The Influence of Mitochondrial Energy and 1C Metabolism on the Efficacy of Anticancer Drugs: Exploring Potential Mechanisms of Resistance

Page: [1209 - 1231] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Mitochondria are the main energy factory in living cells. To rapidly proliferate and metastasize, neoplastic cells increase their energy requirements. Thus, mitochondria become one of the most important organelles for them. Indeed, much research shows the interplay between cancer chemoresistance and altered mitochondrial function. In this review, we focus on the differences in energy metabolism between cancer and normal cells to better understand their resistance and how to develop drugs targeting energy metabolism and nucleotide synthesis. One of the differences between cancer and normal cells is the higher nicotinamide adenine dinucleotide (NAD+) level, a cofactor for the tricarboxylic acid cycle (TCA), which enhances their proliferation and helps cancer cells survive under hypoxic conditions. An important change is a metabolic switch called the Warburg effect. This effect is based on the change of energy harvesting from oxygen-dependent transformation to oxidative phosphorylation (OXPHOS), adapting them to the tumor environment. Another mechanism is the high expression of one-carbon (1C) metabolism enzymes. Again, this allows cancer cells to increase proliferation by producing precursors for the synthesis of nucleotides and amino acids. We reviewed drugs in clinical practice and development targeting NAD+, OXPHOS, and 1C metabolism. Combining novel drugs with conventional antineoplastic agents may prove to be a promising new way of anticancer treatment.

Keywords: Cancer, mitochondria, NAD+, oxidative phosphorylation (OXPHOS), 1C metabolism, resistance.

[1]
Yang, Y.; Karakhanova, S.; Hartwig, W.; D’Haese, J.G.; Philippov, P.P.; Werner, J.; Bazhin, A.V. Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy. J. Cell. Physiol., 2016, 231(12), 2570-2581.
[http://dx.doi.org/10.1002/jcp.25349] [PMID: 26895995]
[2]
Grasso, D.; Zampieri, L.X.; Capelôa, T.; Van de Velde, J.A.; Sonveaux, P. Mitochondria in cancer. Cell Stress, 2020, 4(6), 114-146.
[http://dx.doi.org/10.15698/cst2020.06.221] [PMID: 32548570]
[3]
Sica, V.; Bravo-San Pedro, J.M.; Stoll, G.; Kroemer, G. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int. J. Cancer, 2020, 146(1), 10-17.
[http://dx.doi.org/10.1002/ijc.32616] [PMID: 31396957]
[4]
Frigerio, B.; Bizzoni, C.; Jansen, G.; Leamon, C.P.; Peters, G.J.; Low, P.S.; Matherly, L.H.; Figini, M. Folate receptors and transporters: Biological role and diagnostic/therapeutic targets in cancer and other diseases. J. Exp. Clin. Cancer Res., 2019, 38(1), 125.
[http://dx.doi.org/10.1186/s13046-019-1123-1] [PMID: 30867007]
[5]
Zhu, Z.; Leung, G.K.K. More than a metabolic enzyme: MTHFD2 as a novel target for anticancer therapy? Front. Oncol., 2020, 10, 658.
[http://dx.doi.org/10.3389/fonc.2020.00658] [PMID: 32411609]
[6]
Dekhne, A.S.; Hou, Z.; Gangjee, A.; Matherly, L.H. Therapeutic targeting of mitochondrial one-carbon metabolism in cancer. Mol. Cancer Ther., 2020, 19(11), 2245-2255.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0423] [PMID: 32879053]
[7]
Guerra, F.; Arbini, A.A.; Moro, L. Mitochondria and cancer chemoresistance. Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 686-699.
[http://dx.doi.org/10.1016/j.bbabio.2017.01.012] [PMID: 28161329]
[8]
Farnie, G.; Sotgia, F.; Lisanti, M.P. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget, 2015, 6(31), 30472-30486.
[http://dx.doi.org/10.18632/oncotarget.5401] [PMID: 26421710]
[9]
Henkenius, K.; Greene, B.H.; Barckhausen, C.; Hartmann, R.; Märken, M.; Kaiser, T.; Rehberger, M.; Metzelder, S.K.; Parak, W.J.; Neubauer, A.; Brendel, C.; Mack, E. Maintenance of cellular respiration indicates drug resistance in acute myeloid leukemia. Leuk. Res., 2017, 62, 56-63.
[http://dx.doi.org/10.1016/j.leukres.2017.09.021] [PMID: 28985623]
[10]
Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse, M.; Scotland, S.; Larrue, C.; Boutzen, H.; Féliu, V.; Nicolau-Travers, M.L.; Cassant-Sourdy, S.; Broin, N.; David, M.; Serhan, N.; Sarry, A.; Tavitian, S.; Kaoma, T.; Vallar, L.; Iacovoni, J.; Linares, L.K.; Montersino, C.; Castellano, R.; Griessinger, E.; Collette, Y.; Duchamp, O.; Barreira, Y.; Hirsch, P.; Palama, T.; Gales, L.; Delhommeau, F.; Garmy-Susini, B.H.; Portais, J.C.; Vergez, F.; Selak, M.; Danet-Desnoyers, G.; Carroll, M.; Récher, C.; Sarry, J.E. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov., 2017, 7(7), 716-735.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0441] [PMID: 28416471]
[11]
Zayou, F.; Chheda, C.; Pandol, S.; Edderkaoui, M. Mitochondrial bioenergetics mediate chemo-resistance of cancer cells. Cancer Res., 2020, 80(Suppl. 16), 6343.
[http://dx.doi.org/10.1158/1538-7445.AM2020-6343]
[12]
Bosc, C.; Selak, M.A.; Sarry, J-E. Resistance is futile: Targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab., 2017, 26(5), 705-707.
[http://dx.doi.org/10.1016/j.cmet.2017.10.013] [PMID: 29117545]
[13]
Li, W.; Sauve, A.A. NAD+ Content and its role in mitochondria. Methods Mol. Biol., 2015, 1241, 39-48.
[14]
Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med., 2001, 30(11), 1191-1212.
[http://dx.doi.org/10.1016/S0891-5849(01)00480-4] [PMID: 11368918]
[15]
Lin, S-J.; Guarente, L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr. Opin. Cell Biol., 2003, 15(2), 241-246.
[http://dx.doi.org/10.1016/S0955-0674(03)00006-1] [PMID: 12648681]
[16]
Koh, J-H.; Kim, J-Y. Role of PGC-1α in the mitochondrial NAD+ pool in metabolic diseases. Int. J. Mol. Sci., 2021, 22(9), 4558.
[http://dx.doi.org/10.3390/ijms22094558] [PMID: 33925372]
[17]
Yaku, K.; Okabe, K.; Nakagawa, T. NAD metabolism: Implications in aging and longevity. Ageing Res. Rev., 2018, 47, 1-17.
[http://dx.doi.org/10.1016/j.arr.2018.05.006] [PMID: 29883761]
[18]
Girardi, E.; Agrimi, G.; Goldmann, U.; Fiume, G.; Lindinger, S.; Sedlyarov, V.; Srndic, I.; Gürtl, B.; Agerer, B.; Kartnig, F.; Scarcia, P.; Di Noia, M.A.; Liñeiro, E.; Rebsamen, M.; Wiedmer, T.; Bergthaler, A.; Palmieri, L.; Superti-Furga, G. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nat. Commun., 2020, 11(1), 6145.
[http://dx.doi.org/10.1038/s41467-020-19871-x] [PMID: 33262325]
[19]
Agudelo, L.Z.; Ferreira, D.M.S.; Dadvar, S.; Cervenka, I.; Ketscher, L.; Izadi, M.; Zhengye, L.; Furrer, R.; Handschin, C.; Venckunas, T.; Brazaitis, M.; Kamandulis, S.; Lanner, J.T.; Ruas, J.L. Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nat. Commun., 2019, 10(1), 2767.
[http://dx.doi.org/10.1038/s41467-019-10712-0] [PMID: 31235694]
[20]
Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther., 2020, 5(1), 227.
[http://dx.doi.org/10.1038/s41392-020-00311-7] [PMID: 33028824]
[21]
Rich, P.R.; Maréchal, A. The mitochondrial respiratory chain. Essays Biochem., 2010, 47, 1-23.
[http://dx.doi.org/10.1042/bse0470001] [PMID: 20533897]
[22]
Kutryb-Zajac, B.; Koszalka, P.; Slominska, E.M.; Smolenski, R.T. The effects of pro- and anti-atherosclerotic factors on intracellular nucleotide concentration in murine endothelial cells. Nucleosides Nucleotides Nucleic Acids, 2018, 37(11), 645-652.
[http://dx.doi.org/10.1080/15257770.2018.1498513] [PMID: 30587074]
[23]
Slominska, E.M.; Adamski, P.; Lipinski, M.; Swierczynski, J.; Smolenski, R.T. Liquid chromatographic/mass spectrometric procedure for measurement of NAD catabolites in human and rat plasma and urine. Nucleosides Nucleotides Nucleic Acids, 2006, 25(9-11), 1245-1249.
[http://dx.doi.org/10.1080/15257770600894725] [PMID: 17065100]
[24]
Chowdhry, S.; Zanca, C.; Rajkumar, U.; Koga, T.; Diao, Y.; Raviram, R.; Liu, F.; Turner, K.; Yang, H.; Brunk, E.; Bi, J.; Furnari, F.; Bafna, V.; Ren, B.; Mischel, P.S. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature, 2019, 569(7757), 570-575.
[http://dx.doi.org/10.1038/s41586-019-1150-2] [PMID: 31019297]
[25]
Eales, K.L.; Hollinshead, K.E.R.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis, 2016, 5(1), e190.
[http://dx.doi.org/10.1038/oncsis.2015.50] [PMID: 26807645]
[26]
Thapa, M.; Dallmann, G. Role of coenzymes in cancer metabolism. Semin. Cell Dev. Biol., 2020, 98, 44-53.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.027] [PMID: 31176736]
[27]
Yaku, K.; Okabe, K.; Hikosaka, K.; Nakagawa, T. NAD metabolism in cancer therapeutics. Front. Oncol., 2018, 8, 622.
[http://dx.doi.org/10.3389/fonc.2018.00622] [PMID: 30631755]
[28]
Mierzejewska, P.; Gawlik-Jakubczak, T.; Jablonska, P.; Czajkowski, M.; Kutryb-Zajac, B.; Smolenski, R.T.; Matuszewski, M.; Slominska, E.M. Nicotinamide metabolism alterations in bladder cancer: Preliminary studies. Nucleosides Nucleotides Nucleic Acids, 2018, 37(12), 687-695.
[http://dx.doi.org/10.1080/15257770.2018.1535124] [PMID: 30663499]
[29]
Oliva, C.R.; Moellering, D.R.; Gillespie, G.Y.; Griguer, C.E. Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One, 2011, 6(9), e24665.
[http://dx.doi.org/10.1371/journal.pone.0024665] [PMID: 21931801]
[30]
Vellinga, T.T.; Borovski, T.; de Boer, V.C.J.; Fatrai, S.; van Schelven, S.; Trumpi, K.; Verheem, A.; Snoeren, N.; Emmink, B.L.; Koster, J.; Rinkes, I.H.; Kranenburg, O. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin. Cancer Res., 2015, 21(12), 2870-2879.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2290] [PMID: 25779952]
[31]
Lee, K.M.; Giltnane, J.M.; Balko, J.M.; Schwarz, L.J.; Guerrero-Zotano, A.L.; Hutchinson, K.E.; Nixon, M.J.; Estrada, M.V.; Sánchez, V.; Sanders, M.E.; Lee, T.; Gómez, H.; Lluch, A.; Pérez-Fidalgo, J.A.; Wolf, M.M.; Andrejeva, G.; Rathmell, J.C.; Fesik, S.W.; Arteaga, C.L. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab., 2017, 26(4), 633-647.e7.
[http://dx.doi.org/10.1016/j.cmet.2017.09.009] [PMID: 28978427]
[32]
Nóbrega-Pereira, S.; Caiado, F.; Carvalho, T.; Matias, I.; Graça, G.; Gonçalves, L.G.; Silva-Santos, B.; Norell, H.; Dias, S. VEGFR2-Mediated reprogramming of mitochondrial metabolism regulates the sensitivity of acute myeloid leukemia to chemotherapy. Cancer Res., 2018, 78(3), 731-741.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1166] [PMID: 29229602]
[33]
Moschoi, R.; Imbert, V.; Nebout, M.; Chiche, J.; Mary, D.; Prebet, T.; Saland, E.; Castellano, R.; Pouyet, L.; Collette, Y.; Vey, N.; Chabannon, C.; Recher, C.; Sarry, J.E.; Alcor, D.; Peyron, J.F.; Griessinger, E. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood, 2016, 128(2), 253-264.
[http://dx.doi.org/10.1182/blood-2015-07-655860] [PMID: 27257182]
[34]
Pasquier, J.; Guerrouahen, B.S.; Al Thawadi, H.; Ghiabi, P.; Maleki, M.; Abu-Kaoud, N.; Jacob, A.; Mirshahi, M.; Galas, L.; Rafii, S.; Le Foll, F.; Rafii, A. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med., 2013, 11(1), 94.
[http://dx.doi.org/10.1186/1479-5876-11-94] [PMID: 23574623]
[35]
Hekmatshoar, Y.; Nakhle, J.; Galloni, M.; Vignais, M-L. The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem. J., 2018, 475(14), 2305-2328.
[http://dx.doi.org/10.1042/BCJ20170712] [PMID: 30064989]
[36]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[37]
Pike Winer, L.S.; Wu, M. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate. PLoS One, 2014, 9(10), e109916.
[http://dx.doi.org/10.1371/journal.pone.0109916] [PMID: 25360519]
[38]
Avagliano, A.; Ruocco, M.R.; Aliotta, F.; Belviso, I.; Accurso, A.; Masone, S.; Montagnani, S.; Arcucci, A. Mitochondrial flexibility of breast cancers: A growth advantage and a therapeutic opportunity. Cells, 2019, 8(5), 401.
[http://dx.doi.org/10.3390/cells8050401] [PMID: 31052256]
[39]
Morandi, A.; Indraccolo, S. Linking metabolic reprogramming to therapy resistance in cancer. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 1-6.
[http://dx.doi.org/10.1016/j.bbcan.2016.12.004] [PMID: 28065746]
[40]
Jiménez-Valerio, G.; Martínez-Lozano, M.; Bassani, N.; Vidal, A.; Ochoa-de-Olza, M.; Suárez, C.; García-Del-Muro, X.; Carles, J.; Viñals, F.; Graupera, M.; Indraccolo, S.; Casanovas, O. Resistance to antiangiogenic therapies by metabolic symbiosis in renal cell carcinoma PDX models and patients. Cell Rep., 2016, 15(6), 1134-1143.
[http://dx.doi.org/10.1016/j.celrep.2016.04.015] [PMID: 27134180]
[41]
Allen, E.; Miéville, P.; Warren, C.M.; Saghafinia, S.; Li, L.; Peng, M-W.; Hanahan, D. Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. Cell Rep., 2016, 15(6), 1144-1160.
[http://dx.doi.org/10.1016/j.celrep.2016.04.029] [PMID: 27134166]
[42]
Desbats, M.A.; Giacomini, I.; Prayer-Galetti, T.; Montopoli, M. Metabolic plasticity in chemotherapy resistance. Front. Oncol., 2020, 10, 281.
[http://dx.doi.org/10.3389/fonc.2020.00281] [PMID: 32211323]
[43]
Ma, L.; Zong, X. Metabolic symbiosis in chemoresistance: Refocusing the role of aerobic glycolysis. Front. Oncol., 2020, 10, 5.
[http://dx.doi.org/10.3389/fonc.2020.00005] [PMID: 32038983]
[44]
Minton, D.R.; Nam, M.; McLaughlin, D.J.; Shin, J.; Bayraktar, E.C.; Alvarez, S.W.; Sviderskiy, V.O.; Papagiannakopoulos, T.; Sabatini, D.M.; Birsoy, K.; Possemato, R. Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol. Cell, 2018, 69(4), 610-621.e5.
[http://dx.doi.org/10.1016/j.molcel.2018.01.024] [PMID: 29452640]
[45]
Endicott, M.; Jones, M.; Hull, J. Amino acid metabolism as a therapeutic target in cancer: A review. Amino Acids, 2021, 53(8), 1169-1179.
[http://dx.doi.org/10.1007/s00726-021-03052-1] [PMID: 34292410]
[46]
Yang, L.; Moss, T.; Mangala, L.S.; Marini, J.; Zhao, H.; Wahlig, S.; Armaiz-Pena, G.; Jiang, D.; Achreja, A.; Win, J.; Roopaimoole, R.; Rodriguez-Aguayo, C.; Mercado-Uribe, I.; Lopez-Berestein, G.; Liu, J.; Tsukamoto, T.; Sood, A.K.; Ram, P.T.; Nagrath, D. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol., 2014, 10(5), 728.
[http://dx.doi.org/10.1002/msb.20134892] [PMID: 24799285]
[47]
Maus, A.; Peters, G.J. Glutamate and α-ketoglutarate: Key players in glioma metabolism. Amino Acids, 2017, 49(1), 21-32.
[http://dx.doi.org/10.1007/s00726-016-2342-9] [PMID: 27752843]
[48]
Liu, Y.; Ge, X.; Pang, J.; Zhang, Y.; Zhang, H.; Wu, H.; Fan, F.; Liu, H. Restricting glutamine uptake enhances NSCLC sensitivity to third-generation EGFR-TKI almonertinib. Front. Pharmacol., 2021, 12, 671328.
[http://dx.doi.org/10.3389/fphar.2021.671328] [PMID: 34054543]
[49]
Chen, J-J.; Jones, M.E. The cellular location of dihydroorotate dehydrogenase: Relation to de novo biosynthesis of pyrimidines. Arch. Biochem. Biophys., 1976, 176(1), 82-90.
[http://dx.doi.org/10.1016/0003-9861(76)90143-0] [PMID: 184741]
[50]
Peters, G.J.; Veerkamp, J.H. Pyrimidine metabolism in rat brain cortex and liver., 1984, 531-534.
[http://dx.doi.org/10.1007/978-1-4684-4553-4_102]
[51]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[52]
Sreedhar, A.; Zhao, Y. Uncoupling protein 2 and metabolic diseases. Mitochondrion, 2017, 34, 135-140.
[http://dx.doi.org/10.1016/j.mito.2017.03.005] [PMID: 28351676]
[53]
Lopez, J.; Tait, S.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within. Br. J. Cancer, 2015, 112(6), 957-962.
[http://dx.doi.org/10.1038/bjc.2015.85] [PMID: 25742467]
[54]
Zhou, Y.; Tozzi, F.; Chen, J.; Fan, F.; Xia, L.; Wang, J.; Gao, G.; Zhang, A.; Xia, X.; Brasher, H.; Widger, W.; Ellis, L.M.; Weihua, Z. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res., 2012, 72(1), 304-314.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1674] [PMID: 22084398]
[55]
Xi, Y.; Yuan, P.; Li, T.; Zhang, M.; Liu, M-F.; Li, B. hENT1 reverses chemoresistance by regulating glycolysis in pancreatic cancer. Cancer Lett., 2020, 479, 112-122.
[http://dx.doi.org/10.1016/j.canlet.2020.03.015] [PMID: 32200037]
[56]
Zhang, L.; Yang, H.; Zhang, W.; Liang, Z.; Huang, Q.; Xu, G.; Zhen, X.; Zheng, L.T. CLK1-regulated aerobic glycolysis is involved in glioma chemoresistance. J. Neurochem., 2017, 142(4), 574-588.
[http://dx.doi.org/10.1111/jnc.14096] [PMID: 28581641]
[57]
El Hassouni, B.; Franczak, M.; Capula, M.; Vonk, C.M.; Gomez, V.M.; Smolenski, R.T.; Granchi, C.; Peters, G.J.; Minutolo, F.; Giovannetti, E. Lactate dehydrogenase A inhibition by small molecular entities: Steps in the right direction. Oncoscience, 2020, 7(9-10), 76-80.
[http://dx.doi.org/10.18632/oncoscience.519] [PMID: 33195739]
[58]
El Hassouni, B.; Granchi, C.; Vallés-Martí, A.; Supadmanaba, I.G.P.; Bononi, G.; Tuccinardi, T.; Funel, N.; Jimenez, C.R.; Peters, G.J.; Giovannetti, E.; Minutolo, F. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin. Cancer Biol., 2020, 60, 238-248.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.025] [PMID: 31445217]
[59]
Tisato, V.; Silva, J.A.; Longo, G.; Gallo, I.; Singh, A.V.; Milani, D.; Gemmati, D. Genetics and epigenetics of one-carbon metabolism pathway in autism spectrum disorder: A sex-specific brain epigenome? Genes (Basel), 2021, 12(5), 782.
[http://dx.doi.org/10.3390/genes12050782] [PMID: 34065323]
[60]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[61]
Peters, G.J. Cancer drug resistance: A new perspective. Cancer Drug Resist., 2018, 1(1), 1-5.
[http://dx.doi.org/10.20517/cdr.2018.03]
[62]
Peters, G.J.; Sharma, S.L.; Laurensse, E.; Pinedo, H.M. Inhibition of pyrimidine de novo synthesis by DUP-785 (NSC 368390). Invest. New Drugs, 1987, 5(3), 235-244.
[http://dx.doi.org/10.1007/BF00175293] [PMID: 2822596]
[63]
Chen, S.F.; Ruben, R.L.; Dexter, D.L. Mechanism of action of the novel anticancer agent 6-fluoro-2-(2′-fluoro-1,1′-biphenyl-4-yl)-3-methyl-4-quinolinecarbo xylic acid sodium salt (NSC 368390): Inhibition of de novo pyrimidine nucleotide biosynthesis. Cancer Res., 1986, 46(10), 5014-5019.
[PMID: 3019518]
[64]
McLean, J.E.; Neidhardt, E.A.; Grossman, T.H.; Hedstrom, L. Multiple inhibitor analysis of the brequinar and leflunomide binding sites on human dihydroorotate dehydrogenase. Biochemistry, 2001, 40(7), 2194-2200.
[http://dx.doi.org/10.1021/bi001810q] [PMID: 11329288]
[65]
Loeffler, M.; Wichmann, H.E. A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results. Cell Tissue Kinet., 1980, 13(5), 543-561.
[http://dx.doi.org/10.1111/j.1365-2184.1980.tb00494.x] [PMID: 7006823]
[66]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[67]
Jaramillo, A.C.; Al Saig, F.; Cloos, J.; Jansen, G.; Peters, G.J. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resist., 2018, 1(1), 6-29.
[http://dx.doi.org/10.20517/cdr.2018.02]
[68]
Hraběta, J.; Belhajová, M.; Šubrtová, H.; Merlos Rodrigo, M.A.; Heger, Z.; Eckschlager, T. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int. J. Mol. Sci., 2020, 21(12), 4392.
[http://dx.doi.org/10.3390/ijms21124392] [PMID: 32575682]
[69]
de Klerk, D.J.; Honeywell, R.J.; Jansen, G.; Peters, G.J. Transporter and lysosomal mediated (multi)drug resistance to tyrosine kinase inhibitors and potential strategies to overcome resistance. Cancers (Basel), 2018, 10(12), 503.
[http://dx.doi.org/10.3390/cancers10120503] [PMID: 30544701]
[70]
Cocetta, V.; Ragazzi, E.; Montopoli, M. Mitochondrial involvement in cisplatin resistance. Int. J. Mol. Sci., 2019, 20(14), 3384.
[http://dx.doi.org/10.3390/ijms20143384] [PMID: 31295873]
[71]
Park, H-K.; Lee, J-E.; Lim, J.; Kang, B.H. Mitochondrial Hsp90s suppress calcium-mediated stress signals propagating from mitochondria to the ER in cancer cells. Mol. Cancer, 2014, 13(1), 148.
[http://dx.doi.org/10.1186/1476-4598-13-148] [PMID: 24924916]
[72]
Turgeon, M-O.; Perry, N.J.S.; Poulogiannis, G. DNA damage, repair, and cancer metabolism. Front. Oncol., 2018, 8, 15.
[http://dx.doi.org/10.3389/fonc.2018.00015] [PMID: 29459886]
[73]
Ducker, G.S.; Rabinowitz, J.D. One-carbon metabolism in health and disease. Cell Metab., 2017, 25(1), 27-42.
[http://dx.doi.org/10.1016/j.cmet.2016.08.009] [PMID: 27641100]
[74]
Meskers, C.J.W.; Franczak, M.; Smolenski, R.T.; Giovannetti, E.; Peters, G.J. Are we still on the right path(Way)?: The altered expression of the pentose phosphate pathway in solid tumors and the potential of its inhibition in combination therapy. Expert Opin. Drug Metab. Toxicol., 2022, 18(1), 61-83.
[http://dx.doi.org/10.1080/17425255.2022.2049234] [PMID: 35238253]
[75]
Giovannetti, E.; Zucali, P.A.; Assaraf, Y.G.; Funel, N.; Gemelli, M.; Stark, M.; Thunnissen, E.; Hou, Z.; Muller, I.B.; Struys, E.A.; Perrino, M.; Jansen, G.; Matherly, L.H.; Peters, G.J. Role of proton-coupled folate transporter in pemetrexed resistance of mesothelioma: Clinical evidence and new pharmacological tools. Ann. Oncol., 2017, 28(11), 2725-2732.
[http://dx.doi.org/10.1093/annonc/mdx499] [PMID: 28945836]
[76]
Wojtuszkiewicz, A.; Raz, S.; Stark, M.; Assaraf, Y.G.; Jansen, G.; Peters, G.J.; Sonneveld, E.; Kaspers, G.J.L.; Cloos, J. Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance. Int. J. Cancer, 2016, 138(7), 1645-1656.
[http://dx.doi.org/10.1002/ijc.29919] [PMID: 26547381]
[77]
Rots, M.G.; Pieters, R.; Kaspers, G.J.L.; Veerman, A.J.P.; Peters, G.J.; Jansen, G. Classification of ex vivo methotrexate resistance in acute lymphoblastic and myeloid leukaemia. Br. J. Haematol., 2000, 110(4), 791-800.
[http://dx.doi.org/10.1046/j.1365-2141.2000.02070.x] [PMID: 11054060]
[78]
Bayoumy, A.B.; Ansari, A.R.; De Abreu, R.A.; Peters, G.J.; Mulder, C.J.J. Multi-drug therapy schedules for SARS-COV-2: Smart repurposing of old drugs. J. Explor. Res. Pharmacol., 2020, 5(3), 29-30.
[http://dx.doi.org/10.14218/JERP.2020.00022]
[79]
van der Heijden, J.W.; Dijkmans, B.A.; Scheper, R.J.; Jansen, G. Drug Insight: Resistance to methotrexate and other disease-modifying antirheumatic drugs-from bench to bedside. Nat. Clin. Pract. Rheumatol., 2007, 3(1), 26-34.
[http://dx.doi.org/10.1038/ncprheum0380] [PMID: 17203006]
[80]
Zhang, H.; Yang, Y.; Li, J.; Wang, M.; Saravanan, K.M.; Wei, J.; Tze-Yang Ng, J.; Tofazzal Hossain, M.; Liu, M.; Zhang, H.; Ren, X.; Pan, Y.; Peng, Y.; Shi, Y.; Wan, X.; Liu, Y.; Wei, Y. A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro. PLOS Comput. Biol., 2020, 16(12), e1008489.
[http://dx.doi.org/10.1371/journal.pcbi.1008489] [PMID: 33382685]
[81]
Peters, G.J.; van Gemert, F.P.A.; Kathmann, I.; Reddy, G.; Cillessen, S.A.G.M.; Jansen, G. Schedule-dependent synergy between the histone deacetylase inhibitor belinostat and the dihydrofolate reductase inhibitor pralatrexate in T-and B-cell lymphoma cells in vitro. Front. Cell Dev. Biol., 2020, 8, 577215.
[http://dx.doi.org/10.3389/fcell.2020.577215] [PMID: 33163492]
[82]
Vazquez, A.; Tedeschi, P.M.; Bertino, J.R. Overexpression of the mitochondrial folate and glycine-serine pathway: A new determinant of methotrexate selectivity in tumors. Cancer Res., 2013, 73(2), 478-482.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3709] [PMID: 23135910]
[83]
Nilsson, R.; Jain, M.; Madhusudhan, N.; Sheppard, N.G.; Strittmatter, L.; Kampf, C.; Huang, J.; Asplund, A.; Mootha, V.K. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun., 2014, 5(1), 3128.
[http://dx.doi.org/10.1038/ncomms4128] [PMID: 24451681]
[84]
Ning, S.; Ma, S.; Saleh, A.Q.; Guo, L.; Zhao, Z.; Chen, Y. SHMT2 overexpression predicts poor prognosis in intrahepatic cholangiocarcinoma. Gastroenterol. Res. Pract., 2018, 2018, 4369253.
[http://dx.doi.org/10.1155/2018/4369253] [PMID: 30228815]
[85]
Liu, Y.; Yin, C.; Deng, M.M.; Wang, Q.; He, X.Q.; Li, M.T.; Li, C.P.; Wu, H. High expression of SHMT2 is correlated with tumor progression and predicts poor prognosis in gastrointestinal tumors. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(21), 9379-9392.
[http://dx.doi.org/10.26355/eurrev_201911_19431] [PMID: 31773687]
[86]
Nikiforov, M.A.; Chandriani, S.; O’Connell, B.; Petrenko, O.; Kotenko, I.; Beavis, A.; Sedivy, J.M.; Cole, M.D. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol. Cell. Biol., 2002, 22(16), 5793-5800.
[http://dx.doi.org/10.1128/MCB.22.16.5793-5800.2002] [PMID: 12138190]
[87]
Ju, H-Q.; Lu, Y-X.; Chen, D-L.; Zuo, Z-X.; Liu, Z-X.; Wu, Q-N.; Mo, H-Y.; Wang, Z-X.; Wang, D-S.; Pu, H-Y.; Zeng, Z.L.; Li, B.; Xie, D.; Huang, P.; Hung, M.C.; Chiao, P.J.; Xu, R.H. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: Mechanisms and therapeutic implications. J. Natl. Cancer Inst., 2019, 111(6), 584-596.
[http://dx.doi.org/10.1093/jnci/djy160] [PMID: 30534944]
[88]
Wei, Z.; Song, J.; Wang, G.; Cui, X.; Zheng, J.; Tang, Y.; Chen, X.; Li, J.; Cui, L.; Liu, C-Y.; Yu, W. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat. Commun., 2018, 9(1), 4468.
[http://dx.doi.org/10.1038/s41467-018-06812-y] [PMID: 30367038]
[89]
Wan, X.; Wang, C.; Huang, Z.; Zhou, D.; Xiang, S.; Qi, Q.; Chen, X.; Arbely, E.; Liu, C-Y.; Du, P.; Yu, W. Cisplatin inhibits SIRT3-deacetylation MTHFD2 to disturb cellular redox balance in colorectal cancer cell. Cell Death Dis., 2020, 11(8), 649.
[http://dx.doi.org/10.1038/s41419-020-02825-y] [PMID: 32811824]
[90]
Nishimura, T.; Nakata, A.; Chen, X.; Nishi, K.; Meguro-Horike, M.; Sasaki, S.; Kita, K.; Horike, S.I.; Saitoh, K.; Kato, K.; Igarashi, K.; Murayama, T.; Kohno, S.; Takahashi, C.; Mukaida, N.; Yano, S.; Soga, T.; Tojo, A.; Gotoh, N. Cancer stem-like properties and gefitinib resistance are dependent on purine synthetic metabolism mediated by the mitochondrial enzyme MTHFD2. Oncogene, 2019, 38(14), 2464-2481.
[http://dx.doi.org/10.1038/s41388-018-0589-1] [PMID: 30532069]
[91]
Pikman, Y.; Puissant, A.; Alexe, G.; Furman, A.; Chen, L.M.; Frumm, S.M.; Ross, L.; Fenouille, N.; Bassil, C.F.; Lewis, C.A.; Ramos, A.; Gould, J.; Stone, R.M.; DeAngelo, D.J.; Galinsky, I.; Clish, C.B.; Kung, A.L.; Hemann, M.T.; Vander Heiden, M.G.; Banerji, V.; Stegmaier, K. Targeting MTHFD2 in acute myeloid leukemia. J. Exp. Med., 2016, 213(7), 1285-1306.
[http://dx.doi.org/10.1084/jem.20151574] [PMID: 27325891]
[92]
Fan, J.; Ye, J.; Kamphorst, J.J.; Shlomi, T.; Thompson, C.B.; Rabinowitz, J.D. Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 2014, 510(7504), 298-302.
[http://dx.doi.org/10.1038/nature13236] [PMID: 24805240]
[93]
Morscher, R.J.; Ducker, G.S.; Li, S.H-J.; Mayer, J.A.; Gitai, Z.; Sperl, W.; Rabinowitz, J.D. Mitochondrial translation requires folate-dependent tRNA methylation. Nature, 2018, 554(7690), 128-132.
[http://dx.doi.org/10.1038/nature25460] [PMID: 29364879]
[94]
Olmos, Y.; Brosens, J.J.; Lam, E.W-F. Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resist. Updat., 2011, 14(1), 35-44.
[http://dx.doi.org/10.1016/j.drup.2010.12.001] [PMID: 21195657]
[95]
Elbadawy, M.; Usui, T.; Yamawaki, H.; Sasaki, K. Emerging roles of C-Myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: A potential therapeutic target against colorectal cancer. Int. J. Mol. Sci., 2019, 20(9), 2340.
[http://dx.doi.org/10.3390/ijms20092340] [PMID: 31083525]
[96]
Zarou, M.M.; Vazquez, A.; Vignir Helgason, G. Folate metabolism: A re-emerging therapeutic target in haematological cancers. Leukemia, 2021, 35(6), 1539-1551.
[http://dx.doi.org/10.1038/s41375-021-01189-2] [PMID: 33707653]
[97]
Lucas, S.; Chen, G.; Aras, S.; Wang, J. Serine catabolism is essential to maintain mitochondrial respiration in mammalian cells. Life Sci. Alliance, 2018, 1(2), e201800036.
[http://dx.doi.org/10.26508/lsa.201800036] [PMID: 30456347]
[98]
Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527(7577), 186-191.
[http://dx.doi.org/10.1038/nature15726] [PMID: 26466563]
[99]
Li, X.; Zhang, K.; Hu, Y.; Luo, N. ERRα activates SHMT2 transcription to enhance the resistance of breast cancer to lapatinib via modulating the mitochondrial metabolic adaption. Biosci. Rep., 2020, 40(1), BSR20192465.
[http://dx.doi.org/10.1042/BSR20192465] [PMID: 31894856]
[100]
Xiu, Y.; Field, M.S. The roles of mitochondrial folate metabolism in supporting mitochondrial DNA synthesis, oxidative phosphorylation, and cellular function. Curr. Dev. Nutr., 2020, 4(10), a153.
[http://dx.doi.org/10.1093/cdn/nzaa153] [PMID: 33134792]
[101]
Skrtić, M.; Sriskanthadevan, S.; Jhas, B.; Gebbia, M.; Wang, X.; Wang, Z.; Hurren, R.; Jitkova, Y.; Gronda, M.; Maclean, N.; Lai, C.K.; Eberhard, Y.; Bartoszko, J.; Spagnuolo, P.; Rutledge, A.C.; Datti, A.; Ketela, T.; Moffat, J.; Robinson, B.H.; Cameron, J.H.; Wrana, J.; Eaves, C.J.; Minden, M.D.; Wang, J.C.; Dick, J.E.; Humphries, K.; Nislow, C.; Giaever, G.; Schimmer, A.D. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell, 2011, 20(5), 674-688.
[http://dx.doi.org/10.1016/j.ccr.2011.10.015] [PMID: 22094260]
[102]
Kuntz, E.M.; Baquero, P.; Michie, A.M.; Dunn, K.; Tardito, S.; Holyoake, T.L.; Helgason, G.V.; Gottlieb, E. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med., 2017, 23(10), 1234-1240.
[http://dx.doi.org/10.1038/nm.4399] [PMID: 28920959]
[103]
Vangapandu, H.V.; Alston, B.; Morse, J.; Ayres, M.L.; Wierda, W.G.; Keating, M.J.; Marszalek, J.R.; Gandhi, V. Biological and metabolic effects of IACS-010759, an OxPhos inhibitor, on chronic lymphocytic leukemia cells. Oncotarget, 2018, 9(38), 24980-24991.
[http://dx.doi.org/10.18632/oncotarget.25166] [PMID: 29861847]
[104]
Ellinghaus, P.; Heisler, I.; Unterschemmann, K.; Haerter, M.; Beck, H.; Greschat, S.; Ehrmann, A.; Summer, H.; Flamme, I.; Oehme, F.; Thierauch, K.; Michels, M.; Hess-Stumpp, H.; Ziegelbauer, K. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med., 2013, 2(5), 611-624.
[http://dx.doi.org/10.1002/cam4.112] [PMID: 24403227]
[105]
Hirpara, J.; Eu, J.Q.; Tan, J.K.M.; Wong, A.L.; Clement, M-V.; Kong, L.R.; Ohi, N.; Tsunoda, T.; Qu, J.; Goh, B.C.; Pervaiz, S. Metabolic reprogramming of oncogene-addicted cancer cells to OXPHOS as a mechanism of drug resistance. Redox Biol., 2019, 25, 101076.
[http://dx.doi.org/10.1016/j.redox.2018.101076] [PMID: 30642723]
[106]
Pardee, T.S.; Miller, L.D.; Pladna, K.; Isom, S.; Ellis, L.R.; Berenzon, D.; Howard, D.; Manuel, M.; Dralle, S.; Lyerly, S.; Powell, B.L. TCA cycle inhibition By Cpi-613 increases sensitivity to chemotherapy in older and poor risk acute myeloid leukemia (AML). Blood, 2016, 128(22), 4062-4062.
[http://dx.doi.org/10.1182/blood.V128.22.4062.4062]
[107]
Han, Y.H.; Kim, S.W.; Kim, S.H.; Kim, S.Z.; Park, W.H. 2,4-dinitrophenol induces G1 phase arrest and apoptosis in human pulmonary adenocarcinoma Calu-6 cells. Toxicol. In Vitro, 2008, 22(3), 659-670.
[http://dx.doi.org/10.1016/j.tiv.2007.12.005] [PMID: 18276104]
[108]
Sykes, D.B. The emergence of dihydroorotate dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia. Expert Opin. Ther. Targets, 2018, 22(11), 893-898.
[http://dx.doi.org/10.1080/14728222.2018.1536748] [PMID: 30318938]
[109]
Sykes, D.B.; Kfoury, Y.S.; Mercier, F.E.; Wawer, M.J.; Law, J.M.; Haynes, M.K.; Lewis, T.A.; Schajnovitz, A.; Jain, E.; Lee, D.; Meyer, H.; Pierce, K.A.; Tolliday, N.J.; Waller, A.; Ferrara, S.J.; Eheim, A.L.; Stoeckigt, D.; Maxcy, K.L.; Cobert, J.M.; Bachand, J.; Szekely, B.A.; Mukherjee, S.; Sklar, L.A.; Kotz, J.D.; Clish, C.B.; Sadreyev, R.I.; Clemons, P.A.; Janzer, A.; Schreiber, S.L.; Scadden, D.T. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell, 2016, 167(1), 171-186.e15.
[http://dx.doi.org/10.1016/j.cell.2016.08.057] [PMID: 27641501]
[110]
Peters, G.J.; Kraal, I.; Pinedo, H.M. In vitro and in vivo studies on the combination of Brequinar sodium (DUP-785; NSC 368390) with 5-fluorouracil; effects of uridine. Br. J. Cancer, 1992, 65(2), 229-233.
[http://dx.doi.org/10.1038/bjc.1992.46] [PMID: 1739622]
[111]
Galli, U.; Colombo, G.; Travelli, C.; Tron, G.C.; Genazzani, A.A.; Grolla, A.A. Recent advances in NAMPT inhibitors: A novel immunotherapic strategy. Front. Pharmacol., 2020, 11, 656.
[http://dx.doi.org/10.3389/fphar.2020.00656] [PMID: 32477131]
[112]
Holen, K.; Saltz, L.B.; Hollywood, E.; Burk, K.; Hanauske, A-R. The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Invest. New Drugs, 2008, 26(1), 45-51.
[http://dx.doi.org/10.1007/s10637-007-9083-2] [PMID: 17924057]
[113]
Goldinger, S.M.; Gobbi Bischof, S.; Fink-Puches, R.; Klemke, C-D.; Dréno, B.; Bagot, M.; Dummer, R. Efficacy and safety of APO866 in patients with refractory or relapsed cutaneous T-Cell lymphoma: A phase 2 clinical trial. JAMA Dermatol., 2016, 152(7), 837-839.
[http://dx.doi.org/10.1001/jamadermatol.2016.0401] [PMID: 27007550]
[114]
Hovstadius, P.; Larsson, R.; Jonsson, E.; Skov, T.; Kissmeyer, A-M.; Krasilnikoff, K.; Bergh, J.; Karlsson, M.O.; Lönnebo, A.; Ahlgren, J. A Phase I study of CHS 828 in patients with solid tumor malignancy. Clin. Cancer Res., 2002, 8(9), 2843-2850.
[PMID: 12231525]
[115]
Rathore, R.; Schutt, C.R.; Van Tine, B.A. PHGDH as a mechanism for resistance in metabolically-driven cancers. Cancer Drug Resist., 2020, 3, 762-774.
[http://dx.doi.org/10.20517/cdr.2020.46] [PMID: 33511334]
[116]
Dekhne, A.S.; Ning, C.; Nayeen, M.J.; Shah, K.; Kalpage, H.; Frühauf, J.; Wallace-Povirk, A.; O’Connor, C.; Hou, Z.; Kim, S.; Hüttemann, M.; Gangjee, A.; Matherly, L.H. Cellular pharmacodynamics of a novel pyrrolo[3,2-d]pyrimi-dine inhibitor targeting mitochondrial and cytosolic one-carbon metabolism. Mol. Pharmacol., 2020, 97(1), 9-22.
[http://dx.doi.org/10.1124/mol.119.117937] [PMID: 31707355]
[117]
García-Cañaveras, J.C.; Lancho, O.; Ducker, G.S.; Ghergurovich, J.M.; Xu, X.; da Silva-Diz, V.; Minuzzo, S.; Indraccolo, S.; Kim, H.; Herranz, D.; Rabinowitz, J.D. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia, 2021, 35(2), 377-388.
[http://dx.doi.org/10.1038/s41375-020-0845-6] [PMID: 32382081]
[118]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[119]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[120]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[121]
Barghash, R.F.; Fawzy, I.M.; Chandrasekar, V.; Singh, A.V.; Katha, U.; Mandour, A.A. In silico modeling as a perspective in developing potential vaccine candidates and therapeutics for Covid-19. Coatings, 2021, 11(11), 1273.
[http://dx.doi.org/10.3390/coatings11111273]