Mini-Reviews in Medicinal Chemistry

Author(s): Weiping Zheng*

DOI: 10.2174/1389557522666220330144151

The Zinc-dependent HDACs: Non-histone Substrates and Catalytic Deacylation Beyond Deacetylation

Page: [2478 - 2485] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Protein lysine side chain N(epsilon)-acylation and -deacylation play an important regulatory role in both epigenetic and non-epigenetic processes via a structural and functional regulation of histone and non-histone proteins. The enzymes catalyzing deacylation were traditionally termed as the histone deacetylases (HDACs) since histone proteins were the first substrates identified and the deacetylation was the first type of deacylation identified. However, it has now been known that, besides the seven sirtuins (i.e. SIRT1-7, the β-nicotinamide adenine dinucleotide (β-NAD+)-dependent class III HDACs), several of the other eleven members of the mammalian HDAC family (i.e. HDAC1-11, the zinc-dependent classes I, II, and IV HDACs) have been found to also accept nonhistone proteins as native substrates and to also catalyze the removal of the acyl groups other than acetyl, such as formyl, crotonyl, and myristoyl. In this mini-review, I will first integrate the current literature coverage on the non-histone substrates and the catalytic deacylation (beyond deacetylation) of the zinc-dependent HDACs, which will be followed by an address on the functional interrogation and pharmacological exploitation (inhibitor design) of the zinc-dependent HDAC-catalyzed deacylation (beyond deacetylation).

Keywords: Histone, non-histone, deacetylation, deacylation, zinc-dependent HDAC, sirtuin, inhibitor.

Graphical Abstract

[1]
Wang, Z.A.; Cole, P.A. The chemical biology of reversible lysine post-translational modifications. Cell Chem. Biol., 2020, 27(8), 953-969.
[http://dx.doi.org/10.1016/j.chembiol.2020.07.002] [PMID: 32698016]
[2]
Barnes, C.E.; English, D.M.; Cowley, S.M. Acetylation & Co: An expanding repertoire of histone acylations regulates chromatin and trans-cription. Essays Biochem., 2019, 63(1), 97-107.
[http://dx.doi.org/10.1042/EBC20180061] [PMID: 30940741]
[3]
Zhao, S.; Zhang, X.; Li, H. Beyond histone acetylation-writing and erasing histone acylations. Curr. Opin. Struct. Biol., 2018, 53, 169-177.
[http://dx.doi.org/10.1016/j.sbi.2018.10.001] [PMID: 30391813]
[4]
Weinert, B.T.; Narita, T.; Satpathy, S.; Srinivasan, B.; Hansen, B.K.; Schölz, C.; Hamilton, W.B.; Zucconi, B.E.; Wang, W.W.; Liu, W.R.; Brickman, J.M.; Kesicki, E.A.; Lai, A.; Bromberg, K.D.; Cole, P.A.; Choudhary, C. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell, 2018, 174(1), 231-244.e12.
[http://dx.doi.org/10.1016/j.cell.2018.04.033] [PMID: 29804834]
[5]
Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942), 834-840.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[6]
Orren, D.K.; Machwe, A. Lysine acetylation of proteins and its characterization in human systems. Methods Mol. Biol., 2019, 1983, 107-130.
[http://dx.doi.org/10.1007/978-1-4939-9434-2_7] [PMID: 31087295]
[7]
Wisniewski, J.R.; Zougman, A.; Mann, M. Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear pro-teins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res., 2008, 36(2), 570-577.
[http://dx.doi.org/10.1093/nar/gkm1057] [PMID: 18056081]
[8]
Jiang, T.; Zhou, X.; Taghizadeh, K.; Dong, M.; Dedon, P.C. N-formylation of lysine in histone proteins as a secondary modification aris-ing from oxidative DNA damage. Proc. Natl. Acad. Sci. USA, 2007, 104(1), 60-65.
[http://dx.doi.org/10.1073/pnas.0606775103] [PMID: 17190813]
[9]
Wang, T.; Zhou, Q.; Li, F.; Yu, Y.; Yin, X.; Wang, J. Genetic incorporation of N(ε)-formyllysine, a new histone post-translational modifi-cation. ChemBioChem, 2015, 16(10), 1440-1442.
[http://dx.doi.org/10.1002/cbic.201500170] [PMID: 25914338]
[10]
Kouzarides, T. Acetylation: A regulatory modification to rival phosphorylation? EMBO J., 2000, 19(6), 1176-1179.
[http://dx.doi.org/10.1093/emboj/19.6.1176] [PMID: 10716917]
[11]
Lin, H.; Caroll, K.S. Introduction: Posttranslational protein modification. Chem. Rev., 2018, 118(3), 887-888.
[http://dx.doi.org/10.1021/acs.chemrev.7b00756] [PMID: 29439579]
[12]
Christensen, D.G.; Baumgartner, J.T.; Xie, X.; Jew, K.M.; Basisty, N.; Schilling, B.; Kuhn, M.L.; Wolfe, A.J. Mechanisms, detection, and relevance of protein acetylation in prokaryotes. MBio, 2019, 10(2), e02708-e02718.
[http://dx.doi.org/10.1128/mBio.02708-18] [PMID: 30967470]
[13]
Ringel, A.E.; Tucker, S.A.; Haigis, M.C. Chemical and physiological features of mitochondrial acylation. Mol. Cell, 2018, 72(4), 610-624.
[http://dx.doi.org/10.1016/j.molcel.2018.10.023] [PMID: 30444998]
[14]
Carrico, C.; Meyer, J.G.; He, W.; Gibson, B.W.; Verdin, E. The mitochondrial acylome emerges: Proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab., 2018, 27(3), 497-512.
[http://dx.doi.org/10.1016/j.cmet.2018.01.016] [PMID: 29514063]
[15]
Carabetta, V.J.; Cristea, I.M. Regulation, function, and detection of protein acetylation in bacteria. J. Bacteriol., 2017, 199(16), e00107-e00117.
[http://dx.doi.org/10.1128/JB.00107-17] [PMID: 28439035]
[16]
Wagner, G.R.; Bhatt, D.P.; O’Connell, T.M.; Thompson, J.W.; Dubois, L.G.; Backos, D.S.; Yang, H.; Mitchell, G.A.; Ilkayeva, O.R.; Ste-vens, R.D.; Grimsrud, P.A.; Hirschey, M.D. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab., 2017, 25(4), 823-837.e8.
[http://dx.doi.org/10.1016/j.cmet.2017.03.006] [PMID: 28380375]
[17]
James, A.M.; Hoogewijs, K.; Logan, A.; Hall, A.R.; Ding, S.; Fearnley, I.M.; Murphy, M.P. Non-enzymatic N-acetylation of lysine residues by acetyl-CoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Rep., 2017, 18(9), 2105-2112.
[http://dx.doi.org/10.1016/j.celrep.2017.02.018] [PMID: 28249157]
[18]
Simic, Z.; Weiwad, M.; Schierhorn, A.; Steegborn, C.; Schutkowski, M. The ε-amino group of protein lysine residues is highly susceptible to nonenzymatic acylation by several physiological acyl-CoA thioesters. ChemBioChem, 2015, 16(16), 2337-2347.
[http://dx.doi.org/10.1002/cbic.201500364] [PMID: 26382620]
[19]
Wagner, G.R.; Hirschey, M.D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell, 2014, 54(1), 5-16.
[http://dx.doi.org/10.1016/j.molcel.2014.03.027] [PMID: 24725594]
[20]
Wagner, G.R.; Payne, R.M. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical condi-tions of the mitochondrial matrix. J. Biol. Chem., 2013, 288(40), 29036-29045.
[http://dx.doi.org/10.1074/jbc.M113.486753] [PMID: 23946487]
[21]
Narita, T.; Weinert, B.T.; Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 156-174.
[http://dx.doi.org/10.1038/s41580-018-0081-3] [PMID: 30467427]
[22]
Drazic, A.; Myklebust, L.M.; Ree, R.; Arnesen, T. The world of protein acetylation. Biochim. Biophys. Acta, 2016, 1864(10), 1372-1401.
[http://dx.doi.org/10.1016/j.bbapap.2016.06.007] [PMID: 27296530]
[23]
Hentchel, K.L.; Escalante-Semerena, J.C. Acylation of biomolecules in prokaryotes: A widespread strategy for the control of biological function and metabolic stress. Microbiol. Mol. Biol. Rev., 2015, 79(3), 321-346.
[http://dx.doi.org/10.1128/MMBR.00020-15] [PMID: 26179745]
[24]
Soppa, J. Protein acetylation in archaea, bacteria, and eukaryotes. Archaea, 2010, 2010, 820681.
[http://dx.doi.org/10.1155/2010/820681] [PMID: 20885971]
[25]
Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol., 2014, 6(4), a018713.
[http://dx.doi.org/10.1101/cshperspect.a018713] [PMID: 24691964]
[26]
Teixeira, C.S.S.; Cerqueira, N.M.F.S.A.; Gomes, P.; Sousa, S.F. A molecular perspective on sirtuin activity. Int. J. Mol. Sci., 2020, 21(22), 8609.
[http://dx.doi.org/10.3390/ijms21228609] [PMID: 33203121]
[27]
Martínez-Redondo, P.; Vaquero, A. The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer, 2013, 4(3-4), 148-163.
[http://dx.doi.org/10.1177/1947601913483767] [PMID: 24020006]
[28]
Alqarni, M.H.; Foudah, A.I.; Muharram, M.M.; Labrou, N.E. The pleiotropic function of human sirtuins as modulators of metabolic pathways and viral infections. Cells, 2021, 10(2), 460.
[http://dx.doi.org/10.3390/cells10020460] [PMID: 33669990]
[29]
Li, S.; Zheng, W. Mammalian Sirtuins SIRT4 and SIRT7. Prog. Mol. Biol. Transl. Sci., 2018, 154, 147-168.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.001] [PMID: 29413176]
[30]
Bheda, P.; Jing, H.; Wolberger, C.; Lin, H. The substrate specificity of sirtuins. Annu. Rev. Biochem., 2016, 85(1), 405-429.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014537] [PMID: 27088879]
[31]
Chen, B.; Zang, W.; Wang, J.; Huang, Y.; He, Y.; Yan, L.; Liu, J.; Zheng, W. The chemical biology of sirtuins. Chem. Soc. Rev., 2015, 44(15), 5246-5264.
[http://dx.doi.org/10.1039/C4CS00373J] [PMID: 25955411]
[32]
Seidel, J.; Klockenbusch, C.; Schwarzer, D. Investigating deformylase and deacylase activity of mammalian and bacterial sirtuins. ChemBioChem, 2016, 17(5), 398-402.
[http://dx.doi.org/10.1002/cbic.201500611] [PMID: 26708127]
[33]
Toro, T.B.; Watt, T.J. Critical review of non-histone human substrates of metal-dependent lysine deacetylases. FASEB J., 2020, 34(10), 13140-13155.
[http://dx.doi.org/10.1096/fj.202001301RR] [PMID: 32862458]
[34]
McClure, J.J.; Li, X.; Chou, C.J. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[35]
Chen, B.; Wang, J.; Huang, Y.; Zheng, W. Human SIRT3 tripeptidic inhibitors containing N-(ε)-thioacetyl-lysine. Bioorg. Med. Chem. Lett., 2015, 25(17), 3481-3487.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.008] [PMID: 26220157]
[36]
Gantt, S.L.; Gattis, S.G.; Fierke, C.A. Catalytic activity and inhibition of human histone deacetylase 8 is dependent on the identity of the active site metal ion. Biochemistry, 2006, 45(19), 6170-6178.
[http://dx.doi.org/10.1021/bi060212u] [PMID: 16681389]
[37]
Milazzo, G.; Mercatelli, D.; Di Muzio, G.; Triboli, L.; De Rosa, P.; Perini, G.; Giorgi, F.M. Histone deacetylases (HDACs): Evolution, spe-cificity, role in transcriptional complexes, and pharmacological actionability. Genes (Basel), 2020, 11(5), 556.
[http://dx.doi.org/10.3390/genes11050556] [PMID: 32429325]
[38]
Hai, Y.; Shinsky, S.A.; Porter, N.J.; Christianson, D.W. Histone deacetylase 10 structure and molecular function as a polyamine deacetyla-se. Nat. Commun., 2017, 8(1), 15368.
[http://dx.doi.org/10.1038/ncomms15368] [PMID: 28516954]
[39]
Wei, W.; Liu, X.; Chen, J.; Gao, S.; Lu, L.; Zhang, H.; Ding, G.; Wang, Z.; Chen, Z.; Shi, T.; Li, J.; Yu, J.; Wong, J. Class I histone deacety-lases are major histone decrotonylases: Evidence for critical and broad function of histone crotonylation in transcription. Cell Res., 2017, 27(7), 898-915.
[http://dx.doi.org/10.1038/cr.2017.68] [PMID: 28497810]
[40]
Zhang, X.; Cao, R.; Niu, J.; Yang, S.; Ma, H.; Zhao, S.; Li, H. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discov., 2019, 5(1), 35.
[http://dx.doi.org/10.1038/s41421-019-0103-0] [PMID: 31636949]
[41]
Aramsangtienchai, P.; Spiegelman, N.A.; He, B.; Miller, S.P.; Dai, L.; Zhao, Y.; Lin, H. HDAC8 catalyzes the hydrolysis of long chain fatty acyl lysine. ACS Chem. Biol., 2016, 11(10), 2685-2692.
[http://dx.doi.org/10.1021/acschembio.6b00396] [PMID: 27459069]
[42]
Moreno-Yruela, C.; Galleano, I.; Madsen, A.S.; Olsen, C.A. Histone deacetylase 11 is an ε-N-myristoyllysine hydrolase. Cell Chem. Biol., 2018, 25(7), 849-856.e8.
[http://dx.doi.org/10.1016/j.chembiol.2018.04.007] [PMID: 29731425]
[43]
Kutil, Z.; Novakova, Z.; Meleshin, M.; Mikesova, J.; Schutkowski, M.; Barinka, C. Histone deacetylase 11 is a fatty-acid deacylase. ACS Chem. Biol., 2018, 13(3), 685-693.
[http://dx.doi.org/10.1021/acschembio.7b00942] [PMID: 29336543]
[44]
McClure, J.J.; Inks, E.S.; Zhang, C.; Peterson, Y.K.; Li, J.; Chundru, K.; Lee, B.; Buchanan, A.; Miao, S.; Chou, C.J. Comparison of the deacylase and deacetylase activity of zinc-dependent HDACs. ACS Chem. Biol., 2017, 12(6), 1644-1655.
[http://dx.doi.org/10.1021/acschembio.7b00321] [PMID: 28459537]
[45]
Spinck, M.; Neumann-Staubitz, P.; Ecke, M.; Gasper, R.; Neumann, H. Evolved, selective erasers of distinct lysine acylations. Angew. Chem. Int. Ed. Engl., 2020, 59(27), 11142-11149.
[http://dx.doi.org/10.1002/anie.202002899] [PMID: 32187803]
[46]
Fellows, R.; Denizot, J.; Stellato, C.; Cuomo, A.; Jain, P.; Stoyanova, E.; Balázsi, S.; Hajnády, Z.; Liebert, A.; Kazakevych, J.; Blackburn, H.; Corrêa, R.O.; Fachi, J.L.; Sato, F.T.; Ribeiro, W.R.; Ferreira, C.M.; Perée, H.; Spagnuolo, M.; Mattiuz, R.; Matolcsi, C.; Guedes, J.; Clark, J.; Veldhoen, M.; Bonaldi, T.; Vinolo, M.A.R.; Varga-Weisz, P. Microbiota derived short chain fatty acids promote histone crotony-lation in the colon through histone deacetylases. Nat. Commun., 2018, 9(1), 105.
[http://dx.doi.org/10.1038/s41467-017-02651-5] [PMID: 29317660]
[47]
Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00830] [PMID: 32608981]
[48]
McIntyre, R.L.; Daniels, E.G.; Molenaars, M.; Houtkooper, R.H.; Janssens, G.E. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol. Med., 2019, 11(9), e9854.
[http://dx.doi.org/10.15252/emmm.201809854] [PMID: 31368626]
[49]
Porter, N.J.; Christianson, D.W. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr. Opin. Struct. Biol., 2019, 59, 9-18.
[http://dx.doi.org/10.1016/j.sbi.2019.01.004] [PMID: 30743180]
[50]
Wang, Y.; He, J.; Liao, M.; Hu, M.; Li, W.; Ouyang, H.; Wang, X.; Ye, T.; Zhang, Y.; Ouyang, L. An overview of Sirtuins as potential the-rapeutic target: Structure, function and modulators. Eur. J. Med. Chem., 2019, 161, 48-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.028] [PMID: 30342425]
[51]
Dai, H.; Sinclair, D.A.; Ellis, J.L.; Steegborn, C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol. Ther., 2018, 188, 140-154.
[http://dx.doi.org/10.1016/j.pharmthera.2018.03.004] [PMID: 29577959]
[52]
Rajabi, N.; Galleano, I.; Madsen, A.S.; Olsen, C.A. Targeting sirtuins: Substrate specificity and inhibitor design. Prog. Mol. Biol. Transl. Sci., 2018, 154, 25-69.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.003] [PMID: 29413177]
[53]
Jiang, Y.; Liu, J.; Chen, D.; Yan, L.; Zheng, W. Sirtuin inhibition: Strategies, inhibitors, and therapeutic potential. Trends Pharmacol. Sci., 2017, 38(5), 459-472.
[http://dx.doi.org/10.1016/j.tips.2017.01.009] [PMID: 28389129]
[54]
Hu, X.; Zheng, W. Chemical probes in sirtuin research. Prog. Mol. Biol. Transl. Sci., 2018, 154, 1-24.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.014] [PMID: 29413174]
[55]
Wood, M.; Rymarchyk, S.; Zheng, S.; Cen, Y. Trichostatin A inhibits deacetylation of histone H3 and p53 by SIRT6. Arch. Biochem. Biophys., 2018, 638, 8-17.
[http://dx.doi.org/10.1016/j.abb.2017.12.009] [PMID: 29233643]
[56]
You, W.; Steegborn, C. Structural basis of sirtuin 6 inhibition by the hydroxamate trichostatin A: Implications for protein deacylase drug development. J. Med. Chem., 2018, 61(23), 10922-10928.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01455] [PMID: 30395713]