DNA Nanobots – Emerging Customized Nanomedicine in Oncology

Page: [111 - 126] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Cancer is one of the most lethal diseases of the twenty-first century. Many medicines, including antitumor antibiotics, deliver tedious and severe chemotherapy and radiation treatment, both of which have significant side effects. DNA nanorobots, as an alternative, might be used as a cancer treatment method that is both safer and more precise than current treatments. DNA nanobots are being praised as a major milestone in medical research. The major goal of these nanobots is to find and destroy malignant cells in the human body. A unique strand of DNA is folded into the systematic form to create these nanobots. DNA origami has magnified passive tumor-targeting and prolonged properties at the tumor location. The triangle-like DNA origami, in particular, shows excellent accumulation on passive targeting of the tumor. Self-built DNA origami nanostructures were utilized to deliver the anticancer drug doxorubicin into tumors, and the approach was found to be highly successful in vivo. In another demonstration, a robot was made with the help of DNA origami and aptamer for folding a 90nm long tube-like apparatus. It was carried out to transport the blood coagulation protease thrombin in the interior portion guarded against blood plasma protein and circulating platelets. The robot unfolded once the aptamer was identified and attached to its tumor-specific target molecule, delivering thrombin to the circulation, stimulating coagulation of the regional malignant cells, and proceeding to tumor necrosis and tumor growth inhibition. Various studies revealed the effectiveness of DNA nanobots in cancer therapy.

Keywords: Cancer, nanotechnology, nanobot, DNA nanobot, thrombin, doxorubicin.

Graphical Abstract

[1]
Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 2014, 939378.
[http://dx.doi.org/10.1155/2014/939378]
[2]
Gmeiner, W.H.; Ghosh, S. Nanotechnology for cancer treatment. Nanotechnol. Rev., 2015, 3(2), 111-122.
[PMID: 26082884]
[3]
Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther., 2010, 128(2), 324-335.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.007] [PMID: 20705093]
[4]
Sudhakar, A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther., 2009, 1(2), 1-4.
[http://dx.doi.org/10.4172/1948-5956.100000e2] [PMID: 20740081]
[5]
David, A.R.; Zimmerman, M.R. Cancer: An old disease, a new disease or something in between? Nat. Rev. Cancer, 2010, 10(10), 728-733.
[http://dx.doi.org/10.1038/nrc2914] [PMID: 20814420]
[6]
Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol., 2019, 12(1), 137.
[http://dx.doi.org/10.1186/s13045-019-0833-3] [PMID: 31847897]
[7]
Vaidya, A.; Pathak, D.; Shah, K. 1,3,4-oxadiazole and its derivatives: A review on recent progress in anticancer activities. Chem. Biol. Drug Des., 2021, 97(3), 572-591.
[http://dx.doi.org/10.1111/cbdd.13795] [PMID: 32946168]
[8]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961-961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[9]
Harwansh, R.K.; Bahadur, S.; Deshmukh, R.; Rahman, M.A. Exciting potential of nanoparticlized lipidic system for effective treatment of breast cancer and clinical updates: A translational prospective. Curr. Pharm. Des., 2020, 26(11), 1191-1205.
[http://dx.doi.org/10.2174/1381612826666200131101156] [PMID: 32003686]
[10]
Chaturvedi, S.; Garg, A.; Verma, A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol., 2020, 59, 101899.
[http://dx.doi.org/10.1016/j.jddst.2020.101899]
[11]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[12]
Harwansh, R.K.; Deshmukh, R. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs. Crit. Rev. Oncol. Hematol., 2020, 154, 103070.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103070] [PMID: 32871325]
[13]
Venkatesan, M; Jolad, B Nanorobots in cancer treatment., 2011.
[14]
Chen, Y; Jia, Y; Song, W; Zhang, L Therapeutic potential of nitrogen mustard based hybrid molecules. 2018, 9, 1453.
[http://dx.doi.org/10.3389/fphar.2018.01453]
[15]
Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol., 2009, 6(11), 638-647.
[http://dx.doi.org/10.1038/nrclinonc.2009.146] [PMID: 19786984]
[16]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[17]
Bardal, S.K.; Waechter, J.E.; Martin, D.S. Neoplasia. In: Applied Pharmacology; Bardal, S.K.; Waechter, J.E.; Martin, D.S., Eds.; W.B. Saunders: Philadelphia, 2011; pp. 305-324.
[18]
Alcindor, T.; Beauger, N. Oxaliplatin: A review in the era of molecularly targeted therapy. Curr. Oncol., 2011, 18(1), 18-25.
[http://dx.doi.org/10.3747/co.v18i1.708] [PMID: 21331278]
[19]
Cronstein, B.N. The mechanism of action of methotrexate. Rheum. Dis. Clin. North Am., 1997, 23(4), 739-755.
[http://dx.doi.org/10.1016/S0889-857X(05)70358-6] [PMID: 9361153]
[20]
Cronstein, B.N.; Aune, T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol., 2020, 16(3), 145-154.
[http://dx.doi.org/10.1038/s41584-020-0373-9] [PMID: 32066940]
[21]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[22]
Walko, C.M.; Lindley, C. Capecitabine: A review. Clin. Ther., 2005, 27(1), 23-44.
[http://dx.doi.org/10.1016/j.clinthera.2005.01.005] [PMID: 15763604]
[23]
Kuroda, S.; Kagawa, S.; Fujiwara, T. Selectively replicating oncolytic adenoviruses combined with chemotherapy, radiotherapy, or molecular targeted therapy for treatment of human cancers. In: Gene Therapy of Cancer, 3rd Edition; Lattime, E.C.; Gerson, S.L., Eds.; Academic Press: San Diego, 2014; pp. 171-183.
[24]
Martin, S.A. The DNA mismatch repair pathway. In: DNA Repair in Cancer Therapy, 2nd Ed; Kelley, M.R.; Fishel, M.L., Eds.; Academic Press:: Boston, 2016; pp. 151-177.
[25]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[26]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[27]
Tremont, A.; Lu, J.; Cole, J.T. Endocrine therapy for early breast cancer: Updated review. Ochsner J., 2017, 17(4), 405-411.
[PMID: 29230126]
[28]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[29]
Hartmann, J.T.; Haap, M.; Kopp, H.G.; Lipp, H.P. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab., 2009, 10(5), 470-481.
[http://dx.doi.org/10.2174/138920009788897975] [PMID: 19689244]
[30]
Naidoo, J.; Page, D.B.; Wolchok, J.D. Immune modulation for cancer therapy. Br. J. Cancer, 2014, 111(12), 2214-2219.
[http://dx.doi.org/10.1038/bjc.2014.348] [PMID: 25211661]
[31]
Aslan, B.; Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Nanotechnology in cancer therapy. J. Drug Target., 2013, 21(10), 904-913.
[http://dx.doi.org/10.3109/1061186X.2013.837469] [PMID: 24079419]
[32]
Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; Lin, C.; Leach, C.; Cannady, R.S.; Cho, H.; Scoppa, S.; Hachey, M.; Kirch, R.; Jemal, A.; Ward, E. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin., 2012, 62(4), 220-241.
[http://dx.doi.org/10.3322/caac.21149] [PMID: 22700443]
[33]
Klochkov, S.G.; Neganova, M.E.; Nikolenko, V.N.; Chen, K.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. Implications of nanotechnology for the treatment of cancer: Recent advances. Semin. Cancer Biol., 2021, 69, 190-199.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.028] [PMID: 31446004]
[34]
Sharma, M.; Pandey, C.; Sharma, N.; Kamal, M.A.; Sayeed, U.; Akhtar, S. Cancer nanotechnology-an excursion on drug delivery systems. Anticancer. Agents Med. Chem., 2018, 18(15), 2078-2092.
[http://dx.doi.org/10.2174/1871520618666180720164015] [PMID: 30033877]
[35]
Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine (Lond.), 2019, 14(1), 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[36]
Gao, Y.; Shi, Y.; Wang, L.; Kong, S.; Du, J.; Lin, G.; Feng, Y. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. Comput. Methods Programs Biomed., 2020, 184, 105106.
[http://dx.doi.org/10.1016/j.cmpb.2019.105106] [PMID: 31670178]
[37]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[38]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[39]
Sutradhar, K.B.; Amin, M.L. Nanoemulsions: Increasing possibilities in drug delivery. Eur. J. Nanomed., 2013, 5, 97-110.
[40]
Deb, K.D.; Griffith, M.; Muinck, E.D.; Rafat, M. Nanotechnology in stem cells research: Advances and applications. Front. Biosci., 2012, 17(5), 1747-1760.
[http://dx.doi.org/10.2741/4016] [PMID: 22201833]
[41]
Nikalje, A. Nanotechnology and its applications in medicine. Med. Chem., 2015, 5, 081-089.
[http://dx.doi.org/10.4172/2161-0444.1000247]
[42]
Wang, Z.; Ruan, J.; Cui, D. Advances and prospect of nanotechnology in stem cells. Nanoscale Res. Lett., 2009, 4(7), 593-605.
[http://dx.doi.org/10.1007/s11671-009-9292-z] [PMID: 20596412]
[43]
Pinho, S.; Macedo, M.H.; Rebelo, C.; Sarmento, B.; Ferreira, L. Stem cells as vehicles and targets of nanoparticles. Drug Discov. Today, 2018, 23(5), 1071-1078.
[http://dx.doi.org/10.1016/j.drudis.2018.01.030] [PMID: 29337203]
[44]
Minchin, R. Nanomedicine: Sizing up targets with nanoparticles. Nat. Nanotechnol., 2008, 3(1), 12-13.
[http://dx.doi.org/10.1038/nnano.2007.433] [PMID: 18654442]
[45]
Elhissi, A.M.A.; Ahmed, W.; Hassan, I.U.; Dhanak, V.R.; D’Emanuele, A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv., 2012, 2012, 837327.
[http://dx.doi.org/10.1155/2012/837327] [PMID: 22028974]
[46]
Nanoscale, S.M. Cancer therapeutics: Advances, hurdles and hopes. Int. J. Nano Stud. Technol., 2017, 19-25.
[47]
Peiris, P.M.; Bauer, L.; Toy, R.; Tran, E.; Pansky, J.; Doolittle, E.; Schmidt, E.; Hayden, E.; Mayer, A.; Keri, R.A.; Griswold, M.A.; Karathanasis, E. Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano, 2012, 6(5), 4157-4168.
[http://dx.doi.org/10.1021/nn300652p] [PMID: 22486623]
[48]
Radovic-Moreno, A.F.; Lu, T.K.; Puscasu, V.A.; Yoon, C.J.; Langer, R.; Farokhzad, O.C. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano, 2012, 6(5), 4279-4287.
[http://dx.doi.org/10.1021/nn3008383] [PMID: 22471841]
[49]
Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis., 2017, 4(4), 105-131.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[50]
Ali, M.K.; Liu, Q.; Liang, K.; Li, P.; Kong, Q. Bacteria-derived minicells for cancer therapy. Cancer Lett., 2020, 491, 11-21.
[http://dx.doi.org/10.1016/j.canlet.2020.07.024] [PMID: 32721550]
[51]
Ahmed, R.Z.; Patil, G.; Zaheer, Z. Nanosponges - a completely new nano-horizon: Pharmaceutical applications and recent advances. Drug Dev. Ind. Pharm., 2013, 39(9), 1263-1272.
[http://dx.doi.org/10.3109/03639045.2012.694610] [PMID: 22681585]
[52]
Fur, M. Novel applications of nanomaterials and nanotechnology in medical sciences. A review, 2018, 8(4), 11-22.
[53]
Getts, D.R.; Martin, A.J.; McCarthy, D.P.; Terry, R.L.; Hunter, Z.N.; Yap, W.T.; Getts, M.T.; Pleiss, M.; Luo, X.; King, N.J.; Shea, L.D.; Miller, S.D. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol., 2012, 30(12), 1217-1224.
[http://dx.doi.org/10.1038/nbt.2434] [PMID: 23159881]
[54]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9(1), 257-288.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]
[55]
Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.; Lieber, C.; Zheng, G.F.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294-1301. Nat. Biotechnol., 2005, 23, 1294-1301.
[http://dx.doi.org/10.1038/nbt1138] [PMID: 16170313]
[56]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[57]
Yamakawa, K.; Nishitani, K. [Empirical studies on some drugs for patent lawsuits in the age of manufacturing patents] Yakushigaku Zasshi, 2009, 44(2), 71-78.
[PMID: 20527312]
[58]
Kanehiro, F.; Inaba, M.; Inoue, H. Development of a two-armed bipedal robot that can walk and carry objects.Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst; , 1996, 1, pp. 23-28.
[http://dx.doi.org/10.1109/IROS.1996.570617]
[59]
Arvidsson, R.; Hansen, S.F. Environmental and health risks of nanorobots: An early review. Environ. Sci. Nano, 2020, 7(10), 2875-2886.
[http://dx.doi.org/10.1039/D0EN00570C]
[60]
Freitas, R.A., Jr What is nanomedicine? Nanomedicine, 2005, 1(1), 2-9.
[http://dx.doi.org/10.1016/j.nano.2004.11.003] [PMID: 17292052]
[61]
Vega Baudrit, J.R. Nanobots: Development and future. Int. J. Biosens. Bioelectron., 2017, 2(5), 146-151.
[62]
Freitas, R.A., Jr Exploratory design in medical nanotechnology: A mechanical artificial red cell. Artif. Cells Blood Substit. Immobil. Biotechnol., 1998, 26(4), 411-430.
[http://dx.doi.org/10.3109/10731199809117682] [PMID: 9663339]
[63]
Nerlich, B. Powered by Imagination: Nanobots at the Science Photo Library. Sci. Cult., 2008, 17(3), 269-292.
[http://dx.doi.org/10.1080/09505430802280743]
[64]
Rifat, T.; Hossain, M.; Alam, M.; Rouf, A. A review on applications of nanobots in combating complex diseases. Bangladesh Pharmaceutical Journal, 2019, 22(1), 99-108.
[http://dx.doi.org/10.3329/bpj.v22i1.40081]
[65]
Umai, R.D.; Devi, P.B. A review on DNA nanobots – a new technique for cancer treatment. Asian J. Pharm. Clin. Res., 2018, 11(6), 61-64.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i6.25015]
[66]
Gwinn, M.R.; Vallyathan, V. Nanoparticles: Health effects--pros and cons. Environ. Health Perspect., 2006, 114(12), 1818-1825.
[http://dx.doi.org/10.1289/ehp.8871] [PMID: 17185269]
[67]
Hill, C.; Amodeo, A.; Joseph, J.V.; Patel, H.R.H. Nano- and microrobotics: How far is the reality? Expert Rev. Anticancer Ther., 2008, 8(12), 1891-1897.
[http://dx.doi.org/10.1586/14737140.8.12.1891] [PMID: 19046109]
[68]
Dougherty, E.; Shmulevich, I.; Chen, J.; Wang, Z. Genomic signal processing and statistics. EURASIP Book Ser. Signal Process. Commun., 2005.
[69]
Toumey, C. Nanobots today. Nat. Nanotechnol., 2013, 8(7), 475-476.
[http://dx.doi.org/10.1038/nnano.2013.128] [PMID: 23820489]
[70]
Geddes, A.M. The history of smallpox. Clin. Dermatol., 2006, 24(3), 152-157.
[http://dx.doi.org/10.1016/j.clindermatol.2005.11.009] [PMID: 16714195]
[71]
Brendler, J.A. Tactical military communications. IEEE Commun. Mag., 1992, 30(1), 62-72.
[http://dx.doi.org/10.1109/35.166652]
[72]
Couvreur, P.; Vauthier, C. Nanotechnology: Intelligent design to treat complex disease. Pharm. Res., 2006, 23(7), 1417-1450.
[http://dx.doi.org/10.1007/s11095-006-0284-8] [PMID: 16779701]
[73]
Upadhyay, V.P.; Sonawat, M.; Singh, S.; Merugu, R. Nano robots in medicine: A review. Int. J. Eng. Tech. Man. Res., 2020, 4(12), 27-37.
[http://dx.doi.org/10.29121/ijetmr.v4.i12.2017.588]
[74]
Smith, L.M. Nanotechnology: Molecular robots on the move. Nature, 2010, 465(7295), 167-168.
[http://dx.doi.org/10.1038/465167a] [PMID: 20463724]
[75]
Krishnan, Y. DNA’s new avatar as nanoscale construction material. Resonance, 2008, 13(2), 195-197.
[http://dx.doi.org/10.1007/s12045-008-0033-x]
[76]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[77]
Douglas, S.M.; Bachelet, I.; Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335(6070), 831-834.
[http://dx.doi.org/10.1126/science.1214081] [PMID: 22344439]
[78]
Nikitin, M.P.; Shipunova, V.O.; Deyev, S.M.; Nikitin, P.I. Biocomputing based on particle disassembly. Nat. Nanotechnol., 2014, 9(9), 716-722.
[http://dx.doi.org/10.1038/nnano.2014.156] [PMID: 25129073]
[79]
Tripathi, R.; Kumar, A. Application of nanorobotics for cancer treatment. Mater. Today Proc., 2018, 5(3), 9114-9117.
[http://dx.doi.org/10.1016/j.matpr.2017.10.029]
[80]
Dietz, H.; Douglas, S.M.; Shih, W.M. Folding DNA into twisted and curved nanoscale shapes. Science, 2009, 325(5941), 725-730.
[http://dx.doi.org/10.1126/science.1174251] [PMID: 19661424]
[81]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[82]
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[83]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[84]
Heath, J.R.; Davis, M.E. Nanotechnology and cancer. Annu. Rev. Med., 2008, 59(1), 251-265.
[http://dx.doi.org/10.1146/annurev.med.59.061506.185523] [PMID: 17937588]
[85]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[86]
Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X.; Chen, C.; Zhao, Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small, 2011, 7(10), 1322-1337.
[http://dx.doi.org/10.1002/smll.201100001] [PMID: 21520409]
[87]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]
[88]
Spelkov, A.A.; Goncharova, E.A.; Savin, A.M.; Kolpashchikov, D.M. Bifunctional RNA-targeting deoxyribozyme nanodevice as a potential theranostic agent. Chemistry, 2020, 26(16), 3489-3493.
[http://dx.doi.org/10.1002/chem.201905528] [PMID: 31943434]
[89]
Pinheiro, A.V.; Han, D.; Shih, W.M.; Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol., 2011, 6(12), 763-772.
[http://dx.doi.org/10.1038/nnano.2011.187] [PMID: 22056726]
[90]
Chhabra, R.; Sharma, J.; Liu, Y.; Rinker, S.; Yan, H. DNA self-assembly for nanomedicine. Adv. Drug Deliv. Rev., 2010, 62(6), 617-625.
[http://dx.doi.org/10.1016/j.addr.2010.03.005] [PMID: 20230866]
[91]
Ding, B.; Deng, Z.; Yan, H.; Cabrini, S.; Zuckermann, R.N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc., 2010, 132(10), 3248-3249.
[http://dx.doi.org/10.1021/ja9101198] [PMID: 20163139]
[92]
Stearns, L.A.; Chhabra, R.; Sharma, J.; Liu, Y.; Petuskey, W.T.; Yan, H.; Chaput, J.C. Template-directed nucleation and growth of inorganic nanoparticles on DNA scaffolds. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8494-8496.
[http://dx.doi.org/10.1002/anie.200903319] [PMID: 19795428]
[93]
Pal, S.; Varghese, R.; Deng, Z.; Zhao, Z.; Kumar, A.; Yan, H.; Liu, Y. Site-specific synthesis and in situ immobilization of fluorescent silver nanoclusters on DNA nanoscaffolds by use of the Tollens reaction. Angew. Chem. Int. Ed. Engl., 2011, 50(18), 4176-4179.
[http://dx.doi.org/10.1002/anie.201007529] [PMID: 21472925]
[94]
Ding, B.; Wu, H.; Xu, W.; Zhao, Z.; Liu, Y.; Yu, H.; Yan, H. Interconnecting gold islands with DNA origami nanotubes. Nano Lett., 2010, 10(12), 5065-5069.
[http://dx.doi.org/10.1021/nl1033073] [PMID: 21070012]
[95]
Chang, M.; Yang, C.S.; Huang, D.M. Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano, 2011, 5(8), 6156-6163.
[http://dx.doi.org/10.1021/nn200693a] [PMID: 21732610]
[96]
Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano, 2011, 5(11), 8783-8789.
[http://dx.doi.org/10.1021/nn202774x] [PMID: 21988181]
[97]
Bhatia, D.; Surana, S.; Chakraborty, S.; Koushika, S.P.; Krishnan, Y. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat. Commun., 2011, 2(1), 339.
[http://dx.doi.org/10.1038/ncomms1337] [PMID: 21654639]
[98]
Schüller, V.J.; Heidegger, S.; Sandholzer, N.; Nickels, P.C.; Suhartha, N.A.; Endres, S.; Bourquin, C.; Liedl, T. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano, 2011, 5(12), 9696-9702.
[http://dx.doi.org/10.1021/nn203161y] [PMID: 22092186]
[99]
Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z.G.; Zou, G.; Liang, X.; Yan, H.; Ding, B. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc., 2012, 134(32), 13396-13403.
[http://dx.doi.org/10.1021/ja304263n] [PMID: 22803823]
[100]
Rudin, M.; Weissleder, R. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov., 2003, 2(2), 123-131.
[http://dx.doi.org/10.1038/nrd1007] [PMID: 12563303]
[101]
Seddon, B.M.; Workman, P. The role of functional and molecular imaging in cancer drug discovery and development. Br. J. Radiol., 2003, 76(Spec No 2)(Suppl. 2), S128-S138.
[http://dx.doi.org/10.1259/bjr/27373639] [PMID: 15572335]
[102]
Zhang, Q.; Du, Y.; Xue, Z.; Chi, C.; Jia, X.; Tian, J. Comprehensive evaluation of the anti-angiogenic and anti-neoplastic effects of Endostar on liver cancer through optical molecular imaging. PLoS One, 2014, 9(1), e85559.
[http://dx.doi.org/10.1371/journal.pone.0085559] [PMID: 24416426]
[103]
Zhang, Q.; Jiang, Q.; Li, N.; Dai, L.; Liu, Q.; Song, L.; Wang, J.; Li, Y.; Tian, J.; Ding, B.; Du, Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 8(7), 6633-6643.
[http://dx.doi.org/10.1021/nn502058j] [PMID: 24963790]
[104]
Amir, Y.; Ben-Ishay, E.; Levner, D.; Ittah, S.; Abu-Horowitz, A.; Bachelet, I. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol., 2014, 9(5), 353-357.
[http://dx.doi.org/10.1038/nnano.2014.58] [PMID: 24705510]
[105]
Spickernell, S. DNA nanobots deliver drugs in living cockroaches. New Sci., 2014, 222(2964), 11.
[http://dx.doi.org/10.1016/S0262-4079(14)60709-0]
[106]
Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G.J.; Han, J-Y.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol., 2018, 36(3), 258-264.
[http://dx.doi.org/10.1038/nbt.4071] [PMID: 29431737]
[107]
Soundararajan, S.; Chen, W.; Spicer, E.K.; Courtenay-Luck, N.; Fernandes, D.J. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res., 2008, 68(7), 2358-2365.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5723] [PMID: 18381443]
[108]
Huang, Y.; Shi, H.; Zhou, H.; Song, X.; Yuan, S.; Luo, Y. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood, 2006, 107(9), 3564-3571.
[http://dx.doi.org/10.1182/blood-2005-07-2961] [PMID: 16403913]
[109]
Sambrano, G.R.; Weiss, E.J.; Zheng, Y.W.; Huang, W.; Coughlin, S.R. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature, 2001, 413(6851), 74-78.
[http://dx.doi.org/10.1038/35092573] [PMID: 11544528]
[110]
Zhao, Q.; Li, M.; Wang, Z.; Li, J.; Luo, J. A Quorum Sensing algorithm to control nanorobot population and drug concentration in cancer area. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015, pp. 42-47.
[http://dx.doi.org/10.1109/ROBIO.2015.7407037]
[111]
Soto, F; Chrostowski, R Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses. 2018, 6, 170.
[112]
Hu, M.; Ge, X.; Chen, X.; Mao, W.; Qian, X.; Yuan, W-E. Micro/Nanorobot: A promising targeted drug delivery system. Pharmaceutics, 2020, 12(7), 665.
[http://dx.doi.org/10.3390/pharmaceutics12070665] [PMID: 32679772]