Anti-Cancer Agents in Medicinal Chemistry

Author(s): Charanjit Kaur, Bhargavi Sharma and Kunal Nepali*

DOI: 10.2174/1871520622666220404081302

Switch Pocket Kinase: An Emerging Therapeutic Target for the Design of Anticancer Agents

Page: [2662 - 2670] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Protein kinases are amongst the most focused enzymes in the current century to design, synthesize and formulate drugs that ought to be effective in the treatment of various disordered and diseased states involving either overexpression or deficiency situations. The ATP pocket on the kinases is the active binding site for most of the kinase inhibitors. However, the kinase mutations prevent the binding of kinase inhibitors to the ATP pocket. The enzyme becomes inactive even in the mutated state when the switch pocket site on the enzyme is occupied by switch pocket inhibitors. This review comprises detailed information regarding various classical protein kinases and switch pocket kinase inhibitors with their mechanism of action so that new molecules can be designed to encounter mutations in the kinase enzyme.

Keywords: Kinase, switch pocket, ATP pocket, kinase inhibitor, mutations, protein kinases.

[1]
Kuo, C-N.; Liao, Y-M.; Kuo, L-N.; Tsai, H-J.; Chang, W-C.; Yen, Y. Cancers in Taiwan: Practical insight from epidemiology, treatments, biomarkers, and cost. J. Formos. Med. Assoc., 2020, 119(12), 1731-1741.
[http://dx.doi.org/10.1016/j.jfma.2019.08.023] [PMID: 31522970]
[2]
(a) Hunter, T.; Cooper, J.A. Protein-tyrosine kinases. Annu. Rev. Biochem., 1985, 54(1), 897-930.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.004341] [PMID: 2992362]
(b) Liu, J-W.; Chen, C.; Loh, E-W.; Chu, C-C.; Wang, M-Y.; Ouyang, H-J.; Chang, Y-T.; Zhuang, W-Z.; Chou, C-W.; Huang, D-J.; Lee, C.H.; Yen, Y.; Tam, K.W. Tyrosine kinase inhibitors for advanced or metastatic thyroid cancer: A meta-analysis of randomized controlled trials. Curr. Med. Res. Opin., 2018, 34(5), 795-803.
[http://dx.doi.org/10.1080/03007995.2017.1368466] [PMID: 28812918]
(c) Lin, T.E.; HuangFu, W.C.; Chao, M.W.; Sung, T.Y.; Chang, C.D.; Chen, Y.Y.; Hsieh, J.H.; Tu, H.J.; Huang, H.L.; Pan, S.L.; Hsu, K.C. A novel selective JAK2 inhibitor identified using pharmacological interactions. Front. Pharmacol., 2018, 9, 1379.
[http://dx.doi.org/10.3389/fphar.2018.01379] [PMID: 30564118]
(d) Chao, T-K.; Huang, T-S.; Liao, Y-P.; Huang, R-L.; Su, P-H.; Shen, H-Y.; Lai, H-C.; Wang, Y-C. Pyruvate kinase M2 is a poor prognostic marker of and a therapeutic target in ovarian cancer. PLoS One, 2017, 12(7), e0182166.
[http://dx.doi.org/10.1371/journal.pone.0182166] [PMID: 28753677]
(e) Zucha, M.A.; Wu, A.T.; Lee, W-H.; Wang, L-S.; Lin, W-W.; Yuan, C-C.; Yeh, C-T. Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget, 2015, 6(15), 13255-13268.
[http://dx.doi.org/10.18632/oncotarget.3658] [PMID: 26036311]
(f) Chen, L.Y.; Huang, R.L.; Chan, M.W.; Yan, P.S.; Huang, T.S.; Wu, R.C.; Suryo Rahmanto, Y.; Su, P.H.; Weng, Y.C.; Chou, J.L.; Chao, T.K.; Wang, Y.C.; Shih, I.M.; Lai, H.C. TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2α as a therapeutic target. J. Pathol., 2019, 248(3), 363-376.
[http://dx.doi.org/10.1002/path.5266] [PMID: 30883733]
(g) Pan, Y.; Chiu, Y-H.; Chiu, S-C.; Cho, D-Y.; Lee, L-M.; Wen, Y-C.; Whang-Peng, J.; Hsiao, C-H.; Shih, P-H. Inhibition of bruton’s tyrosine kinase suppresses cancer stemness and promotes carboplatin- induced cytotoxicity against bladder cancer cells. Anticancer Res., 2020, 40(11), 6093-6099.
[http://dx.doi.org/10.21873/anticanres.14630] [PMID: 33109547]
(h) Anuraga, G.; Wang, W-J.; Phan, N.N.; An Ton, N.T.; Ta, H.D.K.; Berenice Prayugo, F.; Minh Xuan, D.T.; Ku, S-C.; Wu, Y-F.; Andriani, V.; Athoillah, M.; Lee, K.H.; Wang, C.Y. Potential prognostic biomarkers of nima (Never in mitosis, gene a)-related kinase (nek) family members in breast cancer. J. Pers. Med., 2021, 11(11), 1089.
[http://dx.doi.org/10.3390/jpm11111089] [PMID: 34834441]
(i) Liu, S-C.; Wu, Y-C.; Huang, C-M.; Hsieh, M-S.; Huang, T-Y.; Huang, C-S.; Hsu, T-N.; Huang, M-S.; Lee, W-H.; Yeh, C-T.; Lin, C.S. Inhibition of Bruton’s tyrosine kinase as a therapeutic strategy for chemoresistant oral squamous cell carcinoma and potential suppression of cancer stemness. Oncogenesis, 2021, 10(2), 20.
[http://dx.doi.org/10.1038/s41389-021-00308-z] [PMID: 33640903]
(j) Yen, S-C.; Chen, L-C.; Huang, H-L.; Ngo, S-T.; Wu, Y-W.; Lin, T.E.; Sung, T-Y.; Lien, S-T.; Tseng, H-J.; Pan, S-L.; Huang, W.J.; Hsu, K.C. Investigation of selected flavonoid derivatives as potent FLT3 inhibitors for the potential treatment of acute myeloid leukemia. J. Nat. Prod., 2021, 84(1), 1-10.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00589] [PMID: 33393294]
(k) Huang, D-Y.; Chen, W-Y.; Chen, C-L.; Wu, N-L.; Lin, W-W. Synergistic anti-tumour effect of syk inhibitor and olaparib in squamous cell carcinoma: Roles of syk in EGFR signalling and PARP1 activation. Cancers (Basel), 2020, 12(2), 489.
[http://dx.doi.org/10.3390/cancers12020489] [PMID: 32093123]
(l) Satriyo, P.B.; Su, C.M.; Ong, J.R.; Huang, W-C.; Fong, I-H.; Lin, C-C.; Aryandono, T.; Haryana, S.M.; Deng, L.; Huang, C-C.; Tzeng, Y.M.; Chao, T.Y.; Liu, H.W.; Yeh, C.T. 4-Acetylantroquinonol B induced DNA damage response signaling and apoptosis via suppressing CDK2/CDK4 expression in triple negative breast cancer cells. Toxicol. Appl. Pharmacol., 2021, 422, 115493.
[http://dx.doi.org/10.1016/j.taap.2021.115493] [PMID: 33727089]
(m) Chu, Y.C.; Tsai, T-Y.; Yadav, V.K.; Deng, L.; Huang, C-C.; Tzeng, Y-M.; Yeh, C-T.; Chen, M-Y. 4-acetyl-antroquinonol b improves the sensitization of cetuximab on both kras mutant and wild type colorectal cancer by modulating the expression of Ras/Raf/miR-193a-3p signaling axis. Int. J. Mol. Sci., 2021, 22(14), 7508.
[http://dx.doi.org/10.3390/ijms22147508] [PMID: 34299137]
[3]
(a) Gagic, Z.; Ruzic, D.; Djokovic, N.; Djikic, T.; Nikolic, K. In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem., 2020, 7, 873.
[http://dx.doi.org/10.3389/fchem.2019.00873] [PMID: 31970149]
(b) Pikatan, N.W.; Liu, Y-L.; Bamodu, O.A.; Hsiao, M.; Hsu, W-M.; Haryana, S.M.; Sutaryo, ; Chao, T.Y.; Yeh, C.T. Aberrantly expressed Bruton’s tyrosine kinase preferentially drives metastatic and stem cell-like phenotypes in neuroblastoma cells. Cell Oncol. (Dordr.), 2020, 43(6), 1067-1084.
[http://dx.doi.org/10.1007/s13402-020-00541-5] [PMID: 32705581]
(c) Wei, Y-F.; Huang, W-T.; Liu, T-C.; Shieh, J-M.; Chian, C-F.; Wu, M-F.; Chang, C-C.; Lin, C-H.; Ko, J-C.; Lin, C-M.; Hsia, T.C. Factors associated with improvement in symptoms and quality of life for first-line EGFR-tyrosine kinase inhibitor treatment in patients with EGFR-mutated non-small-cell lung cancer - A multicenter prospective SMILE study. J. Cancer, 2019, 10(17), 4151-4158.
[http://dx.doi.org/10.7150/jca.30507] [PMID: 31417660]
(d) Chuang, C-H.; Cheng, T-C.; Leu, Y-L.; Chuang, K-H.; Tzou, S-C.; Chen, C-S. Discovery of Akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Int. J. Mol. Sci., 2015, 16(2), 3202-3212.
[http://dx.doi.org/10.3390/ijms16023202] [PMID: 25648320]
(e) Chao, S-W.; Su, M-Y.; Chiou, L-C.; Chen, L-C.; Chang, C-I.; Huang, W-J. Total synthesis of hispidulin and the structural basis for its inhibition of proto-oncogene kinase Pim-1. J. Nat. Prod., 2015, 78(8), 1969-1976.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00324] [PMID: 26275107]
(f) Yeh, C-T.; Chen, T-T.; Satriyo, P.B.; Wang, C-H.; Wu, A.T.H.; Chao, T-Y.; Lee, K-Y.; Hsiao, M.; Wang, L-S.; Kuo, K-T. Bruton’s tyrosine kinase (BTK) mediates resistance to EGFR inhibition in non-small-cell lung carcinoma. Oncogenesis, 2021, 10(7), 56.
[http://dx.doi.org/10.1038/s41389-021-00345-8] [PMID: 34315851]
(g) Fu, Y-H.; Ou, D-L.; Yang, Y-R.; Su, K-W.; Chen, C-Y.; Tien, H-F.; Lai, Z-S.; Shen, C.J.; Chien, H-F.; Lin, L-I. Cabozantinib promotes erythroid differentiation in K562 erythroleukemia cells through global changes in gene expression and JNK activation. Cancer Gene Ther., 2021, 1-9.
[http://dx.doi.org/10.1038/s41417-021-00358-w] [PMID: 34117374]
(h) Su, Y-K.; Bamodu, O.A.; Su, I.C.; Pikatan, N.W.; Fong, I-H.; Lee, W-H.; Yeh, C-T.; Chiu, H-Y.; Lin, C-M. Combined treatment with acalabrutinib and rapamycin inhibits glioma stem cells and promotes vascular normalization by downregulating btk/mtor/vegf signaling. Pharmaceuticals (Basel), 2021, 14(9), 876.
[http://dx.doi.org/10.3390/ph14090876] [PMID: 34577576]
(i) Lee, S-B.; Chang, T-Y.; Lee, N-Z.; Yu, Z-Y.; Liu, C-Y.; Lee, H-Y. Design, synthesis and biological evaluation of bisindole derivatives as anticancer agents against Tousled-like kinases. Eur. J. Med. Chem., 2022, 227, 113904.
[http://dx.doi.org/10.1016/j.ejmech.2021.113904] [PMID: 34662748]
(j) Fan, Y-C.; Hsu, K-C.; Lin, T-E.; Zechner, D.; Hsu, S-P.; Tsai, Y-C. Investigation of anti-tumor effects of an MLK1 inhibitor in prostate and pancreatic cancers. Biology (Basel), 2021, 10(8), 742.
[http://dx.doi.org/10.3390/biology10080742] [PMID: 34439974]
(k) Lee, S.; Wang, S-W.; Yu, C-L.; Tai, H-C.; Yen, J-Y.; Tuan, Y-L.; Wang, H-H.; Liu, Y-T.; Chen, S-S.; Lee, H-Y. Effect of phenylurea hydroxamic acids on histone deacetylase and VEGFR-2. Bioorg. Med. Chem., 2021, 50, 116454.
[http://dx.doi.org/10.1016/j.bmc.2021.116454] [PMID: 34634618]
(l) Lawal, B.; Lee, C-Y.; Mokgautsi, N.; Sumitra, M.R.; Khedkar, H.; Wu, A.T.H.; Huang, H-S. mTOR/EGFR/iNOS/MAP2K1/FGFR/TGFB1 are druggable candidates for N-(2, 4-difluorophenyl)-2′, 4′-difluoro-4-hydroxybiphenyl-3-carboxamide (NSC765598), with consequent anticancer implications. Front. Oncol., 2021, 11, 656738.
[http://dx.doi.org/10.3389/fonc.2021.656738] [PMID: 33842373]
(m) Chao, M-W.; Lin, T.E.; HuangFu, W-C.; Chang, C-D.; Tu, H-J.; Chen, L-C.; Yen, S-C.; Sung, T-Y.; Huang, W-J.; Yang, C-R.; Pan, S-L.; Hsu, K-C. Identification of a dual TAOK1 and MAP4K5 inhibitor using a structure-based virtual screening approach. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 98-108.
[http://dx.doi.org/10.1080/14756366.2020.1843452]
(n) Lawal, B.; Liu, Y-L.; Mokgautsi, N.; Khedkar, H.; Sumitra, M.R.; Wu, A.T.H.; Huang, H-S. Pharmacoinformatics and preclinical studies of nsc765690 and nsc765599, potential stat3/cdk2/4/6 inhibitors with antitumor activities against nci60 human tumor cell lines. Biomedicines, 2021, 9(1), 92.
[http://dx.doi.org/10.3390/biomedicines9010092] [PMID: 33477856]
[4]
Taylor, S.S.; Kornev, A.P. Protein kinases: Evolution of dynamic regulatory proteins. Trends Biochem. Sci., 2011, 36(2), 65-77.
[http://dx.doi.org/10.1016/j.tibs.2010.09.006] [PMID: 20971646]
[5]
Modi, V.; Dunbrack, R.L., Jr A structurally-validated multiple sequence alignment of 497 human protein kinase domains. Sci. Rep., 2019, 9(1), 19790.
[http://dx.doi.org/10.1038/s41598-019-56499-4] [PMID: 31875044]
[6]
(a) Möbitz, H. The ABC of protein kinase conformations. Biochim. Biophys. Acta, 2015, 1854(10 Pt B), 1555-1566.
[http://dx.doi.org/10.1016/j.bbapap.2015.03.009] [PMID: 25839999]
(b) Tsai, Y-T.; Su, Y-H.; Fang, S-S.; Huang, T-N.; Qiu, Y.; Jou, Y-S.; Shih, H.M.; Kung, H-J.; Chen, R-H. Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol. Cell. Biol., 2000, 20(6), 2043-2054.
[http://dx.doi.org/10.1128/MCB.20.6.2043-2054.2000] [PMID: 10688651]
[7]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[8]
(a) Gross, S.; Rahal, R.; Stransky, N.; Lengauer, C.; Hoeflich, K.P. Targeting cancer with kinase inhibitors. J. Clin. Invest., 2015, 125(5), 1780-1789.
[http://dx.doi.org/10.1172/JCI76094] [PMID: 25932675]
(b) Wang, C-Y.; Lee, M-H.; Kao, Y-R.; Hsiao, S-H.; Hong, S-Y.; Wu, C-W. Alisertib inhibits migration and invasion of EGFR-TKI resistant cells by partially reversing the epithelial-mesenchymal transition. Biochim. Biophys. Acta Mol. Cell Res., 2021, 1868(6), 119016.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119016] [PMID: 33744274]
(c) Wu, A.T.H.; Huang, H-S.; Wen, Y-T.; Lawal, B.; Mokgautsi, N.; Huynh, T-T.; Hsiao, M.; Wei, L. A preclinical investigation of gbm-n019 as a potential inhibitor of glioblastoma via exosomal mtor/cdk6/stat3 signaling. Cells, 2021, 10(9), 2391.
[http://dx.doi.org/10.3390/cells10092391] [PMID: 34572040]
(d) Lawal, B.; Lo, W-C.; Mokgautsi, N.; Sumitra, M.R.; Khedkar, H.; Wu, A.T.; Huang, H-S. A preclinical report of a cobimetinib-inspired novel anticancer small-molecule scaffold of isoflavones, NSC777213, for targeting PI3K/AKT/mTOR/MEK in multiple cancers. Am. J. Cancer Res., 2021, 11(6), 2590-2617.
[PMID: 34249417]
[9]
Buchholz, B.; Klanke, B.; Schley, G.; Bollag, G.; Tsai, J.; Kroening, S.; Yoshihara, D.; Wallace, D.P.; Kraenzlin, B.; Gretz, N.; Hirth, P.; Eckardt, K.U.; Bernhardt, W.M. The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrol. Dial. Transplant., 2011, 26(11), 3458-3465.
[http://dx.doi.org/10.1093/ndt/gfr432] [PMID: 21804086]
[10]
Minkovsky, N.; Berezov, A. BIBW-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors. Curr. Opin. Investig. Drugs, 2008, 9(12), 1336-1346.
[PMID: 19037840]
[11]
Wilmes, L.J.; Pallavicini, M.G.; Fleming, L.M.; Gibbs, J.; Wang, D.; Li, K.L.; Partridge, S.C.; Henry, R.G.; Shalinsky, D.R.; Hu-Lowe, D.; Park, J.W.; McShane, T.M.; Lu, Y.; Brasch, R.C.; Hylton, N.M. AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn. Reson. Imaging, 2007, 25(3), 319-327.
[http://dx.doi.org/10.1016/j.mri.2006.09.041] [PMID: 17371720]
[12]
Daud, A.I.; Krishnamurthi, S.S.; Saleh, M.N.; Gitlitz, B.J.; Borad, M.J.; Gold, P.J.; Chiorean, E.G.; Springett, G.M.; Abbas, R.; Agarwal, S.; Bardy-Bouxin, N.; Hsyu, P.H.; Leip, E.; Turnbull, K.; Zacharchuk, C.; Messersmith, W.A. Phase I study of bosutinib, a src/abl tyrosine kinase inhibitor, administered to patients with advanced solid tumors. Clin. Cancer Res., 2012, 18(4), 1092-1100.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2378] [PMID: 22179664]
[13]
Takahashi, R.H.; Choo, E.F.; Ma, S.; Wong, S.; Halladay, J.; Deng, Y.; Rooney, I.; Gates, M.; Hop, C.E.; Khojasteh, S.C.; Dresser, M.J.; Musib, L. Absorption, metabolism, excretion, and the contribution of intestinal metabolism to the oral disposition of [14C]cobimetinib, a MEK inhibitor, in humans. Drug Metab. Dispos., 2016, 44(1), 28-39.
[http://dx.doi.org/10.1124/dmd.115.066282] [PMID: 26451002]
[14]
Roberts, P.J. Clinical use of crizotinib for the treatment of non-small cell lung cancer. Biologics, 2013, 7, 91-101.
[PMID: 23671386]
[15]
Shirley, M. Dacomitinib: First global approval. Drugs, 2018, 78(18), 1947-1953.
[http://dx.doi.org/10.1007/s40265-018-1028-x] [PMID: 30506139]
[16]
Keating, G.M. Dasatinib: A review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs, 2017, 77(1), 85-96.
[http://dx.doi.org/10.1007/s40265-016-0677-x] [PMID: 28032244]
[17]
Shaw, A.T.; Hsu, P.P.; Awad, M.M.; Engelman, J.A. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat. Rev. Cancer, 2013, 13(11), 772-787.
[http://dx.doi.org/10.1038/nrc3612] [PMID: 24132104]
[18]
Cohen, M.H.; Johnson, J.R.; Chen, Y.F.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Erlotinib (Tarceva) tablets. Oncologist, 2005, 10(7), 461-466.
[http://dx.doi.org/10.1634/theoncologist.10-7-461] [PMID: 16079312]
[19]
McAdoo, S.P.; Tam, F.W. Fostamatinib disodium. Drugs Future, 2011, 36(4), 273.
[http://dx.doi.org/10.1358/dof.2011.036.04.1588554] [PMID: 23284223]
[20]
Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; Mardis, E.; Kupfer, D.; Wilson, R.; Kris, M.; Varmus, H. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA, 2004, 101(36), 13306-13311.
[http://dx.doi.org/10.1073/pnas.0405220101] [PMID: 15329413]
[21]
Kaur, V.; Swami, A. Ibrutinib in CLL: A focus on adverse events, resistance, and novel approaches beyond ibrutinib. Ann. Hematol., 2017, 96(7), 1175-1184.
[http://dx.doi.org/10.1007/s00277-017-2973-2] [PMID: 28342031]
[22]
Hantschel, O.; Rix, U.; Superti-Furga, G. Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk. Lymphoma, 2008, 49(4), 615-619.
[http://dx.doi.org/10.1080/10428190801896103] [PMID: 18398720]
[23]
Higa, G.M.; Abraham, J. Lapatinib in the treatment of breast cancer. Expert Rev. Anticancer Ther., 2007, 7(9), 1183-1192.
[http://dx.doi.org/10.1586/14737140.7.9.1183] [PMID: 17892419]
[24]
Matsui, J.; Funahashi, Y.; Uenaka, T.; Watanabe, T.; Tsuruoka, A.; Asada, M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res., 2008, 14(17), 5459-5465.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5270] [PMID: 18765537]
[25]
Donatelli, C.; Chongnarungsin, D.; Ashton, R. Acute respiratory failure from nilotinib-associated diffuse alveolar hemorrhage. Leuk. Lymphoma, 2014, 55(10), 2408-2409.
[http://dx.doi.org/10.3109/10428194.2014.887714] [PMID: 24467220]
[26]
Zivi, A.; Cerbone, L.; Recine, F.; Sternberg, C.N. Safety and tolerability of pazopanib in the treatment of renal cell carcinoma. Expert Opin. Drug Saf., 2012, 11(5), 851-859.
[http://dx.doi.org/10.1517/14740338.2012.712108] [PMID: 22861374]
[27]
Vinores, S.A. Pegaptanib in the treatment of wet, age-related macular degeneration. Int. J. Nanomedicine, 2006, 1(3), 263-268.
[PMID: 17717967]
[28]
Mesa, R.A.; Yasothan, U.; Kirkpatrick, P. Ruxolitinib. Nat. Rev. Drug Discov., 2012, 11(2), 103-104.
[http://dx.doi.org/10.1038/nrd3652] [PMID: 22293561]
[29]
Hartmann, J.T.; Kanz, L. Sunitinib and periodic hair depigmentation due to temporary c-KIT inhibition. Arch. Dermatol., 2008, 144(11), 1525-1526.
[http://dx.doi.org/10.1001/archderm.144.11.1525] [PMID: 19015436]
[30]
Blake, R.A.; Broome, M.A.; Liu, X.; Wu, J.; Gishizky, M.; Sun, L.; Courtneidge, S.A. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell. Biol., 2000, 20(23), 9018-9027.
[http://dx.doi.org/10.1128/MCB.20.23.9018-9027.2000] [PMID: 11074000]
[31]
Viola, D.; Valerio, L.; Molinaro, E.; Agate, L.; Bottici, V.; Biagini, A.; Lorusso, L.; Cappagli, V.; Pieruzzi, L.; Giani, C.; Sabini, E.; Passannati, P.; Puleo, L.; Matrone, A.; Pontillo-Contillo, B.; Battaglia, V.; Mazzeo, S.; Vitti, P.; Elisei, R. Treatment of advanced thyroid cancer with targeted therapies: Ten years of experience. Endocr. Relat. Cancer, 2016, 23(4), R185-R205.
[http://dx.doi.org/10.1530/ERC-15-0555] [PMID: 27207700]
[32]
Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P.N.; Cho, H.; Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; Burton, E.A.; Wong, B.; Tsang, G.; West, B.L.; Powell, B.; Shellooe, R.; Marimuthu, A.; Nguyen, H.; Zhang, K.Y.; Artis, D.R.; Schlessinger, J.; Su, F.; Higgins, B.; Iyer, R.; D’Andrea, K.; Koehler, A.; Stumm, M.; Lin, P.S.; Lee, R.J.; Grippo, J.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; Chapman, P.B.; Flaherty, K.T.; Xu, X.; Nathanson, K.L.; Nolop, K. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 2010, 467(7315), 596-599.
[http://dx.doi.org/10.1038/nature09454] [PMID: 20823850]
[33]
Escribano, L.; Ocqueteau, M.; Almeida, J.; Orfao, A.; San Miguel, J.F. Expression of the c-kit (CD117) molecule in normal and malignant hematopoiesis. Leuk. Lymphoma, 1998, 30(5-6), 459-466.
[http://dx.doi.org/10.3109/10428199809057558] [PMID: 9711908]
[34]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[35]
Shchemelinin, I.; Sefc, L.; Necas, E. Protein kinase inhibitors. Folia Biol. (Praha), 2006, 52(4), 137-148.
[PMID: 17116285]
[36]
Bari, S.B.; Adhikari, S.; Surana, S.J. Tyrosine kinase receptor inhibitors: A new target for anticancer drug development. J. Pharm. Sci. Technol., 2012, 1(2), 36-45.
[37]
Levitzki, A. Tyrosine kinase inhibitors: Views of selectivity, sensitivity, and clinical performance. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 161-185.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140341] [PMID: 23043437]
[38]
Hirota, S.; Isozaki, K.; Moriyama, Y.; Hashimoto, K.; Nishida, T.; Ishiguro, S.; Kawano, K.; Hanada, M.; Kurata, A.; Takeda, M.; Muhammad Tunio, G.; Matsuzawa, Y.; Kanakura, Y.; Shinomura, Y.; Kitamura, Y. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 1998, 279(5350), 577-580.
[http://dx.doi.org/10.1126/science.279.5350.577] [PMID: 9438854]
[39]
Bai, Y.; Bandara, G.; Ching Chan, E.; Maric, I.; Simakova, O.; Bandara, S.N.; Lu, W.P.; Wise, S.C.; Flynn, D.L.; Metcalfe, D.D.; Gilfillan, A.M.; Wilson, T.M. Targeting the KIT activating switch control pocket: A novel mechanism to inhibit neoplastic mast cell proliferation and mast cell activation. Leukemia, 2013, 27(2), 278-285.
[http://dx.doi.org/10.1038/leu.2012.218] [PMID: 22907049]
[40]
Ahn, Y.M.; Clare, M.; Ensinger, C.L.; Hood, M.M.; Lord, J.W.; Lu, W.P.; Miller, D.F.; Patt, W.C.; Smith, B.D.; Vogeti, L.; Kaufman, M.D.; Petillo, P.A.; Wise, S.C.; Abendroth, J.; Chun, L.; Clark, R.; Feese, M.; Kim, H.; Stewart, L.; Flynn, D.L. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region. Bioorg. Med. Chem. Lett., 2010, 20(19), 5793-5798.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.134] [PMID: 20800479]
[41]
Van Etten, R.A.; Chan, W.W.; Zaleskas, V.M.; Walz, C.; Evangelista, P.; Lazarides, K.; Betancur, M.; Wise, S.; Petillo, P.A.; Flynn, D.L. Switch pocket inhibitors of the ABL tyrosine kinase: Distinct kinome inhibition profiles and in vivo efficacy in mouse models of CML and B-lymphoblastic leukemia induced by BCR-ABL T315I. Blood, 2008, 112(11), 576-576.
[http://dx.doi.org/10.1182/blood.V112.11.576.576]
[42]
Hemming, M.L.; Heinrich, M.C.; Bauer, S.; George, S. Translational insights into gastrointestinal stromal tumor and current clinical advances. Ann. Oncol., 2018, 29(10), 2037-2045.
[http://dx.doi.org/10.1093/annonc/mdy309] [PMID: 30101284]
[43]
Serrano, C.; Mariño-Enríquez, A.; Tao, D.L.; Ketzer, J.; Eilers, G.; Zhu, M.; Yu, C.; Mannan, A.M.; Rubin, B.P.; Demetri, G.D.; Raut, C.P.; Presnell, A.; McKinley, A.; Heinrich, M.C.; Czaplinski, J.T.; Sicinska, E.; Bauer, S.; George, S.; Fletcher, J.A. Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br. J. Cancer, 2019, 120(6), 612-620.
[http://dx.doi.org/10.1038/s41416-019-0389-6] [PMID: 30792533]
[44]
Heinrich, M.C.; Corless, C.L.; Duensing, A.; McGreevey, L.; Chen, C.J.; Joseph, N.; Singer, S.; Griffith, D.J.; Haley, A.; Town, A.; Demetri, G.D.; Fletcher, C.D.; Fletcher, J.A. PDGFRA activating mutations in gastrointestinal stromal tumors. Science, 2003, 299(5607), 708-710.
[http://dx.doi.org/10.1126/science.1079666] [PMID: 12522257]
[45]
Wu, T.S.; Lin, W.H.; Tsai, H.J.; Hsueh, C.C.; Hsu, T.; Wang, P.C.; Lin, H.Y.; Peng, Y.H.; Lu, C.T.; Lee, L.C.; Tu, C.H.; Kung, F.C.; Shiao, H.Y.; Yeh, T.K.; Song, J.S.; Chang, J.Y.; Su, Y.C.; Chen, L.T.; Chen, C.T.; Jiaang, W.T.; Wu, S.Y. Discovery of conformational control inhibitors switching off the activated c-KIT and targeting a broad range of clinically relevant c-KIT mutants. J. Med. Chem., 2019, 62(8), 3940-3957.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01845] [PMID: 30968693]
[46]
Smith, B.D.; Kaufman, M.D.; Lu, W.P.; Gupta, A.; Leary, C.B.; Wise, S.C.; Rutkoski, T.J.; Ahn, Y.M.; Al-Ani, G.; Bulfer, S.L.; Caldwell, T.M.; Chun, L.; Ensinger, C.L.; Hood, M.M.; McKinley, A.; Patt, W.C.; Ruiz-Soto, R.; Su, Y.; Telikepalli, H.; Town, A.; Turner, B.A.; Vogeti, L.; Vogeti, S.; Yates, K.; Janku, F.; Abdul Razak, A.R.; Rosen, O.; Heinrich, M.C.; Flynn, D.L. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer Cell, 2019, 35(5), 738-751.e9.
[http://dx.doi.org/10.1016/j.ccell.2019.04.006] [PMID: 31085175]
[47]
Umezawa, K.; Kii, I. Druggable transient pockets in protein kinases. Molecules, 2021, 26(3), 651.
[http://dx.doi.org/10.3390/molecules26030651] [PMID: 33513739]