Characterization of Secondary Structure and Thermal Stability by Biophysical Methods of the D-alanyl,D-alanine Ligase B Protein from Escherichia coli

Page: [448 - 459] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Peptidoglycan (PG) is a key structural component of the bacterial cell wall and interruption of its biosynthesis is a validated target for antimicrobials. Of the enzymes involved in PG biosynthesis, D-alanyl,D-alanine ligase B (DdlB) is responsible for the condensation of two alanines, forming D-Ala-D-Ala, which is required for subsequent extracellular transpeptidase crosslinking of the mature peptidoglycan polymer.

Objective: We aimed at the biophysical characterization of recombinant Escherichia coli DdlB (EcDdlB), considering parameters of melting temperature (Tm), calorimetry and Van’t Hoff enthalpy changes of denaturation ( ΔHUcal and ΔHUvH ), as well as characterization of elements of secondary structure at three different pHs.

Methods: DdlB was overexpressed in E. coli BL21 and purified by affinity chromatography. Thermal stability and structural characteristics of the purified enzyme were analyzed by circular dichroism (CD), differential scanning calorimetry and fluorescence spectroscopy.

Results: The stability of EcDdlB increased with proximity to its pI of 5.0, reaching the maximum at pH 5.4 with Tm and ΔHUvH U of 52.68 ºC and 484 kJ.mol-1, respectively. Deconvolutions of the CD spectra at 20 ºC showed a majority percentage of α-helix at pH 5.4 and 9.4, whereas for pH 7.4, an equal contribution of β-structures and α-helices was calculated. Thermal denaturation process of EcDdlB proved to be irreversible with an increase in β-structures that can contribute to the formation of protein aggregates.

Conclusion: Such results will be useful for energy minimization of structural models aimed at virtual screening simulations, providing useful information in the search for drugs that inhibit peptidoglycan synthesis.

Keywords: D-alanyl, D-alanine ligase, recombinant protein, circular dichroism, differential scanning calorimetry, bacterial cell wall, Escherichia coli, heterologous expression.

Graphical Abstract

[1]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[2]
Cayley, D.S.; Guttman, H.J.; Record, M.T. Jr Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J., 2000, 78(4), 1748-1764.
[http://dx.doi.org/10.1016/S0006-3495(00)76726-9] [PMID: 10733957]
[3]
Schleifer, K.H.; Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev., 1972, 36(4), 407-477.
[http://dx.doi.org/10.1128/br.36.4.407-477.1972] [PMID: 4568761]
[4]
Pazos, M.; Peters, K. Peptidoglycan. Subcell. Biochem., 2019, 92, 127-168.
[http://dx.doi.org/10.1007/978-3-030-18768-2_5] [PMID: 31214986]
[5]
Lambert, M.P.; Neuhaus, F.C. Mechanism of D-cycloserine action: Alanine racemase from Escherichia coli W. J. Bacteriol., 1972, 110(3), 978-987.
[http://dx.doi.org/10.1128/jb.110.3.978-987.1972] [PMID: 4555420]
[6]
Bruning, J.B.; Murillo, A.C.; Chacon, O.; Barletta, R.G.; Sacchettini, J.C. Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrob. Agents Chemother., 2011, 55(1), 291-301.
[http://dx.doi.org/10.1128/AAC.00558-10] [PMID: 20956591]
[7]
Walsh, C.T. Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J. Biol. Chem., 1989, 264(5), 2393-2396.
[http://dx.doi.org/10.1016/S0021-9258(19)81624-1] [PMID: 2644260]
[8]
Fan, C.; Moews, P.C.; Walsh, C.T.; Knox, J.R. Vancomycin resistance: Structure of D-alanine:D-alanine ligase at 2.3 A resolution. Science, 1994, 266(5184), 439-443.
[http://dx.doi.org/10.1126/science.7939684] [PMID: 7939684]
[9]
Shi, Y.; Walsh, C.T. Active site mapping of Escherichia coli D-Ala-D-Ala ligase by structure-based mutagenesis. Biochemistry, 1995, 34(9), 2768-2776.
[http://dx.doi.org/10.1021/bi00009a005] [PMID: 7893688]
[10]
Kovac, A.; Majce, V.; Lenarsic, R.; Bombek, S.; Bostock, J.M.; Chopra, I.; Polanc, S.; Gobec, S. Diazenedicarboxamides as inhibitors of D-alanine-D-alanine ligase (Ddl). Bioorg. Med. Chem. Lett., 2007, 17(7), 2047-2054.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.015] [PMID: 17267218]
[11]
Wu, D.; Kong, Y.; Han, C.; Chen, J.; Hu, L.; Jiang, H.; Shen, X. D-Alanine:D-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int. J. Antimicrob. Agents, 2008, 32(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.06.010] [PMID: 18774266]
[12]
Batson, S.; de Chiara, C.; Majce, V.; Lloyd, A.J.; Gobec, S.; Rea, D.; Fülöp, V.; Thoroughgood, C.W.; Simmons, K.J.; Dowson, C.G.; Fishwick, C.W.G.; de Carvalho, L.P.S.; Roper, D.I. Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat. Commun., 2017, 8(1), 1939.
[http://dx.doi.org/10.1038/s41467-017-02118-7] [PMID: 29208891]
[13]
Neuhaus, F.C.; Lynch, J.L. The enzymatic synthesis of D-alanyl-D-alanine. 3. On the inhibition of d-alanyl-d-alanine synthetase by the antibiotic D-cycloserine. Biochemistry, 1964, 3(4), 471-480.
[http://dx.doi.org/10.1021/bi00892a001] [PMID: 14188160]
[14]
Fujihira, T.; Kanematsu, S.; Umino, A.; Yamamoto, N.; Nishikawa, T. Selective increase in the extracellular D-serine contents by D-cycloserine in the rat medial frontal cortex. Neurochem. Int., 2007, 51(2-4), 233-236.
[http://dx.doi.org/10.1016/j.neuint.2007.06.003] [PMID: 17662507]
[15]
Cáceres, N.E.; Harris, N.B.; Wellehan, J.F.; Feng, Z.; Kapur, V.; Barletta, R.G. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol., 1997, 179(16), 5046-5055.
[http://dx.doi.org/10.1128/jb.179.16.5046-5055.1997] [PMID: 9260945]
[16]
Sharma, S.K.; Mohan, A. Multidrug-resistant tuberculosis. Indian J. Med. Res., 2004, 120(4), 354-376.
[http://dx.doi.org/10.5124/jkma.2006.49.9.790] [PMID: 15520486]
[17]
Lange, C.; Dheda, K.; Chesov, D.; Mandalakas, A.M.; Udwadia, Z.; Horsburgh, C.R., Jr. Management of drug-resistant tuberculosis. Lancet, 2019, 394(10202), 953-966.
[http://dx.doi.org/10.1016/S0140-6736(19)31882-3] [PMID: 31526739]
[18]
Doan, T.T.; Kim, J.K.; Ngo, H.P.; Tran, H.T.; Cha, S.S.; Min Chung, K.; Huynh, K.H.; Ahn, Y.J.; Kang, L.W. Crystal structures of d-alanine-d-alanine ligase from Xanthomonas oryzae pv. oryzae alone and in complex with nucleotides. Arch. Biochem. Biophys., 2014, 545, 92-99.
[http://dx.doi.org/10.1016/j.abb.2014.01.009] [PMID: 24440607]
[19]
Spyrakis, F.; Cavasotto, C.N. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Arch. Biochem. Biophys., 2015, 583, 105-119.
[http://dx.doi.org/10.1016/j.abb.2015.08.002] [PMID: 26271444]
[20]
Cavasotto, C.N.; Orry, A.J. Ligand docking and structure-based virtual screening in drug discovery. Curr. Top. Med. Chem., 2007, 7(10), 1006-1014.
[http://dx.doi.org/10.2174/156802607780906753] [PMID: 17508934]
[21]
Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[22]
Rester, U. From virtuality to reality - Virtual screening in lead discovery and lead optimization: A medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel., 2008, 11(4), 559-568.
[PMID: 18600572]
[23]
Batson, S.; Rea, D.; Fülöp, V.; Roper, D.I. Crystallization and preliminary X-ray analysis of a D-alanyl-D-alanine ligase (EcDdlB) from Escherichia coli. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2010, 66(Pt 4), 405-408.
[http://dx.doi.org/10.1107/S1744309110003970] [PMID: 20383009]
[24]
Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol., 1999, 112, 531-552.
[http://dx.doi.org/10.1385/1-59259-584-7:531] [PMID: 10027275]
[25]
Villén, J.; Gygi, S.P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc., 2008, 3(10), 1630-1638.
[http://dx.doi.org/10.1038/nprot.2008.150] [PMID: 18833199]
[26]
Protocols Lnb. in solution digestion protocol from Cristea lab. 2019, 6, 6-7. Available from: https://lnbio.cnpem.br/wp-content/uploads/2012/11/protocolo_digestao_solucao.pdf [Cited: 2019 Mar 1].
[27]
Haid, E.; Lehmann, P.; Ziegenhorn, J. Molar absorptivities of beta-NADH and beta-NAD at 260 nm. Clin. Chem., 1975, 21(7), 884-887.
[http://dx.doi.org/10.1093/clinchem/21.7.884] [PMID: 165910]
[28]
Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 2000, 287(2), 252-260.
[http://dx.doi.org/10.1006/abio.2000.4880] [PMID: 11112271]
[29]
Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res., 2003, 31(13), 3316-3319.
[http://dx.doi.org/10.1093/nar/gkg565] [PMID: 12824316]
[30]
Boer, H.; Koivula, A. The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Cel7A. Eur. J. Biochem., 2003, 270(5), 841-848.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03431.x] [PMID: 12603317]
[31]
Pattaro Júnior, J.R.; Caruso, Í.P.; de Lima Neto, Q.A.; Duarte, Junior, F.F.; Dos Santos Rando, F.; Gerhardt, E.C.M.; Fernandez, M.A.; Seixas, F.A.V. Biophysical characterization and molecular phylogeny of human KIN protein. Eur. Biophys. J., 2019, 48(7), 645-657.
[http://dx.doi.org/10.1007/s00249-019-01390-3] [PMID: 31309277]
[32]
Wetzel, R.; Becker, M.; Behlke, J.; Billwitz, H.; Böhm, S.; Ebert, B.; Hamann, H.; Krumbiegel, J.; Lassmann, G. Temperature behaviour of human serum albumin. Eur. J. Biochem., 1980, 104(2), 469-478.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb04449.x] [PMID: 6244951]
[33]
Privalov, P.L.; Potekhin, S.A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol., 1986, 131, 4-51.
[http://dx.doi.org/10.1016/0076-6879(86)31033-4] [PMID: 3773768]
[34]
Holdgate, G. Isothermal titration calorimetry and differential scanning calorimetry. Methods Mol. Biol., 2009, 572, 101-133.
[http://dx.doi.org/10.1007/978-1-60761-244-5_7] [PMID: 20694688]
[35]
Ray, W.J., Jr; Puvathingal, J.M. The effect of polyethylene glycol on the growth and dissolution rates of a crystalline protein at high salt concentration. Phosphoglucomutase. J. Biol. Chem., 1986, 261(25), 11544-11549.
[http://dx.doi.org/10.1016/S0021-9258(18)67277-1] [PMID: 2943731]
[36]
Wilks, J.C.; Slonczewski, J.L. pH of the cytoplasm and periplasm of Escherichia coli: Rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol., 2007, 189(15), 5601-5607.
[http://dx.doi.org/10.1128/JB.00615-07] [PMID: 17545292]
[37]
Fatima, S.; Khan, R.H. Effect of polyethylene glycols on the function and structure of thiol proteases. J. Biochem., 2007, 142(1), 65-72.
[http://dx.doi.org/10.1093/jb/mvm108] [PMID: 17507390]
[38]
Kumar, V.; Sharma, V.K.; Kalonia, D.S. Effect of polyols on polyethylene glycol (PEG)-induced precipitation of proteins: Impact on solubility, stability and conformation. Int. J. Pharm., 2009, 366(1-2), 38-43.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.037] [PMID: 18809481]
[39]
Rawat, S.; Raman Suri, C.; Sahoo, D.K. Molecular mechanism of polyethylene glycol mediated stabilization of protein. Biochem. Biophys. Res. Commun., 2010, 392(4), 561-566.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.067] [PMID: 20097167]
[40]
Koutsioubas, A.; Lairez, D.; Combet, S.; Fadda, G.C.; Longeville, S.; Zalczer, G. Crowding effect on helix-coil transition: Beyond entropic stabilization. J. Chem. Phys., 2012, 136(21), 215101.
[http://dx.doi.org/10.1063/1.4723871] [PMID: 22697569]
[41]
Rivera-Najera, L.Y.; Saab-Rincón, G.; Battaglia, M.; Amero, C.; Pulido, N.O.; García-Hernández, E.; Solórzano, R.M.; Reyes, J.L.; Covarrubias, A.A. A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer-forming properties. J. Biol. Chem., 2014, 289(46), 31995-32009.
[http://dx.doi.org/10.1074/jbc.M114.583369] [PMID: 25271167]