Captopril and Spironolactone can Attenuate Diabetic Nephropathy in Wistar Rats by Targeting ABCA1 and microRNA-33

Page: [1367 - 1372] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Nephropathy diabetes is one of the important causes of death and a more prevalent cause of end-stage renal disease.

Objective: The present study investigated the effect of applying spironolactone and captopril and their combination on some renal performance indices and cholesterol-efflux-related gene expression in nephropathy diabetic rats.

Methods: Intraperitoneal injection of streptozotocin was used to induce diabetes in rats. FBS, creatinine, and BUN were assayed using the calorimetry technique; also, urine microalbumin was assayed by ELISA. Hepatic gene expressions of ABCA1, ABCG1, and miR-33 were evaluated by the real-time PCR method.

Results: FBS levels in the captopril-treated group were significantly decreased compared with the untreated diabetic group. BUN levels of treated groups with captopril and a combination of captopril + spironolactone were significantly increased. GFR of both treated diabetic groups with captopril and spironolactone was significantly lower than an untreated diabetic group. ABCA1 gene expression in hepatic cells of the combination of spironolactone + captopril treated group was significantly increased compared to other treated and untreated diabetic groups. The hepatic expression of the ABCG1 gene in the treated and untreated diabetic groups was significantly lower than in the control group. Treatment of the diabetic group with only combination therapy decreased the hepatic gene expression of miR-33 significantly.

Conclusion: Obtained results suggest that S+C combination therapy can improve nephropathy and diabetes disorders by targeting the ABCA1 and miR-33 gene expression. It is suggested that miR-33 and ABCA1 genes evaluation could be a new therapeutic strategy for nephropathy diabetes remediation.

Keywords: Diabetes, nephropathy, microRNA, ABCA1, ABCG1, captopril, spironolactone.

[1]
Mavrogiannaki AN, Migdalis IN. Nonalcoholic fatty liver disease, diabetes mellitus and cardiovascular disease: Newer data. Int J Endocrinol 2013; 2013: 450639.
[http://dx.doi.org/10.1155/2013/450639] [PMID: 23653642]
[2]
Yuan S, Larsson SC. An atlas on risk factors for type 2 diabetes: A wide-angled Mendelian randomisation study. Diabetologia 2020; 63(11): 2359-71.
[http://dx.doi.org/10.1007/s00125-020-05253-x] [PMID: 32895727]
[3]
Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol 2020; 18(2): 117-24.
[http://dx.doi.org/10.2174/1570161117666190502103733] [PMID: 31057114]
[4]
Parvizi MR, Parviz M, Tavangar SM, et al. Protective effect of magnesium on renal function in STZ-induced diabetic rats. J Diabetes Metab Disord 2014; 13(1): 84.
[http://dx.doi.org/10.1186/s40200-014-0084-3] [PMID: 25197628]
[5]
Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 2014; 55(3): 561-72.
[http://dx.doi.org/10.1194/jlr.P040501] [PMID: 24371263]
[6]
Malekinejad H, Alizadeh-Fanalou S, Hobbenaghi R, Rokhsartalb-Azar S. Atorvastatin up-regulates the expression and activity of renal cytochrome P450 3A2 in diabetic rats. J Appl Biomed 2016; 14(1): 25-34.
[http://dx.doi.org/10.1016/j.jab.2015.08.001]
[7]
Kim Y, Lim JH, Kim MY, et al. The adiponectin receptor agonist adiporon ameliorates diabetic nephropathy in a model of type 2 diabetes. J Am Soc Nephrol 2018; 29(4): 1108-27.
[http://dx.doi.org/10.1681/ASN.2017060627] [PMID: 29330340]
[8]
Liu P, Peng L, Zhang H, et al. Tangshen formula attenuates diabetic nephropathy by promoting ABCA1-mediated renal cholesterol efflux in db/db Mice. Front Physiol 2018; 9: 343.
[http://dx.doi.org/10.3389/fphys.2018.00343] [PMID: 29681863]
[9]
Rhee EJ. Nonalcoholic fatty liver disease and diabetes: An epidemiological perspective. Endocrinol Metab (Seoul) 2019; 34(3): 226-33.
[http://dx.doi.org/10.3803/EnM.2019.34.3.226] [PMID: 31565874]
[10]
Ji A, Wroblewski JM, Cai L, de Beer MC, Webb NR, van der Westhuyzen DR. Nascent HDL formation in hepatocytes and role of ABCA1, ABCG1, and SR-BI. J Lipid Res 2012; 53(3): 446-55.
[http://dx.doi.org/10.1194/jlr.M017079] [PMID: 22190590]
[11]
Horie T, Ono K, Horiguchi M, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci 2010; 107(40): 17321-6.
[http://dx.doi.org/10.1073/pnas.1008499107] [PMID: 20855588]
[12]
Westerterp M, Fotakis P, Ouimet M, et al. Cholesterol efflux pathways suppress inflammasome activation, netosis, and atherogenesis. Circulation 2018; 138(9): 898-912.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032636] [PMID: 29588315]
[13]
Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478(7369): 404-7.
[http://dx.doi.org/10.1038/nature10486] [PMID: 22012398]
[14]
Dávalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci 2011; 108(22): 9232-7.
[http://dx.doi.org/10.1073/pnas.1102281108] [PMID: 21576456]
[15]
Kruit JK, Kremer PH, Dai L, et al. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia 2010; 53(6): 1110-9.
[http://dx.doi.org/10.1007/s00125-010-1691-2] [PMID: 20229095]
[16]
Tang C, Kanter JE, Bornfeldt KE, Leboeuf RC, Oram JF. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J Lipid Res 2010; 51(7): 1719-28.
[http://dx.doi.org/10.1194/jlr.M003525] [PMID: 19965614]
[17]
Lyu J, Imachi H, Fukunaga K, et al. Angiotensin II induces cholesterol accumulation and impairs insulin secretion by regulating ABCA1 in beta cells. J Lipid Res 2018; 59(10): 1906-15.
[http://dx.doi.org/10.1194/jlr.M085886] [PMID: 30108153]
[18]
Ahmadian E, Pennefather PS, Eftekhari A, Heidari R, Eghbal MA. Role of renin-angiotensin system in liver diseases: An outline on the potential therapeutic points of intervention. Expert Rev Gastroenterol Hepatol 2016; 10(11): 1279-88.
[http://dx.doi.org/10.1080/17474124.2016.1207523] [PMID: 27352778]
[19]
Al-Hashem F, Al Humayed S, Haidara MA, Abdel Latif NS, Al-Ani B. Captopril suppresses hepatic mammalian target of rapamycin cell signaling and biomarkers of inflammation and oxidative stress in thioacetamide-induced hepatotoxicity in rats. Arch Physiol Biochem 2021; 127(5): 414-21.
[http://dx.doi.org/10.1080/13813455.2019.1647249] [PMID: 31364422]
[20]
Abd Allah ES, Gomaa AM. Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: Role of angiotensin converting enzyme 1. Appl Physiol Nutr Metab 2015; 40(10): 1061-7.
[http://dx.doi.org/10.1139/apnm-2015-0145] [PMID: 26398443]
[21]
Malika RD, Bahtiar A. Captopril modulates behenic acid and L-hydroxyproline to lower blood glucose on high-fat diet and low-dose streptozotocin-induced diabetic-rats. J Pharm Sci Res 2019; 11(12): 3700-4.
[22]
Namdar H, Khani E, Pourrashid MH, Entezari-Maleki T. Effects of adding pentoxifylline to captopril on primary hypertension: A pilot randomized clinical trial. J Clin Pharmacol 2020; 60(2): 181-7.
[http://dx.doi.org/10.1002/jcph.1516] [PMID: 31489650]
[23]
Zhang Y, Li XL, Sha NN, et al. Differential response of bone and kidney to ACEI in db/db mice: A potential effect of captopril on accelerating bone loss. Bone 2017; 97: 222-32.
[http://dx.doi.org/10.1016/j.bone.2017.01.029] [PMID: 28130181]
[24]
Makhlough A, Kashi Z, Akha O, Zaboli E, Yazdanicharati J. Effect of spironolactone on diabetic nephropathy compared to the combination of spironolactone and losartan. Nephrourol Mon 2014; 6(1): e12148.
[http://dx.doi.org/10.5812/numonthly.12148] [PMID: 24719811]
[25]
Wada T, Kenmochi H, Miyashita Y, et al. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology 2010; 151(5): 2040-9.
[http://dx.doi.org/10.1210/en.2009-0869] [PMID: 20211973]
[26]
Ebadi Z, Moradi N, Kazemi Fard T, et al. Captopril and spironolactone can attenuate diabetic nephropathy in wistar rats by targeting microRNA-192 and microRNA-29a/b/c. DNA Cell Biol 2019; 38(10): 1134-42.
[http://dx.doi.org/10.1089/dna.2019.4732] [PMID: 31433203]
[27]
Amniattalab A, Malekinejad H, Rezabakhsh A, Rokhsartalab-Azar S, Alizade-Fanalou S. Silymarin: A novel natural agent to restore defective pancreatic β cells in streptozotocin (STZ)-induced diabetic rats. Iran J Pharm Res 2016; 15(3): 493-500.
[PMID: 27980584]
[28]
AlSaad AMS, Alasmari F, Abuohashish HM, Mohany M, Ahmed MM, Al-Rejaie SS. Renin angiotensin system blockage by losartan neutralize hypercholesterolemia-induced inflammatory and oxidative injuries. Redox Rep 2020; 25(1): 51-8.
[http://dx.doi.org/10.1080/13510002.2020.1763714] [PMID: 32396454]
[29]
Fukunaga K, Imachi H, Lyu J, et al. IGF1 suppresses cholesterol accumulation in the liver of growth hormone-deficient mice via the activation of ABCA1. Am J Physiol Endocrinol Metab 2018; 315(6): E1232-41.
[http://dx.doi.org/10.1152/ajpendo.00134.2018] [PMID: 30130150]
[30]
Ganda A, Yvan-Charvet L, Zhang Y, et al. Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. J Mol Cell Cardiol 2017; 112: 114-22.
[http://dx.doi.org/10.1016/j.yjmcc.2017.05.001] [PMID: 28478047]
[31]
Nakaya K, Ayaori M, Hisada T, et al. Telmisartan enhances cholesterol efflux from THP-1 macrophages by activating PPARgamma. J Atheroscler Thromb 2007; 14(3): 133-41.
[http://dx.doi.org/10.5551/jat.14.133] [PMID: 17587765]
[32]
Chen HY, Xu Z, Chen LF, Wang W, Fang Q, Yan XW. Valsartan and telmisartan abrogate angiotensin II-induced downregulation of ABCA1 expression via AT1 receptor, rather than AT2 receptor or PPARγ activation. J Cardiovasc Pharmacol 2012; 59(6): 570-5.
[http://dx.doi.org/10.1097/FJC.0b013e31824fc5e3] [PMID: 22392065]