Supramolecular Chirality in Porphyrin Self-Assembly Systems in Aqueous Solution

Page: [563 - 579] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

The self-assembly process appears as a powerful and attractive strategy for constructing complex supramolecules by the spontaneous organization of appropriate building blocks. In this scenario, water-soluble porphyrinoids lend themselves as ideal paradigms to disclose the self-assembly phenomenon by exploiting their well-known tendency to build aggregates in aqueous media via weak non-covalent forces. Nevertheless, the spontaneous organization of achiral porphyrins can result in a final chiral superstructure moving away from single- molecule behaviour to supramolecular chirality. Therefore, over the years numerous attempts have been implemented to investigate how a porphyrin aggregate, made up of achiral monomers, becomes not-symmetric and which processes govern the bias for a certain enantiomeric assembly rather than another. Thus, in this mini-review, we exclusively discuss the main strategies for designing and building chiral aggregates in water from achiral porphyrin monomers, with particular regard to their chiroptical features.

Keywords: Porphyrins, self-assembly, supramolecular chirality, chiral induction, circular dichroism, UV/Vis spectroscopy.

Graphical Abstract

[1]
Balaban, T.S.; Tamiaki, H.; Holzwarth, A.R. Chlorins programmed for self-assembly. Top. Curr. Chem., 2005, 258, 1-38.
[http://dx.doi.org/10.1007/b137480]
[2]
Drain, C.M.; Varotto, A.; Radivojevic, I. Self-organized porphyrinic materi-als. Chem. Rev., 2009, 109(5), 1630-1658.
[http://dx.doi.org/10.1021/cr8002483] [PMID: 19253946]
[3]
van der Weegen, R.; Teunissen, A.J.P.; Meijer, E.W. Directing the self-assembly behaviour of porphyrin-based supramolecular systems. Chemis-try, 2017, 23(15), 3773-3783.
[http://dx.doi.org/10.1002/chem.201605872] [PMID: 28111823]
[4]
Rowan, S.J.; Cantrill, S.J.; Cousins, G.R.L.; Sanders, J.K.M.; Stoddart, J.F. Dynamic covalent chemistry. Angew. Chem. Int. Ed., 2002, 41(6), 898-952.
[http://dx.doi.org/10.1002/1521-3773(20020315)41:6898:AID-ANIE8983.0.CO;2-E] [PMID: 12491278]
[5]
Bonaccorso, C.; Brancatelli, G.; Forte, G.; Arena, G.; Geremia, S.; Sciotto, D.; Sgarlata, C. Factors driving the self-assembly of water-soluble ca-lix[4]arene and gemini guests: A combined solution, computational and solid-state study. RSC Advances, 2014, 4(96), 53575-53587.
[http://dx.doi.org/10.1039/C4RA09353D]
[6]
Lehn, J.M. Towards complex matter: Supramolecular chemistry and self-organization. Eur. Rev., 2009, 17(2), 263-280.
[http://dx.doi.org/10.1017/S1062798709000805]
[7]
Steed, J.W.; Turner, D.R.; Wallace, K.J. Core concepts in supramolecular chemistry and nanochemistry; John Wiley: New Jersey, USA, 2007.
[8]
Alex, J.M.; Brancatelli, G.; Volpi, S.; Bonaccorso, C.; Casnati, A.; Geremia, S.; Crowley, P.B. Probing the determinants of porosity in protein frame-works: Co-crystals of cytochrome c and an octa-anionic calix[4]arene. Org. Biomol. Chem., 2020, 18(2), 211-214.
[http://dx.doi.org/10.1039/C9OB02275A] [PMID: 31808772]
[9]
Elemans, J.A.A.W.; Van Hameren, R.; Nolte, R.J.M.; Rowan, A.E. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes. Adv. Mater., 2006, 18(10), 1251-1266.
[http://dx.doi.org/10.1002/adma.200502498]
[10]
Elemans, J.A.A.W.; Rowan, A.E.; Nolte, R.J.M. Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem., 2003, 13(11), 2661-2670.
[http://dx.doi.org/10.1039/B304972H]
[11]
Sgarlata, C.; Brancatelli, G.; Fortuna, C.G.; Sciotto, D.; Geremia, S.; Bonac-corso, C. Three-Dimensional network structures based on pyridyl-calix[4]arene metal complexes. ChemPlusChem, 2017, 82(11), 1341-1350.
[http://dx.doi.org/10.1002/cplu.201700400] [PMID: 31957183]
[12]
Lindoy, L.F.; Atkinson, I.M.; Stoddart, J.F. Self-Assembly in supramolecu-lar systems; Royal Society of Chemistry: London, UK, 2000.
[13]
Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphy-rinoids for chemical sensor applications. Chem. Rev., 2017, 117(4), 2517-2583.
[http://dx.doi.org/10.1021/acs.chemrev.6b00361] [PMID: 28222604]
[14]
Gangemi, C.M.A.; Iudici, M.; Spitaleri, L.; Randazzo, R.; Gaeta, M.; D’Urso, A.; Gulino, A.; Purrello, R.; Fragalà, M.E. Polyethersulfone mats functional-ized with porphyrin for removal of para-nitroaniline from aqueous solu-tion. Molecules, 2019, 24(18), 3344.
[http://dx.doi.org/10.3390/molecules24183344] [PMID: 31540076]
[15]
Monti, D.; Nardis, S.; Stefanelli, M.; Paolesse, R.; Di Natale, C.; D’Amico, A. Porphyrin-Based nanostructures for sensing applications. J. Sens., 2009, 2009, 1-10.
[http://dx.doi.org/10.1155/2009/856053]
[16]
Gaeta, M.; Sanfilippo, G.; Fraix, A.; Sortino, G.; Barcellona, M.; Oliveri Conti, G.; Fragalà, M.E.; Ferrante, M.; Purrello, R.; D’Urso, A. Photodegra-dation of antibiotics by noncovalent porphyrin-functionalized tio2 in water for the bacterial antibiotic resistance risk management. Int. J. Mol. Sci., 2020, 21(11), 3775.
[http://dx.doi.org/10.3390/ijms21113775] [PMID: 32471075]
[17]
Nardis, S.; Pomarico, G.; Tortora, L.; Capuano, R.; D’Amico, A.; Di Natale, C.; Paolesse, R. Sensing mechanisms of supramolecular porphyrin aggre-gates: A teamwork task for the detection of gaseous analytes. J. Mater. Chem., 2011, 21(46), 18638-18644.
[http://dx.doi.org/10.1039/c1jm13623b]
[18]
Jurow, M.; Schuckman, A.E.; Batteas, J.D.; Drain, C.M. Porphyrins as mo-lecular electronic components of functional devices. Coord. Chem. Rev., 2010, 254(19-20), 2297-2310.
[http://dx.doi.org/10.1016/j.ccr.2010.05.014] [PMID: 20936084]
[19]
Durso, A.; Brancatelli, G.; Hickey, N.; Farnetti, E.; De Zorzi, R.; Bonac-corso, C.; Purrello, R.; Geremia, S. Interactions of a water-soluble ca-lix[4]arene with spermine: Solution and solid-state characterisation. Supramol. Chem., 2016, 28(5-6), 499-505.
[http://dx.doi.org/10.1080/10610278.2015.1125900]
[20]
Vicente, M.D.; Smith, K.M. Syntheses and functionalizations of porphyrin macrocycles. Curr. Org. Synth., 2014, 11(1), 3-28.
[http://dx.doi.org/10.2174/15701794113106660083] [PMID: 25484638]
[21]
Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-aggregates: From serendipi-tous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. Engl., 2011, 50(15), 3376-3410.
[http://dx.doi.org/10.1002/anie.201002307] [PMID: 21442690]
[22]
Kobayashi, T. J-Aggregates; World Scientific: Singapore, Singapore, 1996.
[http://dx.doi.org/10.1142/3168]
[23]
Hestand, N.J.; Spano, F.C. Expanded theory of H- and J-molecular aggre-gates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev., 2018, 118(15), 7069-7163.
[http://dx.doi.org/10.1021/acs.chemrev.7b00581] [PMID: 29664617]
[24]
Hestand, N.J.; Spano, F.C. Molecular aggregate photophysics beyond the kasha model: Novel design principles for organic materials. Acc. Chem. Res., 2017, 50(2), 341-350.
[http://dx.doi.org/10.1021/acs.accounts.6b00576] [PMID: 28145688]
[25]
Koti, A.S.R.; Taneja, J.; Periasamy, N. Control of coherence length and aggregate size in the J-aggregate of porphyrin. Chem. Phys. Lett., 2003, 375(1-2), 171-176.
[http://dx.doi.org/10.1016/S0009-2614(03)00866-2]
[26]
Ohno, O.; Kaizu, Y.; Kobayashi, H. J-Aggregate formation of a water-soluble porphyrin in acidic aqueous media. J. Chem. Phys., 1993, 99(5), 4128-4139.
[http://dx.doi.org/10.1063/1.466109]
[27]
Toyofuku, K.; Alam, M.A.; Tsuda, A.; Fujita, N.; Sakamoto, S.; Yamaguchi, K.; Aida, T. Amplified chiral transformation through helical assembly. Angew. Chem. Int. Ed., 2007, 46(34), 6476-6480.
[http://dx.doi.org/10.1002/anie.200701668] [PMID: 17634993]
[28]
Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev., 2015, 115(15), 7304-7397.
[http://dx.doi.org/10.1021/cr500671p] [PMID: 26189453]
[29]
Short, J.M.; Berriman, J.A.; Kübel, C.; El-Hachemi, Z.; Naubron, J.V.; Bala-ban, T.S. Electron cryo-microscopy of TPPS4&2HCl tubes reveals a helical organisation explaining the origin of their chirality. ChemPhysChem, 2013, 14(14), 3209-3214.
[http://dx.doi.org/10.1002/cphc.201300606] [PMID: 23908093]
[30]
Yashima, E.; Maeda, K.; Nishimura, T. Detection and amplification of chirality by helical polymers. Chemistry, 2004, 10(1), 42-51.
[http://dx.doi.org/10.1002/chem.200305295] [PMID: 14695548]
[31]
D’Urso, A.; Fragalà, M.E.; Purrello, R. From self-assembly to noncovalent synthesis of programmable porphyrins’ arrays in aqueous solution. Chem. Commun. (Camb.), 2012, 48(66), 8165-8176.
[http://dx.doi.org/10.1039/c2cc31856c] [PMID: 22692095]
[32]
van Dijken, D.J.; Beierle, J.M.; Stuart, M.C.A. Szymański, W.; Browne, W.R.; Feringa, B.L. Autoamplification of molecular chirality through the induction of supramolecular chirality. Angew. Chem. Int. Ed. Engl., 2014, 53(20), 5073-5077.
[http://dx.doi.org/10.1002/anie.201311160] [PMID: 24677390]
[33]
Gaeta, M.; Oliveri, I.P.; Fragalà, M.E.; Failla, S.; D’Urso, A.; Di Bella, S.; Purrello, R. Chirality of self-assembled achiral porphyrins induced by chi-ral Zn(ii) Schiff-base complexes and maintained after spontaneous dissocia-tion of the templates: A new case of chiral memory. Chem. Commun. (Camb.), 2016, 52(55), 8518-8521.
[http://dx.doi.org/10.1039/C6CC04018G] [PMID: 27291354]
[34]
Franke, D.; Vos, M.; Antonietti, M.; Sommerdijk, N.A.J.M.; Faul, C.F.J. Induced Supramolecular chirality in nanostructured materials: Ionic self-assembly of perylene-chiral surfactant complexes. Chem. Mater., 2006, 18(7), 1839-1847.
[http://dx.doi.org/10.1021/cm0525499]
[35]
Huang, Y.; Yan, Y.; Smarsly, B.M.; Wei, Z.; Faul, C.F.J. Helical supramolec-ular aggregates, mesoscopic organisation and nanofibers of a perylenebisi-mide-chiral surfactant complex via ionic self-assembly. J. Mater. Chem., 2009, 19(16), 2356-2362.
[http://dx.doi.org/10.1039/b817838k]
[36]
El-Hachemi, Z.; Mancini, G.; Ribó, J.M.; Sorrenti, A. Role of the hydropho-bic effect in the transfer of chirality from molecules to complex systems: From chiral surfactants to porphyrin/surfactant aggregates. J. Am. Chem. Soc., 2008, 130(45), 15176-15184.
[http://dx.doi.org/10.1021/ja805669v] [PMID: 18928255]
[37]
Borovkov, V.V.; Hembury, G.A.; Inoue, Y. Supramolecular chirogenesis with bis-chlorin versus bis-porphyrin hosts: Peculiarities of chirality in-duction and modulation of optical activity. J. Org. Chem., 2005, 70(22), 8743-8754.
[http://dx.doi.org/10.1021/jo051067d] [PMID: 16238305]
[38]
Borovkov, V.V.; Inoue, Y. Supramolecular chirogenesis in host-guest systems containing porphyrinoids. In: Supramolecular Chirality. Topics in Current Chemistry; Crego-Calama, M.; Reinhoudt, D.N. Springer-Verlag: Berlin, Heidelberg, 2006; 265, pp. 89-146.
[http://dx.doi.org/10.1007/128_037]
[39]
Borovkov, V.; Inoue, Y. A versatile bisporphyrinoid motif for supramolec-ular chirogenesis. Eur. J. Org. Chem., 2009, 2009(2), 189-197.
[http://dx.doi.org/10.1002/ejoc.200800938]
[40]
Ustrnul, L.; Kaabel, S.; Burankova, T.; Martõnova, J.; Adamson, J.; Konrad, N.; Burk, P.; Borovkov, V.; Aav, R. Supramolecular chirogenesis in zinc porphyrins by enantiopure hemicucurbit[n]urils (n = 6, 8). Chem. Commun. (Camb.), 2019, 55(96), 14434-14437.
[http://dx.doi.org/10.1039/C9CC07150D] [PMID: 31737875]
[41]
Wang, Y.; Sun, Y.; Shi, P.; Sartin, M.M.; Lin, X.; Zhang, P.; Fang, H.; Peng, P.; Tian, Z.; Cao, X. Chaperone-like chiral cages for catalyzing enantio-selective supramolecular polymerization. Chem. Sci. (Camb.), 2019, 10(35), 8076-8082.
[http://dx.doi.org/10.1039/C9SC02412C] [PMID: 31908753]
[42]
Ribò, J.M.; El-Hachemi, Z.; Arteaga, O.; Canillas, A.; Crusats, J. Hydrody-namic effects in soft-matter self-assembly: The case of J-aggregates of am-phiphilic porphyrins. Chem. Rec., 2017, 17(7), 713-724.
[http://dx.doi.org/10.1002/tcr.201600133] [PMID: 28105702]
[43]
El-Hachemi, Z.; Balaban, T.S.; Campos, J.L.; Cespedes, S.; Crusats, J.; Es-cudero, C.; Kamma-Lorger, C.S.; Llorens, J.; Malfois, M.; Mitchell, G.R.; To-jeira, A.P.; Ribó, J.M. Effect of hydrodynamic forces on meso-(4-sulfonatophenyl)-substituted porphyrin J-Aggregate nanoparticles: Elastic-ity, plasticity and breaking. Chemistry, 2016, 22(28), 9740-9749.
[http://dx.doi.org/10.1002/chem.201600874] [PMID: 27238461]
[44]
Arteaga, O.; Canillas, A.; Crusats, J.; El-Hachemi, Z.; Llorens, J.; Sacristan, E.; Ribò, J.M. Emergence of supramolecular chirality by flows. ChemPhysChem, 2010, 11(16), 3511-3516.
[http://dx.doi.org/10.1002/cphc.201000658] [PMID: 20979108]
[45]
Crusats, J.; El-Hachemi, Z.; Ribó, J.M. Hydrodynamic effects on chiral induction. Chem. Soc. Rev., 2010, 39(2), 569-577.
[http://dx.doi.org/10.1039/B916369G] [PMID: 20111781]
[46]
Escudero, C.; Crusats, J.; Díez-Pérez, I.; El-Hachemi, Z.; Ribó, J.M. Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10,15,20-tris(4-sulfophenyl)porphyrin. Angew. Chem. Int. Ed., 2006, 45(47), 8032-8035.
[http://dx.doi.org/10.1002/anie.200603182] [PMID: 17099933]
[47]
Sang, Y.; Yang, D.; Duan, P.; Liu, M. Towards homochiral supramolecular entities from achiral molecules by vortex mixing-accompanied self-assembly. Chem. Sci. (Camb.), 2019, 10(9), 2718-2724.
[http://dx.doi.org/10.1039/C8SC04687E] [PMID: 30996989]
[48]
D’Urso, A.; Randazzo, R.; Lo Faro, L.; Purrello, R. Vortexes and nanoscale chirality. Angew. Chem. Int. Ed. Engl., 2010, 49(1), 108-112.
[http://dx.doi.org/10.1002/anie.200903543] [PMID: 19950149]
[49]
Arteaga, O.; El-Hachemi, Z.; Canillas, A.; Crusats, J.; Rovira, M.; Ribó, J.M. Reversible and irreversible emergence of chiroptical signals in J-aggregates of achiral 4-sulfonatophenyl substituted porphyrins: Intrinsic chirality vs. Chiral ordering in the solution. Chem. Commun. (Camb.), 2016, 52(72), 10874-10877.
[http://dx.doi.org/10.1039/C6CC05709H] [PMID: 27530742]
[50]
Kuroha, M.; Nambu, S.; Hattori, S.; Kitagawa, Y.; Niimura, K.; Mizuno, Y.; Hamba, F.; Ishii, K. Chiral supramolecular nanoarchitectures from macro-scopic mechanical rotations: Effects on enantioselective aggregation behav-ior of phthalocyanines. Angew. Chem. Int. Ed. Engl., 2019, 58(51), 18454-18459.
[http://dx.doi.org/10.1002/anie.201911366] [PMID: 31565840]
[51]
Mateos-Timoneda, M.A.; Crego-Calama, M.; Reinhoudt, D.N. Supramolecu-lar chirality of self-assembled systems in solution. Chem. Soc. Rev., 2004, 33(6), 363-372.
[http://dx.doi.org/10.1039/b305550g] [PMID: 15280969]
[52]
Morrow, S.M.; Bissette, A.J.; Fletcher, S.P. Transmission of chirality through space and across length scales. Nat. Nanotechnol., 2017, 12(5), 410-419.
[http://dx.doi.org/10.1038/nnano.2017.62] [PMID: 28474691]
[53]
Maeda, K.; Yashima, E.; Crego-Calama, M.; Reinhoudt, D. Supramolecular chirality. Narcis. NL, 2006, 265, 47-88.
[54]
Amabilino, D.B.; Veciana, J. Supramolecular chiral functional materials. In: Topics Current Chemistry; Springer: Berlin, Heidelberg, 2006; 265, pp. 253-302.
[http://dx.doi.org/10.1007/128_034]
[55]
Palmans, A.R.A.; Meijer, E.W. Amplification of chirality in dynamic su-pramolecular aggregates. Angew. Chem. Int. Ed. Engl., 2007, 46(47), 8948-8968.
[http://dx.doi.org/10.1002/anie.200701285] [PMID: 17935098]
[56]
Smulders, M.M.J.; Schenning, A.P.H.J.; Meijer, E.W. Insight into the mech-anisms of cooperative self-assembly: The “sergeants-and-soldiers” princi-ple of chiral and achiral C3-symmetrical discotic triamides. J. Am. Chem. Soc., 2008, 130(2), 606-611.
[http://dx.doi.org/10.1021/ja075987k] [PMID: 18081281]
[57]
Destoop, I.; Xu, H.; Oliveras-González, C.; Ghijsens, E.; Amabilino, D.B.; De Feyter, S. ‘Sergeants-and-Corporals’ principle in chiral induction at an interface. Chem. Commun. (Camb.), 2013, 49(68), 7477-7479.
[http://dx.doi.org/10.1039/c3cc42584c] [PMID: 23702494]
[58]
Oliveras-González, C.; Di Meo, F.; González-Campo, A.; Beljonne, D.; Norman, P.; Simón-Sorbed, M.; Linares, M.; Amabilino, D.B. Bottom-Up hierarchical self-assembly of chiral porphyrins through coordination and hydrogen bonds. J. Am. Chem. Soc., 2015, 137(50), 15795-15808.
[http://dx.doi.org/10.1021/jacs.5b08081] [PMID: 26595320]
[59]
Prince, R.B.; Moore, J.S.; Brunsveld, L.; Meijer, E.W. Cooperativity in the folding of helical m-phenylene ethynylene oligomers based upon the ‘ser-geants-and-soldiers’ principle. Chemistry, 2001, 7(19), 4150-4154.
[http://dx.doi.org/10.1002/1521-3765(20011001)7:194150:AID-CHEM41503.0.CO;2-F] [PMID: 11686593]
[60]
Rosaria, L.; D’urso, A.; Mammana, A.; Purrello, R. Chiral memory: Induc-tion, amplification, and switching in porphyrin assemblies. Chirality, 2008, 20(3-4), 411-419.
[http://dx.doi.org/10.1002/chir.20464] [PMID: 17806090]
[61]
Borovkov, V. Supramolecular chirality in porphyrin chemistry. Symmetry (Basel), 2014, 6(2), 256-294.
[http://dx.doi.org/10.3390/sym6020256]
[62]
Purrello, R.; Raudino, A.; Monsù Scolaro, L.; Loisi, A.; Bellacchio, E.; Lauceri, R. Ternary porphyrin aggregates and their chiral memory. J. Phys. Chem. B, 2000, 104(46), 10900-10908.
[http://dx.doi.org/10.1021/jp0005930]
[63]
Mammana, A.; D’Urso, A.; Lauceri, R.; Purrello, R. Switching off and on the supramolecular chiral memory in porphyrin assemblies. J. Am. Chem. Soc., 2007, 129(26), 8062-8063.
[http://dx.doi.org/10.1021/ja071447b] [PMID: 17552525]
[64]
Yashima, E.; Matsushima, T.; Okamoto, Y. Poly((4-Carboxyphenyl)Acetylene) as a probe for chirality assignment of amines by circular dichroism. J. Am. Chem. Soc., 1995, 117(46), 11596-11597.
[http://dx.doi.org/10.1021/ja00151a032]
[65]
Yashima, E.; Nimura, T.; Matsushima, T.; Okamoto, Y. Poly((4-Dihydroxyborophenyl)Acetylene) as a novel probe for chirality and struc-tural assignments of various kinds of molecules including carbohydrates and steroids by circular dichroism. J. Am. Chem. Soc., 1996, 118(40), 9800-9801.
[http://dx.doi.org/10.1021/ja960439k]
[66]
Yashima, E.; Maeda, Y.; Matsushima, T.; Okamato, Y. Preparation of polya-cetylenes bearing an amino group and their application to chirality assign-ment of carboxylic acids by circular dichroism. Chirality, 1997, 9(5-6), 593-600.
[http://dx.doi.org/10.1002/(SICI)1520-636X(1997)9:5/6593:AID-CHIR293.0.CO;2-I]
[67]
Yashima, E.; Matsushima, T.; Okamoto, Y. Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4- Carboxyphenyl)Acetylene) through acid-base complexation. J. Am. Chem. Soc., 1997, 119(27), 6345-6359.
[http://dx.doi.org/10.1021/ja964470y]
[68]
Yashima, E.; Maeda, K.; Okamoto, Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature, 1999, 399(6735), 449-451.
[http://dx.doi.org/10.1038/20900]
[69]
Ashida, Y.; Sato, T.; Morino, K.; Maeda, K.; Okamoto, Y.; Yashima, E. Helical structural change in Poly((4-Carboxyphenyl)Acetylene) by acid-base complexation with an optically active amine. Macromolecules, 2003, 36(9), 3345-3350.
[http://dx.doi.org/10.1021/ma034085a]
[70]
Nonokawa, R.; Yashima, E. Detection and amplification of a small enanti-omeric imbalance in α-amino acids by a helical poly(phenylacetylene) with crown ether pendants. J. Am. Chem. Soc., 2003, 125(5), 1278-1283.
[http://dx.doi.org/10.1021/ja028348c] [PMID: 12553829]
[71]
Nishimura, T.; Tsuchiya, K.; Ohsawa, S.; Maeda, K.; Yashima, E.; Nakamu-ra, Y.; Nishimura, J. Macromolecular helicity induction on a poly(phenylacetylene) with C2-symmetric chiral [60]fullerene-bisadducts. J. Am. Chem. Soc., 2004, 126(37), 11711-11717.
[http://dx.doi.org/10.1021/ja046633l] [PMID: 15366919]
[72]
Onouchi, H.; Kashiwagi, D.; Hayashi, K.; Maeda, K.; Yashima, E. Helicity induction on poly(Phenylacetylene)s bearing phosphonic acid pendants with chiral amines and memory of the macromolecular helicity assisted by interaction with achiral amines in dimethyl sulfoxide. Macromolecules, 2004, 37(15), 5495-5503.
[http://dx.doi.org/10.1021/ma049066v]
[73]
Onouchi, H.; Maeda, K.; Yashima, E. A helical polyelectrolyte induced by specific interactions with biomolecules in water. J. Am. Chem. Soc., 2001, 123(30), 7441-7442.
[http://dx.doi.org/10.1021/ja0160647] [PMID: 11472183]
[74]
Nagai, K.; Maeda, K.; Takeyama, Y.; Sakajiri, K.; Yashima, E. Helicity induction and chiral amplification in a poly(Phenylacetylene) bearing n,n-diisopropylaminomethyl groups with chiral acids in water. Macromolecules, 2005, 38(13), 5444-5451.
[http://dx.doi.org/10.1021/ma0507241]
[75]
Nonokawa, R.; Yashima, E. Helicity induction on a poly(Phenylacetylene) derivative bearing aza-18-crown-6 ether pendants in water. J. Polym. Sci. A Polym. Chem., 2003, 41(7), 1004-1013.
[http://dx.doi.org/10.1002/pola.10634]
[76]
Onouchi, H.; Miyagawa, T.; Morino, K.; Yashima, E. Assisted formation of chiral porphyrin homoaggregates by an induced helical poly(phenylacetylene) template and their chiral memory. Angew. Chem. Int. Ed., 2006, 45(15), 2381-2384.
[http://dx.doi.org/10.1002/anie.200504162] [PMID: 16526086]
[77]
Kasha, M.; Rawls, H.R.; El-Bayoumi, M.A. The exciton model in molecular spectroscopy. Pure Appl. Chem., 1965, 11(3-4), 371-392.
[http://dx.doi.org/10.1351/pac196511030371]
[78]
Matile, S.; Berova, N.; Nakanishi, K.; Novkova, S.; Philipova, I.; Blagoev, B. Porphyrins: Powerful chromophores for structural studies by exciton-coupled circular dichroism. J. Am. Chem. Soc., 1995, 117(26), 7021-7022.
[http://dx.doi.org/10.1021/ja00131a033]
[79]
Berova, N.; Di Bari, L.; Pescitelli, G. Application of electronic circular dichroism in configurational and conformational analysis of organic com-pounds. Chem. Soc. Rev., 2007, 36(6), 914-931.
[http://dx.doi.org/10.1039/b515476f] [PMID: 17534478]
[80]
Bellacchio, E.; Lauceri, R.; Gurrieri, S.; Scolaro, L.M.; Romeo, A.; Purrello, R. Template-Imprinted chiral porphyrin aggregates. J. Am. Chem. Soc., 1998, 120(47), 12353-12354.
[http://dx.doi.org/10.1021/ja9820893]
[81]
Purrello, R. Monsu’ Scolaro, L.; Bellacchio, E.; Gurrieri, S.; Romeo, A. Chiral H- and J-Type Aggregates of meso-Tetrakis(4-sulfonatophenyl)porphine on α-Helical polyglutamic acid induced by cati-onic porphyrins. Inorg. Chem., 1998, 37(14), 3647-3648.
[http://dx.doi.org/10.1021/ic971432m] [PMID: 11670458]
[82]
Pasternack, R.F.; Huber, P.R.; Boyd, P.; Engasser, G.; Francesconi, L.; Gibbs, E.; Fasella, P.; Venturo, G.C.; Hinds, L.C. On the aggregation of me-so-substituted water-soluble porphyrins. J. Am. Chem. Soc., 1972, 94(13), 4511-4517.
[http://dx.doi.org/10.1021/ja00768a016] [PMID: 5036163]
[83]
Maiti, N.C.; Mazumdar, S.; Periasamy, N. Controlled J-Aggregation of por-phyrins by cationic surfactants. Curr. Sci., 1996, 70(11), 997-999.
[84]
Maiti, N.C.; Mazumdar, S.; Periasamy, N. J- and H-Aggregates of porphyrin - surfactant complexes: Time-Resolved fluorescence and other spectroscopic studies. J. Phys. Chem. B, 1998, 102(9), 1528-1538.
[http://dx.doi.org/10.1021/jp9723372]
[85]
Koti, A.S.R.; Periasamy, N. Self-Assembly of template-directed J-Aggregates of porphyrin. Chem. Mater., 2003, 15(2), 369-371.
[http://dx.doi.org/10.1021/cm025664h]
[86]
Kitagishi, H.; Chai, F.; Negi, S.; Sugiura, Y.; Kano, K. Supramolecular intracellular delivery of an anionic porphyrin by octaarginine-conjugated per-O-methyl-β-cyclodextrin. Chem. Commun. (Camb.), 2015, 51(12), 2421-2424.
[http://dx.doi.org/10.1039/C4CC09042J] [PMID: 25567704]
[87]
Zhang, L.; Liu, M. Supramolecular chirality and chiral inversion of tetra-phenylsulfonato porphyrin assemblies on optically active polylysine. J. Phys. Chem. B, 2009, 113(42), 14015-14020.
[http://dx.doi.org/10.1021/jp902870f] [PMID: 19827847]
[88]
Gaeta, M.; Raciti, D.; Randazzo, R.; Gangemi, C.M.A.; Raudino, A.; D’Urso, A.; Fragalà, M.E.; Purrello, R. Chirality enhancement of porphyrin supramo-lecular assembly driven by a template preorganization effect. Angew. Chem. Int. Ed. Engl., 2018, 57(33), 10656-10660.
[http://dx.doi.org/10.1002/anie.201806192] [PMID: 29939459]
[89]
Gaeta, M.; Randazzo, R.; Cristaldi, D.A.; D’Urso, A.; Purrello, R.; Fragalà, M.E. ZnTPPS demetalation: Role of polyelectrolytes on aggregation after protonation in acid. J. Porphyr. Phthalocyanines, 2017, 21(4-6), 426-430.
[http://dx.doi.org/10.1142/S1088424617500432]
[90]
Occhiuto, I.G.; Castriciano, M.A.; Trapani, M.; Zagami, R.; Romeo, A.; Pasternack, R.F.; Monsù Scolaro, L. Controlling J-Aggregates formation and chirality induction through demetallation of a Zinc(ii) water soluble por-phyrin. Int. J. Mol. Sci., 2020, 21(11), E4001.
[http://dx.doi.org/10.3390/ijms21114001] [PMID: 32503280]
[91]
Purrello, R.; Bellacchio, E.; Gurrieri, S.; Lauceri, R.; Raudino, A.; Scolaro, L.M.; Santoro, A.M. PH modulation of porphyrins self-assembly onto pol-ylysine. J. Phys. Chem. B, 1998, 102(44), 8852-8857.
[http://dx.doi.org/10.1021/jp9828686]
[92]
Tannir, S.; Levintov, L.; Townley, M.A.; Leonard, B.M.; Kubelka, J.; Vash-isth, H.; Varga, K.; Balaz, M. Functional nanoassemblies with mirror-image chiroptical properties templated by a single homochiral DNA strand. Chem. Mater., 2020, 32(6), 2272-2281.
[http://dx.doi.org/10.1021/acs.chemmater.9b04092]
[93]
Peters, K.C.; Mekala, S.; Gross, R.A.; Singer, K.D. Chiral inversion and enhanced cooperative self-assembly of biosurfactant-functionalized por-phyrin chromophores. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(14), 4675-4679.
[http://dx.doi.org/10.1039/C9TC06829E]
[94]
Zeng, L.; He, Y.; Dai, Z.; Wang, J.; Cao, Q.; Zhang, Y. Chiral induction, memory, and amplification in porphyrin homoaggregates based on electro-static interactions. ChemPhysChem, 2009, 10(6), 954-962.
[http://dx.doi.org/10.1002/cphc.200800810] [PMID: 19263451]
[95]
Rananaware, A.; La, D.D.; Al Kobaisi, M.; Bhosale, R.S.; Bhosale, S.V.; Bhosale, S.V. Controlled chiral supramolecular assemblies of water soluble achiral porphyrins induced by chiral counterions. Chem. Commun. (Camb.), 2016, 52(67), 10253-10256.
[http://dx.doi.org/10.1039/C6CC04427A] [PMID: 27464524]
[96]
Randazzo, R.; Gaeta, M.; Gangemi, C.M.A.; Fragalà, M.E.; Purrello, R.; D’Urso, A. Chiral recognition of L- and D- amino acid by porphyrin supra-molecular aggregates. Molecules, 2018, 24(1), 84.
[http://dx.doi.org/10.3390/molecules24010084] [PMID: 30591641]
[97]
Li, Z.; Zeman, C.J., IV; Valandro, S.R.; Bantang, J.P.O.; Schanze, K.S. Aden-osine triphosphate templated self-assembly of cationic porphyrin into chi-ral double superhelices and enzyme-mediated disassembly. J. Am. Chem. Soc., 2019, 141(32), 12610-12618.
[http://dx.doi.org/10.1021/jacs.9b04133] [PMID: 31329440]
[98]
Ðorđević, L.; Arcudi, F.; D’Urso, A.; Cacioppo, M.; Micali, N.; Bürgi, T.; Purrello, R.; Prato, M. Design principles of chiral Carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun., 2018, 9(1), 3442.
[http://dx.doi.org/10.1038/s41467-018-05561-2] [PMID: 30143608]
[99]
Liu, X.; Lu, J.; Chen, J.; Zhang, M.; Chen, Y.; Xing, F.; Feng, L. Chiral self-assembly of porphyrins induced by chiral Carbon dots. Front Chem., 2020, 8, 670.
[http://dx.doi.org/10.3389/fchem.2020.00670] [PMID: 32850675]
[100]
Castriciano, M.A.; Romeo, A.; Zagami, R.; Micali, N.; Scolaro, L.M. Kinetic effects of tartaric acid on the growth of chiral J-aggregates of tetrakis(4-sulfonatophenyl)porphyrin. Chem. Commun. (Camb.), 2012, 48(40), 4872-4874.
[http://dx.doi.org/10.1039/c2cc00028h] [PMID: 22498781]
[101]
Pasternack, R.F.; Gibbs, E.J.; Collings, P.J.; DePaula, J.C.; Christine Turzo, L.; Terracina, A. A nonconventional approach to supramolecular formation dynamics. The kinetics of assembly of DNA-Bound porphyrins. J. Am. Chem. Soc., 1998, 120(24), 5873-5878.
[http://dx.doi.org/10.1021/ja980186q]
[102]
Pasternack, R.F.; Fleming, C.; Herring, S.; Collings, P.J.; dePaula, J.; DeC-astro, G.; Gibbs, E.J. Aggregation kinetics of extended porphyrin and cya-nine dye assemblies. Biophys. J., 2000, 79(1), 550-560.
[http://dx.doi.org/10.1016/S0006-3495(00)76316-8] [PMID: 10866980]
[103]
Romeo, A.; Castriciano, M.A.; Occhiuto, I.; Zagami, R.; Pasternack, R.F.; Scolaro, L.M. Kinetic control of chirality in porphyrin J-aggregates. J. Am. Chem. Soc., 2014, 136(1), 40-43.
[http://dx.doi.org/10.1021/ja410514k] [PMID: 24341960]
[104]
Micali, N.; Mallamace, F.; Romeo, A.; Purrello, R.; Scolaro, L.M. Mesoscop-ic structure of Meso-Tetrakis(4-Sulfonatophenyl)porphine J-Aggregates. J. Phys. Chem. B, 2000, 104(25), 5897-5904.
[http://dx.doi.org/10.1021/jp991909a]
[105]
Castriciano, M.A.; Romeo, A.; Villari, V.; Micali, N.; Scolaro, L.M. Struc-tural rearrangements in 5,10,15,20-Tetrakis(4-Sulfonatophenyl)porphyrin J-Aggregates under strongly acidic conditions. J. Phys. Chem. B, 2003, 107(34), 8765-8771.
[http://dx.doi.org/10.1021/jp0273880]
[106]
Micali, N.; Villari, V.; Castriciano, M.A.; Romeo, A.; Monsù Scolaro, L. From fractal to nanorod porphyrin J-aggregates. Concentration-induced tun-ing of the aggregate size. J. Phys. Chem. B, 2006, 110(16), 8289-8295.
[http://dx.doi.org/10.1021/jp060730e] [PMID: 16623510]
[107]
Castriciano, M.A.; Romeo, A.; Villari, V.; Micali, N.; Scolaro, L.M. Na-nosized porphyrin J-Aggregates in Water/AOT/Decane microemulsions. J. Phys. Chem. B, 2004, 108(26), 9054-9059.
[http://dx.doi.org/10.1021/jp048712p]
[108]
Castriciano, M.A.; Romeo, A.; De Luca, G.; Villari, V.; Scolaro, L.M.; Micali, N. Scaling the chirality in porphyrin J-nanoaggregates. J. Am. Chem. Soc., 2011, 133(4), 765-767.
[http://dx.doi.org/10.1021/ja110028g] [PMID: 21182330]
[109]
Yang, F.; Liu, X.; Yang, Z. Chiral metal nanoparticle superlattices enabled by porphyrin-based supramolecular structures. Angew. Chem. Int. Ed. Engl., 2021, 60(26), 14671-14678.
[http://dx.doi.org/10.1002/anie.202103809] [PMID: 33843119]
[110]
Zagami, R.; Castriciano, M.A.; Romeo, A.; Trapani, M.; Pedicini, R.; Monsù Scolaro, L. Tuning supramolecular chirality in nano and mesoscopic por-phyrin J-Aggregates. Dyes Pigments, 2017, 142, 255-261.
[http://dx.doi.org/10.1016/j.dyepig.2017.03.047]
[111]
Micali, N.; Villari, V.; Scolaro, L.M.; Romeo, A.; Castriciano, M.A. Light scattering enhancement in an aqueous solution of spermine-induced fractal -aggregate composite. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2005, 72(5 Pt 1), 050401.
[http://dx.doi.org/10.1103/PhysRevE.72.050401] [PMID: 16383586]
[112]
Scolaro, L.M.; Romeo, A.; Castriciano, M.A.; Micali, N. Unusual optical properties of porphyrin fractal J-aggregates. Chem. Commun. (Camb.), 2005, (24), 3018-3020.
[http://dx.doi.org/10.1039/b501083g] [PMID: 15959570]
[113]
Romeo, A.; Angela Castriciano, M.; Scolaro, L.M. Spectroscopic and Kinet-ic investigations on porphyrin J-Aggregates induced by polyamines. J. Porphyr. Phthalocyanines, 2010, 14(8), 713-721.
[http://dx.doi.org/10.1142/S1088424610002586]
[114]
Occhiuto, I.; De Luca, G.; Villari, V.; Romeo, A.; Micali, N.; Pasternack, R.F.; Scolaro, L.M. Supramolecular chirality transfer to large random aggre-gates of porphyrins. Chem. Commun. (Camb.), 2011, 47(21), 6045-6047.
[http://dx.doi.org/10.1039/c1cc11165e] [PMID: 21509356]
[115]
Castriciano, M.A.; Cardillo, S.; Zagami, R.; Trapani, M.; Romeo, A.; Scolaro, L.M. Effects of the mixing protocol on the self-assembling process of water soluble porphyrins. Int. J. Mol. Sci., 2021, 22(2), 1-14.
[http://dx.doi.org/10.3390/ijms22020797] [PMID: 33466834]
[116]
Micali, N.; Engelkamp, H.; van Rhee, P.G.; Christianen, P.C.M.; Monsù Scolaro, L.; Maan, J.C. Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem., 2012, 4(3), 201-207.
[http://dx.doi.org/10.1038/nchem.1264] [PMID: 22354434]
[117]
Sorrenti, A.; El-Hachemi, Z.; Arteaga, O.; Canillas, A.; Crusats, J.; Ribò, J.M. Kinetic control of the supramolecular chirality of porphyrin J-aggregates. Chemistry, 2012, 18(28), 8820-8826.
[http://dx.doi.org/10.1002/chem.201200881] [PMID: 22678975]
[118]
El-Hachemi, Z.; Escudero, C.; Arteaga, O.; Canillas, A.; Crusats, J.; Mancini, G.; Purrello, R.; Sorrenti, A.; D’Urso, A.; Ribò, J.M. Chiral sign selection on the J-aggregates of diprotonated tetrakis-(4-sulfonatophenyl)porphyrin by traces of unidentified chiral contaminants present in the ultra-pure water used as solvent. Chirality, 2009, 21(4), 408-412.
[http://dx.doi.org/10.1002/chir.20602] [PMID: 18571791]
[119]
Mineo, P.; Villari, V.; Scamporrino, E.; Micali, N. Supramolecular chirality induced by a weak thermal force. Soft Matter, 2014, 10(1), 44-47.
[http://dx.doi.org/10.1039/C3SM52322E] [PMID: 24651848]
[120]
Nicosia, A.; Vento, F.; Marletta, G.; Messina, G.M.L.; Satriano, C.; Villari, V.; Micali, N.; De Martino, M.T.; Schotman, M.J.G.; Mineo, P.G. Porphyrin-Based supramolecular flags in the thermal gradients’ wind: What breaks the symmetry, how and why. Nanomaterials (Basel), 2021, 11(7), 1673.
[http://dx.doi.org/10.3390/nano11071673] [PMID: 34202150]
[121]
Arlegui, A.; Soler, B.; Galindo, A.; Arteaga, O.; Canillas, A.; Ribó, J.M.; El-Hachemi, Z.; Crusats, J.; Moyano, A. Spontaneous mirror-symmetry break-ing coupled to top-bottom chirality transfer: From porphyrin self-assembly to scalemic Diels-Alder adducts. Chem. Commun. (Camb.), 2019, 55(81), 12219-12222.
[http://dx.doi.org/10.1039/C9CC05946F] [PMID: 31553004]
[122]
Zagami, R.; Romeo, A.; Castriciano, M.A.; Monsù Scolaro, L. Inverse kinetic and equilibrium isotope effects on self-assembly and supramolecular chi-rality of porphyrin J-Aggregates. Chemistry, 2017, 23(1), 70-74.
[http://dx.doi.org/10.1002/chem.201604675] [PMID: 27862435]