42]
Brunetti, O.; Gnoni, A.; Licchetta, A.; Longo, V.; Calabrese, A.; Argentiero, A. Predictive and prognostic factors in HCC patients treated with Sorafenib. Medicina (Kaunas), 2019, 55(10), 707.
[http://dx.doi.org/10.3390/medicina55100707]
[43]
Shipkova, M. Biomarker monitoring in immunosuppressant therapy: An overview. Oellerich, M. In: Dasgupta ABT-PI in T; Elsevier: San Diego, 2016; pp. 125-152.
[44]
Veal, G.J.; Amankwatia, E.B.; Paludetto, M-N.; Möcklinghoff, T.; Thomson, F.; André, N.; Ciccolini, J.; Chatelut, E. Pharmacodynamic therapeutic drug monitoring for cancer: challenges, advances, and future opportunities. Ther. Drug Monit., 2019, 41(2), 142-159.
[http://dx.doi.org/10.1097/FTD.0000000000000606] [PMID: 30883508]
[45]
Linder, S. Cytokeratin markers come of age. Tumour Biol., 2007, 28(4), 189-195.
[http://dx.doi.org/10.1159/000107582] [PMID: 17717426]
[46]
Steele, N.L.; Plumb, J.A.; Vidal, L.; Tjørnelund, J.; Knoblauch, P.; Rasmussen, A.; Ooi, C.E.; Buhl-Jensen, P.; Brown, R.; Evans, T.R.; DeBono, J.S. A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin. Cancer Res., 2008, 14(3), 804-810.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1786] [PMID: 18245542]
[47]
Dive, C.; Smith, R.A.; Garner, E.; Ward, T.; George-Smith, S.S.; Campbell, F.; Greenhalf, W.; Ghaneh, P.; Neoptolemos, J.P. Considerations for the use of plasma cytokeratin 18 as a biomarker in pancreatic cancer. Br. J. Cancer, 2010, 102(3), 577-582.
[http://dx.doi.org/10.1038/sj.bjc.6605494] [PMID: 20051949]
[48]
Dean, E.J.; Cummings, J.; Roulston, A.; Berger, M.; Ranson, M.; Blackhall, F.; Dive, C. Optimization of circulating biomarkers of obatoclax-induced cell death in patients with small cell lung cancer. Neoplasia, 2011, 13(4), 339-347.
[http://dx.doi.org/10.1593/neo.101524] [PMID: 21472138]
[49]
Demiray, M.; Ulukaya, E.E.; Arslan, M.; Gokgoz, S.; Saraydaroglu, O.; Ercan, I.; Evrensel, T.; Manavoglu, O. Response to neoadjuvant chemotherapy in breast cancer could be predictable by measuring a novel serum apoptosis product, caspase-cleaved cytokeratin 18: A prospective pilot study. Cancer Invest., 2006, 24(7), 669-676.
[http://dx.doi.org/10.1080/07357900600981307] [PMID: 17118776]
[50]
de Haas, E.C.; di Pietro, A.; Simpson, K.L.; Meijer, C.; Suurmeijer, A.J.H.; Lancashire, L.J.; Cummings, J.; de Jong, S.; de Vries, E.G.; Dive, C.; Gietema, J.A. Clinical evaluation of M30 and M65 ELISA cell death assays as circulating biomarkers in a drug-sensitive tumor, testicular cancer. Neoplasia, 2008, 10(10), 1041-1048.
[http://dx.doi.org/10.1593/neo.08620] [PMID: 18813353]
[51]
Scott, L.C.; Evans, T.R.J.; Cassidy, J.; Harden, S.; Paul, J.; Ullah, R.; O’Brien, V.; Brown, R. Cytokeratin 18 in plasma of patients with gastrointestinal adenocarcinoma as a biomarker of tumour response. Br. J. Cancer, 2009, 101(3), 410-417.
[http://dx.doi.org/10.1038/sj.bjc.6605175] [PMID: 19603019]
[52]
Kummar, S.; Chen, A.; Ji, J.; Zhang, Y.; Reid, J.M.; Ames, M.; Jia, L.; Weil, M.; Speranza, G.; Murgo, A.J.; Kinders, R.; Wang, L.; Parchment, R.E.; Carter, J.; Stotler, H.; Rubinstein, L.; Hollingshead, M.; Melillo, G.; Pommier, Y.; Bonner, W.; Tomaszewski, J.E.; Doroshow, J.H. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res., 2011, 71(17), 5626-5634.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1227] [PMID: 21795476]
[53]
Drew, Y.; Ledermann, J.; Hall, G.; Rea, D.; Glasspool, R.; Highley, M.; Jayson, G.; Sludden, J.; Murray, J.; Jamieson, D.; Halford, S.; Acton, G.; Backholer, Z.; Mangano, R.; Boddy, A.; Curtin, N.; Plummer, R. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br. J. Cancer, 2016, 114(7), 723-730.
[http://dx.doi.org/10.1038/bjc.2016.41] [PMID: 27002934]
[54]
Wolchok, J.D.; Neyns, B.; Linette, G.; Negrier, S.; Lutzky, J.; Thomas, L.; Waterfield, W.; Schadendorf, D.; Smylie, M.; Guthrie, T., Jr; Grob, J.J.; Chesney, J.; Chin, K.; Chen, K.; Hoos, A.; O’Day, S.J.; Lebbé, C. Ipilimumab monotherapy in patients with pretreated advanced melanoma: A randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol., 2010, 11(2), 155-164.
[http://dx.doi.org/10.1016/S1470-2045(09)70334-1] [PMID: 20004617]
[55]
Ku, G.Y.; Yuan, J.; Page, D.B.; Schroeder, S.E.A.; Panageas, K.S.; Carvajal, R.D.; Chapman, P.B.; Schwartz, G.K.; Allison, J.P.; Wolchok, J.D. Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: Lymphocyte count after 2 doses correlates with survival. Cancer, 2010, 116(7), 1767-1775.
[http://dx.doi.org/10.1002/cncr.24951] [PMID: 20143434]
[56]
Delyon, J.; Mateus, C.; Lefeuvre, D.; Lanoy, E.; Zitvogel, L.; Chaput, N.; Roy, S.; Eggermont, A.M.; Routier, E.; Robert, C. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: An early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann. Oncol., 2013, 24(6), 1697-1703.
[http://dx.doi.org/10.1093/annonc/mdt027] [PMID: 23439861]
[57]
Berman, D.M.; Wolchok, J.; Weber, J.; Hamid, O.; O’Day, S.; Chasalow, S.D. Association of peripheral blood absolute lymphocyte count (ALC) and clinical activity in patients (pts) with advanced melanoma treated with ipilimumab. J. Clin. Oncol., 2009, 27(15)(Suppl.), 3020.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.3020]
[58]
Phillips, R.L.; Sachs, A.B. Skin biopsies for the measurement of clinical pharmacodynamic biomarkers. Curr. Opin. Biotechnol., 2005, 16(6), 687-690.
[http://dx.doi.org/10.1016/j.copbio.2005.10.010] [PMID: 16257524]
[59]
Jones, P.H.; Harper, S.; Watt, F.M. Stem cell patterning and fate in human epidermis. Cell, 1995, 80(1), 83-93.
[http://dx.doi.org/10.1016/0092-8674(95)90453-0] [PMID: 7813021]
[60]
Nanba, D.; Toki, F.; Barrandon, Y.; Higashiyama, S. Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation. J. Dermatol. Sci., 2013, 72(2), 81-86.
[http://dx.doi.org/10.1016/j.jdermsci.2013.05.009] [PMID: 23819985]
[61]
Pollack, V.A.; Savage, D.M.; Baker, D.A.; Tsaparikos, K.E.; Sloan, D.E.; Moyer, J.D.; Barbacci, E.G.; Pustilnik, L.R.; Smolarek, T.A.; Davis, J.A.; Vaidya, M.P.; Arnold, L.D.; Doty, J.L.; Iwata, K.K.; Morin, M.J. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: Dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther., 1999, 291(2), 739-748.
[PMID: 10525095]
[62]
Moasser, M.M.; Basso, A.; Averbuch, S.D.; Rosen, N. The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res., 2001, 61(19), 7184-7188.
[PMID: 11585753]
[63]
Ohyama, M. Hair follicle bulge: A fascinating reservoir of epithelial stem cells. J. Dermatol. Sci., 2007, 46(2), 81-89.
[http://dx.doi.org/10.1016/j.jdermsci.2006.12.002] [PMID: 17207970]
[64]
Camidge, D.R.; Randall, K.R.; Foster, J.R.; Sadler, C.J.; Wright, J.A.; Soames, A.R.; Laud, P.J.; Smith, P.D.; Hughes, A.M. Plucked human hair as a tissue in which to assess pharmacodynamic end points during drug development studies. Br. J. Cancer, 2005, 92(10), 1837-1841.
[http://dx.doi.org/10.1038/sj.bjc.6602558] [PMID: 15886708]
[65]
Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem., 1998, 273(10), 5858-5868.
[http://dx.doi.org/10.1074/jbc.273.10.5858] [PMID: 9488723]
[66]
Paull, T.T.; Rogakou, E.P.; Yamazaki, V.; Kirchgessner, C.U.; Gellert, M.; Bonner, W.M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol., 2000, 10(15), 886-895.
[http://dx.doi.org/10.1016/S0960-9822(00)00610-2] [PMID: 10959836]
[67]
Rapisuwon, S.; Vietsch, E.E.; Wellstein, A. Circulating biomarkers to monitor cancer progression and treatment. Comput. Struct. Biotechnol. J., 2016, 14, 211-222.
[http://dx.doi.org/10.1016/j.csbj.2016.05.004] [PMID: 27358717]
[68]
Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res., 2001, 61(4), 1659-1665.
[PMID: 11245480]
[69]
Beaver, J.A.; Jelovac, D.; Balukrishna, S.; Cochran, R.; Croessmann, S.; Zabransky, D.J.; Wong, H.Y.; Toro, P.V.; Cidado, J.; Blair, B.G.; Chu, D.; Burns, T.; Higgins, M.J.; Stearns, V.; Jacobs, L.; Habibi, M.; Lange, J.; Hurley, P.J.; Lauring, J.; VanDenBerg, D.; Kessler, J.; Jeter, S.; Samuels, M.L.; Maar, D.; Cope, L.; Cimino-Mathews, A.; Argani, P.; Wolff, A.C.; Park, B.H. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res., 2014, 20(10), 2643-2650.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2933] [PMID: 24504125]
[70]
Leary, R.J.; Sausen, M.; Kinde, I.; Papadopoulos, N.; Carpten, J.D.; Craig, D.; O’Shaughnessy, J.; Kinzler, K.W.; Parmigiani, G.; Vogelstein, B.; Diaz, L.A., Jr; Velculescu, V.E. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med., 2012, 4(162), 162ra154.
[http://dx.doi.org/10.1126/scitranslmed.3004742] [PMID: 23197571]
[71]
Chan, K.C.A.; Jiang, P.; Zheng, Y.W.L.; Liao, G.J.W.; Sun, H.; Wong, J.; Siu, S.S.; Chan, W.C.; Chan, S.L.; Chan, A.T.; Lai, P.B.; Chiu, R.W.; Lo, Y.M. Cancer genome scanning in plasma: Detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem., 2013, 59(1), 211-224.
[http://dx.doi.org/10.1373/clinchem.2012.196014] [PMID: 23065472]
[72]
Heitzer, E.; Auer, M.; Hoffmann, E.M.; Pichler, M.; Gasch, C.; Ulz, P.; Lax, S.; Waldispuehl-Geigl, J.; Mauermann, O.; Mohan, S.; Pristauz, G.; Lackner, C.; Höfler, G.; Eisner, F.; Petru, E.; Sill, H.; Samonigg, H.; Pantel, K.; Riethdorf, S.; Bauernhofer, T.; Geigl, J.B.; Speicher, M.R. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int. J. Cancer, 2013, 133(2), 346-356.
[http://dx.doi.org/10.1002/ijc.28030] [PMID: 23319339]
[73]
Dawson, S.J.; Tsui, D.W.Y.; Murtaza, M.; Biggs, H.; Rueda, O.M.; Chin, S.F.; Dunning, M.J.; Gale, D.; Forshew, T.; Mahler-Araujo, B.; Rajan, S.; Humphray, S.; Becq, J.; Halsall, D.; Wallis, M.; Bentley, D.; Caldas, C.; Rosenfeld, N. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med., 2013, 368(13), 1199-1209.
[http://dx.doi.org/10.1056/NEJMoa1213261] [PMID: 23484797]
[74]
Oellerich, M.; Schütz, E.; Beck, J.; Walson, P.D. Circulating Cell-Free DNA-diagnostic and prognostic applications in personalized cancer therapy. Ther. Drug Monit., 2019, 41(2), 115-120.
[http://dx.doi.org/10.1097/FTD.0000000000000566] [PMID: 30883505]
[75]
Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.; Hayes, D.F. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med., 2004, 351(8), 781-791.
[http://dx.doi.org/10.1056/NEJMoa040766] [PMID: 15317891]
[76]
Hayes, D.F.; Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Miller, M.C.; Matera, J.; Allard, W.J.; Doyle, G.V.; Terstappen, L.W. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res., 2006, 12(14 Pt 1), 4218-4224.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2821] [PMID: 16857794]
[77]
de Bono, J.S.; Scher, H.I.; Montgomery, R.B.; Parker, C.; Miller, M.C.; Tissing, H.; Doyle, G.V.; Terstappen, L.W.; Pienta, K.J.; Raghavan, D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res., 2008, 14(19), 6302-6309.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0872] [PMID: 18829513]
[78]
Cohen, S.J.; Punt, C.J.A.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.; Doyle, G.V.; Tissing, H.; Terstappen, L.W.; Meropol, N.J. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(19), 3213-3221.
[http://dx.doi.org/10.1200/JCO.2007.15.8923] [PMID: 18591556]
[79]
Ogle, L.F.; Orr, J.G.; Willoughby, C.E.; Hutton, C.; McPherson, S.; Plummer, R.; Boddy, A.V.; Curtin, N.J.; Jamieson, D.; Reeves, H.L. Imagestream detection and characterisation of circulating tumour cells - A liquid biopsy for hepatocellular carcinoma? J. Hepatol., 2016, 65(2), 305-313.
[http://dx.doi.org/10.1016/j.jhep.2016.04.014] [PMID: 27132171]
[80]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[81]
Volinia, S.; Calin, G.A.; Liu, C-G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; Prueitt, R.L.; Yanaihara, N.; Lanza, G.; Scarpa, A.; Vecchione, A.; Negrini, M.; Harris, C.C.; Croce, C.M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA, 2006, 103(7), 2257-2261.
[http://dx.doi.org/10.1073/pnas.0510565103] [PMID: 16461460]
[82]
Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating MicroRNAs in cancer: Potential and challenge. Front. Genet., 2019, 10, 626.
[http://dx.doi.org/10.3389/fgene.2019.00626] [PMID: 31379918]
[83]
Cui, E.H.; Li, H.J.; Hua, F.; Wang, B.; Mao, W.; Feng, X.R.; Li, J.Y.; Wang, X. Serum microRNA 125b as a diagnostic or prognostic biomarker for advanced NSCLC patients receiving cisplatin-based chemotherapy. Acta Pharmacol. Sin., 2013, 34(2), 309-313.
[http://dx.doi.org/10.1038/aps.2012.125] [PMID: 22983388]
[84]
Tanaka, K.; Miyata, H.; Yamasaki, M.; Sugimura, K.; Takahashi, T.; Kurokawa, Y.; Nakajima, K.; Takiguchi, S.; Mori, M.; Doki, Y. Circulating miR-200c levels significantly predict response to chemotherapy and prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer. Ann. Surg. Oncol., 2013, 20(3)(Suppl. 3), S607-S615.
[http://dx.doi.org/10.1245/s10434-013-3093-4] [PMID: 23838916]
[85]
Wang, Y.; Probin, V.; Zhou, D. Cancer therapy-induced residual bone marrow injury-Mechanisms of induction and implication for therapy. Curr. Cancer Ther. Rev., 2006, 2(3), 271-279.
[http://dx.doi.org/10.2174/157339406777934717] [PMID: 19936034]
[86]
Brana, I.; Tabernero, J. Cardiotoxicity. Ann. Oncol., 2010, 21(Suppl. 7), vii173-vii179.
[http://dx.doi.org/10.1093/annonc/mdq295] [PMID: 20943611]
[87]
Vermeulen, E.; van den Anker, J.N.; Della Pasqua, O.; Hoppu, K.; van der Lee, J.H. How to optimise drug study design: Pharmacokinetics and pharmacodynamics studies introduced to paediatricians. J. Pharm. Pharmacol., 2017, 69(4), 439-447.
[http://dx.doi.org/10.1111/jphp.12637] [PMID: 27671925]
[88]
Bellanti, F.; Della Pasqua, O. Modelling and simulation as research tools in paediatric drug development. Eur. J. Clin. Pharmacol., 2011, 67(Suppl. 1), 75-86.
[http://dx.doi.org/10.1007/s00228-010-0974-3]
[89]
Usman, M.; Rasheed, H. Pharmacometrics and its application in clinical practice. In: Babar Z-U-DBT-E of PP and CP; Elsevier: Oxford, 2019; pp. 227-238.
[90]
Rodallec, A.; Fanciullino, R.; Benzekry, S.; Ciccolini, J. Is there any room for pharmacometrics with immuno-oncology drugs? Input from the EORTC-PAMM course on preclinical and early-phase clinical pharmacology. Anticancer Res., 2019, 39(7), 3419-LP-3422.
[http://dx.doi.org/10.21873/anticanres.13486]
[91]
Fleisher, B.; Brown, A.N.; Ait-Oudhia, S. Application of pharmacometrics and quantitative systems pharmacology to cancer therapy: The example of luminal a breast cancer. Pharmacol. Res., 2017, 124, 20-33.
[http://dx.doi.org/10.1016/j.phrs.2017.07.015] [PMID: 28735000]
[92]
Garzón, V.; Pinacho, D.G.; Bustos, R.H.; Garzón, G.; Bustamante, S. Optical biosensors for therapeutic drug monitoring. Biosensors (Basel), 2019, 9(4), 7-10.
[http://dx.doi.org/10.3390/bios9040132] [PMID: 31718050]
[93]
Qiu, G.; Xu, X.; Ji, L.; Ma, R.; Dang, Z.; Yang, H. Surface-Enhanced Raman Spectroscopy to study the biological activity of anticancer agent. Cancer Transl. Med., 2019, 5(2), 37-41.
[http://dx.doi.org/10.4103/ctm.ctm_18_19]
[94]
Jaworska, A.; Fornasaro, S.; Sergo, V.; Bonifacio, A. potential of surface enhanced raman spectroscopy (SERS) in therapeutic drug monitoring (TDM). A critical review. Biosensors (Basel), 2016, 6(3), E47.
[http://dx.doi.org/10.3390/bios6030047] [PMID: 27657146]
[95]
Li, C.; Ye, Z.; Xu, Y.; Bell, S.E.J. An overview of therapeutic anticancer drug monitoring based on surface enhanced (resonance) Raman spectroscopy (SE(R)RS). Analyst (Lond.), 2020, 145(19), 6211-6221.
[http://dx.doi.org/10.1039/D0AN00891E] [PMID: 32794527]
[96]
Ates, H.C.; Roberts, J.A.; Lipman, J.; Cass, A.E.G.; Urban, G.A.; Dincer, C. On-site therapeutic drug monitoring. Trends Biotechnol., 2020, 38(11), 1262-1277.
[http://dx.doi.org/10.1016/j.tibtech.2020.03.001] [PMID: 33058758]