Interactions of Chitosan-coated Green Synthesized Silver Nanoparticles using Mentha spicata and Standard Antibiotics against Bacterial Pathogens

Page: [203 - 212] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Infectious diseases are caused by various multidrug-resistant pathogenic bacteria and in recent scenarios, nanoparticles have been used as innovative antimicrobial agents.

Aims: This current research aimed to evaluate the bactericidal effect of chitosan-coated green synthesized silver nanoparticles using aqueous extract of Mentha spicata (MSaqu) against bacterial pathogens, i.e., Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, and Streptococcus pyogenes.

Methods: Synthesis and characterization of silver nanoparticles (MSAgNPs) were carried out via atomic absorption spectrometer and Fourier-transform infrared spectroscopy. Agar well and agar disc diffusion methods were used to assess the antibacterial and synergistic effect of chitosanmediated biogenic silver nanoparticles and standard antibiotics. Three types of interactions, i.e., antagonistic (↓), synergistic (↑), and additive (¥) were observed.

Results: Synergistic effect was recorded against Pseudomonas aeruginosa (8.5±0.25 mm↑), Serratia marcescens (19.0±1.0 mm↑), and Klebsiela pneumonia (8.5±0.25 mm↑), an additive effect was exhibited by Escherichia coli (9.0±0.0 mm¥), Streptococcus pyogenes (10.0±0.0 mm¥), and Staphylococcus aureus (7.5±0.25 mm↓) and they showed antagonistic effects when chitosan-coated silver nanoparticles (CLMSAgNPs) were applied compared to chitosan, MSaqu, and MSAgNPs. Interesting antibacterial results were recorded when chitosan-coated Mentha spicata extract and silver nanoparticles were applied along with antibiotics. The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + K were recorded against E. coli (14.5±0.25 mm). The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + AML were recorded against E. coli (5.5±0.0 mm), S. pyogenes (10.0±0.0 mm), K. pneumonia (5.5±0.0 mm), and S. aureus (4.0±0.0 mm). The synergistic effects of chitosan-coated silver nanoparticles (CLMSAgNPs) + NOR were recorded against E. coli (16.0±0.0 mm), P. aeruginosa (19.0±0.0 mm), S. marcescens (19.5±0.25 mm), S. pyogenes (11.5.0±0.25 mm), K. pneumonia (23.0±0.0 mm), and S. aureus (8.5±0.25 mm).

Conclusion: Current findings concluded that chitosan-coated biogenic silver nanoparticles have potential bactericidal effects against infectious pathogens and could be used as forthcoming antibacterial agents.

Keywords: Chitosan, silver nanoparticles, Mentha spicata, synergistic effect, agar well diffusion method, standard antibiotics.

Graphical Abstract

[1]
Pascual, A.D. Antibacterial activity of nanomaterials. Nanomaterials (Basel), 2018, 8(6), 359.
[http://dx.doi.org/10.3390/nano8060359]
[2]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[3]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007, 3(1), 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[4]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[5]
Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C, 2016, 58, 44-52.
[http://dx.doi.org/10.1016/j.msec.2015.08.022] [PMID: 26478285]
[6]
Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C, 2016, 58, 36-43.
[http://dx.doi.org/10.1016/j.msec.2015.08.018] [PMID: 26478284]
[7]
Palaniappan, P.; Sathishkumar, G.; Sankar, R. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 885-890.
[http://dx.doi.org/10.1016/j.saa.2014.10.072] [PMID: 25467657]
[8]
Mata, R.; Nakkala, J.R.; Sadras, S.R. Biogenic silver nanoparticles from Abutilon indicum: Their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids Surf. B Biointerfaces, 2015, 128, 276-286.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.052] [PMID: 25701118]
[9]
Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C, 2015, 53, 298-309.
[http://dx.doi.org/10.1016/j.msec.2015.04.048] [PMID: 26042718]
[10]
Chanthini, A.B.; Balasubramani, G.; Ramkumar, R.; Sowmiya, R.; Balakumaran, M.D.; Kalaichelvan, P.T.; Perumal, P. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus mediated silver nanoparticles. J. Photochem. Photobiol. B, 2015, 153, 145-152.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.09.014] [PMID: 26409094]
[11]
Vigneshwaran, N.; Ashtaputre, N.M.; Varadarajan, P.V.; Nachane, R.P.; Paralikar, K.M.; Balasubramanya, R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett., 2007, 61(6), 1413-1418.
[http://dx.doi.org/10.1016/j.matlet.2006.07.042]
[12]
Willner, I.; Baron, R.; Willner, B. Growing metal nanoparticles by enzymes. Adv. Mater., 2006, 18(9), 1109-1120.
[http://dx.doi.org/10.1002/adma.200501865]
[13]
Zia, G.; Sadia, H.; Nazir, S.; Ejaz, K.; Ali, S.; Ihsan-Ul-Haq; Iqbal, T.; Khan, M.A.R.; Raza, A.; Andleeb, S. In vitro studies on cytotoxic, DNA protecting, antibiofilm and antibacterial effects of Biogenic silver nanoparticles prepared with Bergenia ciliata rhizome extract. Curr. Pharm. Biotechnol., 2018, 19(1), 68-78.
[http://dx.doi.org/10.2174/1389201019666180417160049] [PMID: 29667550]
[14]
Nazer, S.; Andleeb, S.; Ali, S.; Gulzar, N.; Raza, A.; Khan, H.; Akhtar, K.; Ahmed, M.N. Cytotoxicity, anti-diabetic, and hepato-protective potential of Ajuga bracteosa-conjugated silver nanoparticles in Balb/c mice. Curr. Pharm. Biotechnol., 2022, 23(3), 318-336.
[http://dx.doi.org/10.2174/1389201022666210421101837] [PMID: 33882804]
[15]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[16]
Ejaz, K.; Sadia, H.; Zia, G.; Nazir, S.; Raza, A.; Ali, S.; Andleeb, S. Biofilm reduction, cell proliferation, anthelmintic and cytotoxicity effect of green synthesised silver nanoparticle using Artemisia vulgaris extract. IET Nanobiotechnol., 2017, 12(1), 71-77.
[http://dx.doi.org/10.1049/iet-nbt.2017.0096] [PMID: 28476965]
[17]
Gulzar, N.; Andleeb, S.; Ali, S. Screening of antibacterial, anti-Biofilm, cell proliferation inhibition, and synergistic effects of biogenic synthesized silver nanostructures using Trillium govanianum with Antibiotics. J. Chem. Soc. Pak., 2020, 42(1), 120-133.
[http://dx.doi.org/10.52568/000616/JCSP/42.01.2020]
[18]
Nazer, S.; Andleeb, S.; Ali, S.; Gulzar, N.; Iqbal, T.; Khan, M.A.R.; Raza, A. Synergistic antibacterial efficacy of biogenic synthesized silver nanoparticles using Ajuga bractosa with standard antibiotics: A study against bacterial pathogens. Curr. Pharm. Biotechnol., 2020, 21(3), 206-218.
[http://dx.doi.org/10.2174/1389201020666191001123219] [PMID: 31573882]
[19]
Govindappa, M.; Hemashekhar, B.; Arthikala, M.K.; Rai, V.R.; Ramachandra, Y.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys., 2018, 9, 400-408.
[http://dx.doi.org/10.1016/j.rinp.2018.02.049]
[20]
Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett., 2013, 8(1), 93.
[http://dx.doi.org/10.1186/1556-276X-8-93] [PMID: 23421446]
[21]
Johnson, P.; Krishnan, V.; Loganathan, C.; Govindhan, K.; Raji, V.; Sakayanathan, P.; Vijayan, S.; Sathishkumar, P.; Palvannan, T. Rapid biosynthesis of Bauhinia variegata flower extract-mediated silver nanoparticles: An effective antioxidant scavenger and α-amylase inhibitor. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1488-1494.
[http://dx.doi.org/10.1080/21691401.2017.1374283] [PMID: 28885044]
[22]
Moteriya, P.; Chanda, S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1556-1567.
[http://dx.doi.org/10.1080/21691401.2016.1261871] [PMID: 27900878]
[23]
Fouad, H.; Hongjie, L.; Hosni, D.; Wei, J.; Abbas, G.; Ga’al, H.; Jianchu, M. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 558-567.
[http://dx.doi.org/10.1080/21691401.2017.1329739] [PMID: 28541740]
[24]
Yue, H.; Priyanka, S.; Kim, Y.J.; Veronika, S.; Kang, J.P.; Josua, M.; Bae, K.S. (). Biologial synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and In vitro Applications. Korean Soc. Med. Crop Sci., 2017, 25(2), 100-100.
[25]
Pavithra Bharathi, V.; Ragavendran, C.; Murugan, N.; Natarajan, D. Ipomoea batatas (Convolvulaceae)-mediated synthesis of silver nanoparticles for controlling mosquito vectors of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus (Diptera:Culicidae). Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1568-1580.
[http://dx.doi.org/10.1080/21691401.2016.1261873] [PMID: 27929364]
[26]
Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep., 2015, 5(1), 14813.
[http://dx.doi.org/10.1038/srep14813] [PMID: 26437582]
[27]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[28]
Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules, 2019, 24(10), 1960.
[http://dx.doi.org/10.3390/molecules24101960] [PMID: 31117310]
[29]
Naidu, J.R.; Ismail, R.B.; Yeng, C.; Sasidharan, S.; Kumar, P. Chemical composition and antioxidant activity of the crude methanolic extracts of Mentha spicata. J. Phytol., 2012, 4(1)
[30]
Yousuf, P.M.H.; Noba, N.Y.; Shohel, M.; Bhattacherjee, R.; Das, B.K. Analgesic, anti-inflammatory and antipyretic effect of Mentha spicata (Spearmint). J. Pharma. Res. Int, 2013, 854-864.
[31]
Rad, S.S.; Sani, A.M.; Mohseni, S. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog., 2019, 131, 239-245.
[http://dx.doi.org/10.1016/j.micpath.2019.04.022] [PMID: 31002961]
[32]
Chávez-González, M.L.; Rodríguez-Herrera, R.; Aguilar, C.N. Essential oils: A natural alternative to combat antibiotics resistance antibiotic resistance in mechanisms and new antimicrobial approaches.Antibiotic Resistance; Kateryna, k.; Mahendra, R., Eds.; Academic Press: Cambridge, MA, USA, 2016, pp. 227-237.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00011-3]
[33]
Sharma, V.; Hussain, S.; Gupta, M.; Saxena, A. K. In vitro anticancer activity of extracts of Mentha spp. against human cancer cells., 2014.
[34]
Amabeoku, G.J.; Erasmus, S.J.; Ojewole, J.A.; Mukinda, J.T. Antipyretic and antinociceptive properties of Mentha longifolia Huds. (Lamiaceae) leaf aqueous extract in rats and mice. Methods Find. Exp. Clin. Pharmacol., 2009, 31(10), 645-649.
[http://dx.doi.org/10.1358/mf.2009.31.10.1441861] [PMID: 20140273]
[35]
Demirtas, I.; Erenler, R.; Elmastas, M.; Goktasoglu, A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem., 2013, 136(1), 34-40.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.086] [PMID: 23017389]
[36]
Erenler, R.; Meral, B.; Sen, O.; Elmastas, M.; Aydin, A.; Eminagaoglu, O.; Topcu, G. Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharm. Biol., 2017, 55(1), 1646-1653.
[http://dx.doi.org/10.1080/13880209.2017.1310906] [PMID: 28431483]
[37]
Awan, U.A.; Andleeb, S.; Kiyani, A.; Zafar, A.; Shafique, I.; Riaz, N.; Azhar, M.T.; Uddin, H. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens. Pak. J. Pharm. Sci., 2013, 26(6), 1109-1116.
[PMID: 24191314]
[38]
Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Rad. Res. Appl. Sci., 2016, 9(3), 217-227.
[http://dx.doi.org/10.1016/j.jrras.2015.10.002]
[39]
Rehman, N.U.; Begum, N.; Ali, L.; Al-Harrasi, A.; Abbas, G.; Ahmad, S.; Hussain, J. (). Lipid peroxidation, antiglycation, cytotoxic, phytotoxic, antioxidant, antiplatelet and antimicrobial activities of Ajuga bracteosa against various pathogens. Pak. J. Bot., 2015, 47, 1195-1197.
[40]
Walter, M.V.; Vennes, J.W. Occurrence of multiple-antibiotic-resistant enteric bacteria in domestic sewage and oxidation lagoons. Appl. Environ. Microbiol., 1985, 50(4), 930-933.
[http://dx.doi.org/10.1128/aem.50.4.930-933.1985] [PMID: 4083887]
[41]
Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules, 2015, 20(8), 14402-14424.
[http://dx.doi.org/10.3390/molecules200814402] [PMID: 26262604]
[42]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. (Engl. Ed.), 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[43]
Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 2010, 81(1), 81-86.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.029] [PMID: 20656463]
[44]
Zaheer, Z. Rafiuddin, Silver nanoparticles to self-assembled films: Green synthesis and characterization. Colloids Surf. B Biointerfaces, 2012, 90, 48-52.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.037] [PMID: 22055624]
[45]
Tomaszewska, E.; Soliwoda, K.; Kadziola, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Grobelny, J. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomat, 2013.
[http://dx.doi.org/10.1155/2013/313081]
[46]
Link, S.; El-Sayed, M.A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 2003, 54(1), 331-366.
[http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759] [PMID: 12626731]
[47]
Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng., 2009, 32(1), 79-84.
[http://dx.doi.org/10.1007/s00449-008-0224-6] [PMID: 18438688]
[48]
Hashim, N.; Bashi, A.M.; Jasim, A. 2019.
[49]
Lynch, S.V.; Dixon, L.; Benoit, M.R.; Brodie, E.L.; Keyhan, M.; Hu, P.; Ackerley, D.F.; Andersen, G.L.; Matin, A. Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob. Agents Chemother., 2007, 51(10), 3650-3658.
[http://dx.doi.org/10.1128/AAC.00601-07] [PMID: 17664315]
[50]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[51]
Arokiyaraj, S.; Arasu, M.V.; Vincent, S.; Prakash, N.U.; Choi, S.H.; Oh, Y.K.; Choi, K.C.; Kim, K.H. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: An in vitro study. Int. J. Nanomedicine, 2014, 9, 379-388.
[http://dx.doi.org/10.2147/IJN.S53546] [PMID: 24426782]
[52]
Tawab, A.E.; Ashraf, A.; El-Hofy, F.I.; Mobarez, E.A.; Taha, H.S.; Tawkol, N.Y. Synergistic effect between some antimicrobial agents and rosemary (Rosmarinus officinalis) toward Staphylococcus aureus–in-vitro. Benha Vet. Med. J., 2015, 28(2), 195-201.
[http://dx.doi.org/10.21608/bvmj.2015.32502]
[53]
Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol., 2003, 69(7), 4278-4281.
[http://dx.doi.org/10.1128/AEM.69.7.4278-4281.2003] [PMID: 12839814]
[54]
Shanmugavadivu, M.; Kuppusamy, S.; Ranjithkumar, R. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug Deliv., 2014, 2(2), 174-182.