Antipyretic Medicinal Plants, Phytocompounds, and Green Nanoparticles: An Updated Review

Page: [23 - 49] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Pyrexia itself is not a terminal condition. Basically, it occurs with mild to serious diseases affecting alarge population of the world. Other than a high body temperature, pyrexia is accompanied by several sickness behaviors, changes in physiological and metabolic characteristics of the body system, and alterations in the immune responses. Various allopathic drugs are available to treat pyrexia by targeting the symptom or the pathogen itself. Drug-resistance has made control and treatment of vectors more difficult. However, many marginal people are obligated to utilize locally available medicinal plants for the treatment of various diseases due to limited access to synthetic drugs. Developments in the field of nanotechnology and phytochemical research towards the discovery of new antimicrobial agents have also drawn the interest of researchers towards the synthesis of green nanoparticles from plant extracts due to their several benefits over the other methods. Thus, the present report discusses the use of ethnomedicinal plants, phytocompounds, and the application of green nanoparticles synthesized from plant extracts to treat pyrexia.

Keywords: Allopathic drugs, antimicrobial agents, antipyretic drugs, drug-resistance, medicinal plants, nanotechnology.

Graphical Abstract

[1]
Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci., 2019, 1436(1), 157-173.
[http://dx.doi.org/10.1111/nyas.13950] [PMID: 30120891]
[2]
Priyadarshini, K.A.; Murugan, K.; Panneerselvam, C.; Ponarulselvam, S.; Hwang, J.S.; Nicoletti, M. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res., 2012, 111(3), 997-1006.
[http://dx.doi.org/10.1007/s00436-012-2924-8] [PMID: 22562234]
[3]
Morejόn, B.; Pilaquinga, F.; Domenech, F.; Ganchala, D.; Debut, A.; Neira, M. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J. Nanotechnol., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/6917938]
[4]
Phumthum, M.; Sadgrove, N.J. High-value plant species used for the treatment of “fever” by the Karen Hill Tribe people. Antibiotics (Basel), 2020, 9(5), 220.
[http://dx.doi.org/10.3390/antibiotics9050220] [PMID: 32365481]
[5]
Park, Y.R.; Kim, H.; Park, J.A.; Ahn, S.H.; Chang, S.; Shin, J.W.; Kim, M.; Lee, J-H. Comparative analysis of single and combined antipy-retics using patient-generated health data: Retrospective observational study. JMIR Mhealth Uhealth, 2021, 9(5), e21668.
[http://dx.doi.org/10.2196/21668] [PMID: 34037528]
[6]
Choi, J.; Chang, S.; Ahn, J.G. Comparison of fever-reducing effects in self-reported data from the mobile app: Antipyretic drugs in pediat-ric patients. Sci. Rep., 2020, 10(1), 3879.
[http://dx.doi.org/10.1038/s41598-020-60193-1] [PMID: 32127557]
[7]
Sharma, R.; Prajapati, P.K. Predictive, preventive and personalized medicine: Leads from Ayurvedic concept of Prakriti (Human Constitu-tion). Curr. Pharmacol. Rep., 2020, 6(6), 441-450.
[http://dx.doi.org/10.1007/s40495-020-00244-3]
[8]
Neafsey, D.E.; Taylor, A.R.; MacInnis, B.L. Advances and opportunities in malaria population genomics. Nat. Rev. Genet., 2021, 22(8), 502-517.
[http://dx.doi.org/10.1038/s41576-021-00349-5] [PMID: 33833443]
[9]
Ahmad, S.; Zahiruddin, S.; Parveen, B.; Basist, P.; Parveen, A. Gaurav; Parveen, R.; Ahmad, M. Indian medicinal plants and formula-tions and their potential against COVID-19-preclinical and clinical research. Front. Pharmacol., 2021, 11, 578970.
[http://dx.doi.org/10.3389/fphar.2020.578970] [PMID: 33737875]
[10]
Sharma, R.; Kabra, A.; Rao, M.M.; Prajapati, P.K. Herbal and holistic solutions for neurodegenerative and depressive disorders: Leads from Ayurveda. Curr. Pharm. Des., 2018, 24(22), 2597-2608.
[http://dx.doi.org/10.2174/1381612824666180821165741] [PMID: 30147009]
[11]
Verma, D.; Mudgal, B.; Chaudhary, P.; Mahakur, B.; Mitra, D.; Pant, K.; Mohapatra, P.K.D.; Thapliyal, A.; Janmeda, P. Medicinal plants of Uttarakhand (India) and their benefits in the treatment of tuberculosis: Current perspectives. GJBB, 2020, 9(3), 75-85.
[12]
Meireles, D.; Gomes, J.; Lopes, L.; Hinzmann, M.; Machado, J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med., 2020, 20(4), 495-515.
[http://dx.doi.org/10.1007/s13596-020-00468-0]
[13]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[14]
Sharma, R.; Amin, H. Galib.; Prajapati, P.K. Validation of standard manufacturing procedure of Guḍūcī sattva (aqueous extract of Tino-spora cordifolia (Willd.) Miers) and its tablets. Anc. Sci. Life, 2013, 33(1), 27-34.
[http://dx.doi.org/10.4103/0257-7941.134564] [PMID: 25161327]
[15]
Sharma, R.; Bolleddu, R.; Maji, J.K.; Ruknuddin, G.; Prajapati, P.K. In-Vitro α-amylase, α-glucosidase inhibitory activities and In-Vivo anti-hyperglycemic potential of different dosage forms of Guduchi (Tinospora Cordifolia [Willd. Miers) prepared with Ayurvedic bha-vana process. Front. Pharmacol., 2021, 12, 642300.
[http://dx.doi.org/10.3389/fphar.2021.642300] [PMID: 34040519]
[16]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[17]
Barik, T.K.; Kamaraju, R.; Gowswami, A. Silica nanoparticle: A potential new insecticide for mosquito vector control. Parasitol. Res., 2012, 111(3), 1075-1083.
[http://dx.doi.org/10.1007/s00436-012-2934-6] [PMID: 22565400]
[18]
Islam, M.T.; Quispe, C.; Herrera-Bravo, J.; Sarkar, C.; Sharma, R.; Garg, N.; Fredes, L.I.; Martorell, M.; Alshehri, M.M.; Sharifi-Rad, J.; Daştan, S.D.; Calina, D.; Alsafi, R.; Alghamdi, S.; Batiha, G.E.; Cruz-Martins, N. Production, transmission, pathogenesis, and control of dengue virus: A literature-based undivided perspective. BioMed Res. Int., 2021, 2021, 4224816.
[http://dx.doi.org/10.1155/2021/4224816] [PMID: 34957305]
[19]
Cunha, R.V.D.; Trinta, K.S. Chikungunya virus: Clinical aspects and treatment - A review. Mem. Inst. Oswaldo Cruz, 2017, 112(8), 523-531.
[http://dx.doi.org/10.1590/0074-02760170044] [PMID: 28767976]
[20]
Ogoina, D. Fever, fever patterns and diseases called ‘fever’--a review. J. Infect. Public Health, 2011, 4(3), 108-124.
[http://dx.doi.org/10.1016/j.jiph.2011.05.002] [PMID: 21843857]
[21]
Dinarello, C.A.; Gelfand, J.A. Fever and Hyperthermia. In: Harrison’s Principles of Internal Medicine; Fauci, A.S.; Kasper, D.L.; Longo, D.L.; Braunwald, E.; Hauser, S.L.; Jameson, J.L.; Loscalzo, J., Eds.; McGraw-Hill’s Company 2005, pp. 90-94.
[22]
Critical Care. Understanding the pathophysiology of fever. Nursing, 2008, 38(8), 56cc1-56cc2.
[http://dx.doi.org/10.1097/01.NURSE.0000327497.08688.47]
[23]
Beresford, R.W.; Gosbell, I.B. Pyrexia of unknown origin: Causes, investigation and management. Intern. Med. J., 2016, 46(9), 1011-1016.
[http://dx.doi.org/10.1111/imj.13180] [PMID: 27633467]
[24]
Plaisance, K.I.; Mackowiak, P.A. Antipyretic therapy: Physiologic rationale, diagnostic implications, and clinical consequences. Arch. Intern. Med., 2000, 160(4), 449-456.
[http://dx.doi.org/10.1001/archinte.160.4.449] [PMID: 10695685]
[25]
Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infec-tion. Nutrients, 2020, 12(1), 236.
[http://dx.doi.org/10.3390/nu12010236] [PMID: 31963293]
[26]
Aziz, M.H.A.; Raduan, S.Z.; Roslida, A.H.; Zakaria, Z.A.; Zuraini, A.; Hakim, M.N. Anti-pyretic activity of two varieties of Hibiscus Rosa Sinensis L. Biomed. Pharmacol. J., 2021, 14(1), 61-74. Available from: https://bit.ly/3s58cqz
[http://dx.doi.org/10.13005/bpj/2099]
[27]
Ghlichloo, I.; Gerriets, V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs); StatPearls: Treasure Island (FL), 2021. Available from: Ncbi.nlm.nih.gov/books/NBK547742
[28]
Lanas, A.; McCarthy, D.; Voelker, M.; Brueckner, A.; Senn, S.; Baron, J.A. Short-term Acetylsalicyclic acid (Aspirin) use for pain, fever, or colds-gastrointestinal adverse effects. Drugs R D., 2011, 11(3), 277-288.
[http://dx.doi.org/10.2165/11593880-000000000-00000] [PMID: 21902288]
[29]
Zhang, H.; Wu, Y.; Lin, Z.; Zhong, X.; Liu, T.; Huang, Z.; Yang, Y. Naproxen for the treatment of neoplastic fever: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore), 2019, 98(22), e15840.
[http://dx.doi.org/10.1097/MD.0000000000015840] [PMID: 31145329]
[30]
Modi, C.M.; Mody, S.K.; Patel, H.B.; Dudhatra, G.B.; Kumar, A.; Avale, M. Toxicopathological overview of analgesic and anti-inflammatory drugs in animals. J. Appl. Pharm. Sci., 2012, 02(01), 149-157.
[31]
Slater, D.; Kunnathil, S.; McBride, J.; Koppala, R. Pharmacology of nonsteroidal antiinflammatory drugs and opioids. Semin. Intervent. Radiol., 2010, 27(4), 400-411.
[http://dx.doi.org/10.1055/s-0030-1267855] [PMID: 22550382]
[32]
Chung, H.Y.; Kang, M.W.; Shin, W.S.; Kim, S.K. Successful treatment of typhoid fever with a single dose of ceftriaxone for one or two days. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 1987, 2(1), 90-92.
[http://dx.doi.org/10.3904/kjim.1987.2.1.90] [PMID: 3154822]
[33]
Tan, C.W.; Chlebicki, M.P. Urinary tract infections in adults. Singapore Med. J., 2016, 57(9), 485-490.
[http://dx.doi.org/10.11622/smedj.2016153] [PMID: 27662890]
[34]
Sharma, R.; Amin, H.; Galib, R.; Prajapati, P.K. Molecular targets of common Ayurvedic herbal anti-oxidants. J. Ayu. Herb. Med., 2017, 3, 36-40.
[35]
Rawat, S.; Janmeda, P.; Chaudhary, P.; Sharma, K. Medicinal plants to combat with fever. Just Agriculture, 2021, 1(11), 1-6.
[36]
Gupta, S.S.; Sharma, J.; Kumar, G.R.; Pandey, G.; Mohapatra, P.K.; Rawat, A.K.S.; Rao, C.V. Effect of Andrographis serpyllifolia leaves extract on experimentally induced typhoid using Salmonella typhi. Br. J. Pharm. Res., 2013, 4(2), 230-239.
[http://dx.doi.org/10.9734/BJPR/2014/5804]
[37]
Srividya, A.R.; Dhanabal, S.P.; Jeevitha, S.; Varthan, V.J.; Kumar, R.R. Relationship between antioxidant properties and chemical compo-sition of Abutilon indicum Linn. Indian J. Pharm. Sci., 2012, 74(2), 163-167.
[http://dx.doi.org/10.4103/0250-474X.103854] [PMID: 23325999]
[38]
Bhar, K.; Mondal, S.; Suresh, P. An eye-catching review of Aegle marmelos L. (Golden Apple). Pharmacogn. J., 2019, 11(2), 207-224.
[http://dx.doi.org/10.5530/pj.2019.11.34]
[39]
Vyas, A.; Bhargava, S.; Bhargava, P.; Shukla, S.S.; Pandey, R.; Bhadaur, R.S. Evaluation of antipyretic potential of Aegle marmelos (L.) Correa leaves. Orient. J. Chem., 2011, 27(1)
[40]
Hossain, M.S.; Urbi, Z.; Sule, A.; Hafizur Rahman, K.M. Andrographis paniculata (Burm. f.) Wall. ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci. World J., 2014, 2014, 274905.
[http://dx.doi.org/10.1155/2014/274905] [PMID: 25950015]
[41]
Okhuarobo, A.; Falodun, J.E.; Erharuyi, O.; Imieje, V.; Falodun, A.; Langer, P. Harnessing the medicinal properties of Andrographis pa-niculate for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pac. J. Trop. Dis., 2014, 4(3), 213-222.
[http://dx.doi.org/10.1016/S2222-1808(14)60509-0]
[42]
Talukdar, S.N.; Rahman, M.B.; Paul, S. A review on Barleria prionitis: Its pharmacognosy, phytochemicals, and traditional uses. JAMPS, 2015, 4(4), 1-13.
[http://dx.doi.org/10.9734/JAMPS/2015/20551]
[43]
Banerjee, S.; Banerjee, S.; Jha, G.K.; Bose, S. Barleria prionitis L.: An illustrative traditional, phytochemical, and pharmacological review. Nat. Prod. J., 2020, 10, 1-17.
[44]
Bharati, A.C.; Sahu, A.N. Ethnobotany, phytochemistry and pharmacology of Biophytum sensitivum DC. Pharmacogn. Rev., 2012, 6(11), 68-73.
[http://dx.doi.org/10.4103/0973-7847.95893] [PMID: 22654407]
[45]
Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifun-gal activity of curcumin. BioMed Res. Int., 2014, 2014, 186864.
[http://dx.doi.org/10.1155/2014/186864] [PMID: 24877064]
[46]
Haider, S.; Naqvi, F.; Tabassum, S.; Saleem, S.; Batool, Z.; Sadir, S.; Rasheed, S.; Saleem, D.; Nawaz, A.; Ahmad, S. Preventive effects of curcumin against drug- and starvation-induced gastric erosions in rats. Sci. Pharm., 2013, 81(2), 549-558.
[http://dx.doi.org/10.3797/scipharm.1207-17] [PMID: 23833720]
[47]
Babaei, F.; Nassiri-Asl, M.; Hosseinzadeh, H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci. Nutr., 2020, 8(10), 5215-5227.
[http://dx.doi.org/10.1002/fsn3.1858] [PMID: 33133525]
[48]
Ichsyani, M.; Ridhanya, A.; Risanti, M.; Desti, H.; Ceria, R.; Putri, D.H.; Sudiro, T.M.; Dewi, B.E. Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo. IOP Conf. Ser. Earth Environ. Sci., 2017, 101(1), 012005.
[http://dx.doi.org/10.1088/1755-1315/101/1/012005]
[49]
Abd Kadir, S.L.; Yaakob, H.; Mohamed Zulkifli, R. Potential anti-dengue medicinal plants: A review. J. Nat. Med., 2013, 67(4), 677-689.
[http://dx.doi.org/10.1007/s11418-013-0767-y] [PMID: 23591999]
[50]
Li, Y.; Liu, Y.; Ma, A.; Bao, Y.; Wang, M.; Sun, Z. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food Sci. Biotechnol., 2017, 26(6), 1675-1683.
[http://dx.doi.org/10.1007/s10068-017-0217-9] [PMID: 30263705]
[51]
Kumar, S.; Wahab, N.; Warikoo, R. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac. J. Trop. Biomed., 2011, 1(2), 85-88.
[http://dx.doi.org/10.1016/S2221-1691(11)60001-4] [PMID: 23569733]
[52]
Tomar, A. Medicinal use of Abelmoschus Esculentus (Linn.) moench. (bhindi) to cure fever. J. Pharmacogn. Phytochem., 2017, 6(4), 596-597.
[53]
Saini, A.; Gahlawat, D.K.; Chauhan, C.; Gulia, S.K.; Ganie, S.A.; Archita, Y.S. Ethomedicinal uses and phytochemistry of Abutilon indi-cum (Linn.) sweet: An overview. J. Pharmacogn. Phytochem., 2015, 3, 66-72.
[54]
Poonam, K.; Singh, G.S. Ethnobotanical study of medicinal plants used by the Taungya community in Terai Arc Landscape, India. J. Ethnopharmacol., 2009, 123(1), 167-176.
[http://dx.doi.org/10.1016/j.jep.2009.02.037] [PMID: 19429357]
[55]
Rajeshwari, S.; Sevarkodiyone, S.P. Medicinal properties of Abutilon indicum. AJMP, 2018, 6, 062-065.
[56]
Ballabh, B.; Chaurasia, O.P. Traditional medicinal plants of cold desert Ladakh--used in treatment of cold, cough and fever. J. Ethnopharmacol., 2007, 112(2), 341-349.
[http://dx.doi.org/10.1016/j.jep.2007.03.020] [PMID: 17459623]
[57]
Lakshmi, T.; Geetha, R.V.; Roy, R.; Aravind, K.S. Yarrow (Achillea millefolium Linn.) a herbal medicinal plant with broad therapeutic use- a review. Int. J. Pharm. Sci. Rev. Res. 2011, 9, 022.
[58]
Wani, T.A.; Kaloo, Z.A.; Dangroo, N.A. Aconitum heterophyllum Wall. ex Royle: A critically endangered medicinal herb with rich potential for use in medicine. J. Integr. Med., 2021, S2095- 4964(21), 00122-9.
[http://dx.doi.org/10.1016/j.joim.2021.12.004] [PMID: 34996731]
[59]
Harsha, V.H.; Hebbar, S.S.; Hegde, G.R.; Shripathi, V. Ethnomedical knowledge of plants used by Kunabi Tribe of Karnataka in India. Fitoterapia, 2002, 73(4), 281-287.
[http://dx.doi.org/10.1016/S0367-326X(02)00078-3] [PMID: 12234569]
[60]
Fathima, T.; Joghee, S.; Alex, A.M. An updated review: Adhatoda vasica. Int. J. Res. Pharm. Sci., 2020, 11(3), 3981-3987.
[http://dx.doi.org/10.26452/ijrps.v11i3.2590]
[61]
Das, R.; Emon, M.P.Z.; Shanu, S.A.; Akter, D.; Islam, M.R. A haemophilic dengue patient with pleural effusion and earache. Cureus, 2020, 12(8), e9572.
[http://dx.doi.org/10.7759/cureus.9572] [PMID: 32913689]
[62]
Yukham, S.D.; Elangbam, M.; Nongmaithem, R.; Naorem, P.D.; Singh, P.K. Maiden hair ferns (Adiantum L., Pteridaceae-Vittarioideae) of North East India: diversity, phytochemistry and utilization. Genet. Resour. Crop Evol., 2018, 65(4), 1269-1280.
[http://dx.doi.org/10.1007/s10722-018-0612-y]
[63]
Pathirana, C.K.; Madhujith, T.; Eeswara, J. Bael (Aegle marmelos L. Correa), a medicinal tree with immense economic potentials. Adv. Agricultu., 2020, 8814018, 1-13.
[http://dx.doi.org/10.1155/2020/8814018]
[64]
Frausin, G.; Lima, R.B.S.; Hidalgo, A.F.; Ming, L.C.; Pohlit, A.M. Plants of the araceae family for malaria and related diseases: A review. Rev. Bras. Plantas Med., 2015, 17(4), 657-666.
[http://dx.doi.org/10.1590/1983-084X/14_024]
[65]
Das, B.N. Karyomorphological studies in three species of Alocasia (Schott.) G. Don.-An ethno-medicinally and economically important genus. Int. J. Life Sci. Sci. Res., 2018, 4(6), 2116-2121.
[http://dx.doi.org/10.21276/ijlssr.2018.4.6.8]
[66]
Leeratiwong, C.; Satthaphorn, J.; Chantaranothai, P. The genus Alysicarpus Neck. Ex Desv. (Leguminosae) in Thailand. Thai For. Bull., 2017, 45, 125-133.
[http://dx.doi.org/10.20531/tfb.2017.45.2.08]
[67]
Tshibangu, J.N.; Kusamba, C.; Kaminsky, R.; Wright, A.D.; König, G.M. Screening of African medicinal plants for antimicrobial and en-zyme inhibitory activity. J. Ethnopharmacol., 2002, 80, 25-35.
[http://dx.doi.org/10.1016/S0378-8741(01)00409-3]
[68]
Rico, R.; Bulló, M.; Salas-Salvadó, J. Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Sci. Nutr., 2015, 4(2), 329-338.
[http://dx.doi.org/10.1002/fsn3.294] [PMID: 27004123]
[69]
Munuswamy, H.; Thirunavukkarasu, T.; Rajamani, S.; Elumalai, E.K.; Ernest, D. A review on antimicrobial efficacy of some traditional medicinal plants in Tamilnadu. J. Acute Dis., 2013, 2(2), 99-105.
[http://dx.doi.org/10.1016/S2221-6189(13)60107-9]
[70]
Baranwal, V.K.; Irchhaiya, R.; Singh, S. Anisomeles indica: An overview. Int. Res. J. Pharm., 2012, 3, 84-87.
[71]
Rebeiro, P.; Souza, M.L.; Muller, L.A.C.; Ellis, V.A.; Heuertz, M.; Lemos-Filho, J.P.; Lovato, M.B. Climatic drivers of leaf traits and ge-netic divergence in the tree Annona crassiflora: A broad spatial survey in the Brazilian savannas. Glob. Change Biol., 2016, 22(11), 3789-3803.
[http://dx.doi.org/10.1111/gcb.13312]
[72]
Yamthe, L.R.T.; Fokou, P.V.T.; Mbouna, C.D.J.; Keumoe, R.; Ndjakou, B.L.; Djouonzo, P.T.; Mfopa, A.N.; Legac, J.; Tsabang, N.; Gut, J.; Rosenthal, P.J.; Boyom, F.F. Extracts from Annona muricata L. and Annona reticulata L. (Annonaceae) potently and selectively inhibit Plasmodium falciparaum. Medicines (Basel), 2015, 2(2), 55-66.
[http://dx.doi.org/10.3390/medicines2020055] [PMID: 28930201]
[73]
Moghadamtousi, S.Z.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.M.; Kadir, H.A. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci., 2015, 16(7), 15625-15658.
[http://dx.doi.org/10.3390/ijms160715625] [PMID: 26184167]
[74]
Luan, F.; Peng, L.; Lei, Z.; Jia, X.; Zou, J.; Yang, Y.; He, X.; Zeng, N. Traditional uses, phytochemical consituents and pharmacological properties of Averrhoa carambola L.: A review. Front. Pharmacol., 2021, 12, 699899.
[http://dx.doi.org/10.3389/fphar.2021.699899] [PMID: 34475822]
[75]
Andrade-Mahecha, M.M.; Tapia-Blácido, D.R.; Menegalli, F.C. Physical-chemical, thermal, and functional properties of achira (Canna indica L.) flour and starch from different geographical origin. Stärke, 2012, 64(5), 348-358.
[http://dx.doi.org/10.1002/star.201100149]
[76]
Lalrinzuali, K.; Vabeiryureilai, M.; Ganesh Chandra, J. Ethnomedicinal use and phytochemical analysis of selected medicinal plants of Mizoram, India. Trends Green Chem., 2015, 1(1), 8.
[77]
Kaunda, J.S.; Zhang, Y-J. The Genus Carissa: An ethnopharmacological, phytochemical and pharmacological review. Nat. Prod. Bioprospect., 2017, 7(2), 181-199.
[http://dx.doi.org/10.1007/s13659-017-0123-0] [PMID: 28243901]
[78]
Kumar, D.; Kumar, S.; Gupta, J.; Arya, R.; Gupta, A. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae). Pharmacogn. Rev., 2011, 5(10), 184-188.
[http://dx.doi.org/10.4103/0973-7847.91117] [PMID: 22279376]
[79]
Hadian, F.; Varshochi, M.; Feyzabadi, Z.; Zargaran, A.; Besharat, M.; Mousavi Bazaz, M. Medicinal herbs useful in pediatric fever from the perspective of persian medicine. Int. J. Pediatr., 2019, 7(9), 10087-10098. Available from: http://ijp.mums.ac.ir/m/article_13525.html
[80]
Das, S.; Vasudeva, N.; Sharma, S. Cichorium intybus: A concise report on its ethnomedicinal, botanical, and phytopharmacological as-pects. Drug Dev Ther., 2016, 7(1), 1-12.
[http://dx.doi.org/10.4103/2394-6555.180157]
[81]
Mostafa, M.; Appidi, J.R.; Yakubu, M.T.; Afolayan, A.J. Anti-inflammatory, antinociceptive and antipyretic properties of the aqueous extract of Clematis brachiata leaf in male rats. Pharm. Biol., 2010, 48(6), 682-689.
[http://dx.doi.org/10.3109/13880200903257966] [PMID: 20645742]
[82]
Kalita, J.; Sureshkumar Singh, S.; Khan, M.L. Clerodendrum colebrookianum Walp.: A potential folk medicinal plant of North East India. Asian J. Pharm. Biol. Res., 2013, 2, 256-261.
[83]
Pekamwar, S.S.; Kalyankar, T.M.; Kokate, S.S. Pharmacological activities of Coccinia grandis. J. Appl. Pharm. Sci., 2013, 3, 114-119.
[http://dx.doi.org/10.7324/JAPS.2013.3522]
[84]
Wadikar, D.D.; Patki, P.E. Coleus aromaticus: A therapeutic herb with multiple potentials. J. Food Sci. Technol., 2016, 53(7), 2895-2901.
[http://dx.doi.org/10.1007/s13197-016-2292-y] [PMID: 27765960]
[85]
Arumugam, G.; Swamy, M.K.; Sinniah, U.R. Plectranthus amboinicus (Lour.) Spreng: Botanical, phytochemical, pharmacological and nutritional significance. Molecules, 2016, 21(4), 369.
[http://dx.doi.org/10.3390/molecules21040369] [PMID: 27043511]
[86]
Roy, S.; Gorai, D.; Acharya, R.; Roy, R. Combretum (Combretaceae): Biological activity and phytochemistry. Am. J. Pharm. Res., 2014, 4(11), 5266-5299.
[87]
Sahib, N.G.; Anwar, F.; Gilani, A.H.; Hamid, A.A.; Saari, N.; Alkharfy, K.M. Coriander (Coriander sativum L.): A potential source of high-value components for functional foods and nutraceuticals- a review. Phytother. Res., 2013, 27(10), 1439-1456.
[http://dx.doi.org/10.1002/ptr.4897] [PMID: 23281145]
[88]
Pawar, V.A.; Pawar, P.R. Costus speciosus: An important medicinal plant. Int. J. Sci. Res., 2014, 3(7), 28-33.
[89]
Osafo, N.; Mensah, K.B.; Yeboah, O.K. Phytochemical and pharmacological review of Cryptolepis sanguinolenta (Lindl.). Schlechter. Adv. Pharmacol. Sci., 2017, 2017, 3026370.
[http://dx.doi.org/10.1155/2017/3026370] [PMID: 29750083]
[90]
Chauhan, B.S. Crownfootgrass (Dactyloctenium aegyptium) germination and response to herbicides in the Philippines. Weed Sci., 2011, 59(4), 512-516.
[http://dx.doi.org/10.1614/WS-D-11-00048.1]
[91]
Sourabh, P.; Thakur, J. Priti; Sharma, P.; Uniyal, P.L.; Pandey, A.K Habitat distribution modelling for reintroduction of endangered medicinal plants-Ephedra gerardiana, Lilium polyphyllum, Crepidium acuminatum, Pittosporum eriocarpum and Skimmia anquetilia in India. Int. J. Ecol. Environ. Sci., 2018, 44, 207-216.
[92]
Thomas, P.S.; Essien, E.E.; Ntuk, S.J.; Choudhary, M.I. Aryngium foetidum L. essential oils: chemical composition and antioxidant activi-ty. Medicines (Basel), 2017, 4(2), 24.
[http://dx.doi.org/10.3390/medicines4020024] [PMID: 28930239]
[93]
Odebiyi, O.O.; Sofowora, E.A. Antimicrobial alkaloids from a Nigerian chewing stick (Fagara zanthoxyloides). Planta Med., 1979, 36(3), 204-207.
[http://dx.doi.org/10.1055/s-0028-1097271] [PMID: 482432]
[94]
Enechi, O.C.; Amah, C.C.; Okagu, I.U.; Ononiwu, C.P.; Azidiegwu, V.C.; Ugwuoke, E.O.; Onoh, A.P.; Ndukwe, E.E. Methanol extracts of Fagara zanthoxyloides leaves possess antimalarial effects and normalizes haematological and biochemical status of Plasmodium berghei-passaged mice. Pharm. Biol., 2019, 57(1), 577-585.
[http://dx.doi.org/10.1080/13880209.2019.1656753] [PMID: 31500475]
[95]
Mbah, J.A.; Tane, P.; Ngadjui, B.T.; Connolly, J.D.; Okunji, C.C.; Iwu, M.M.; Schuster, B.M. Antiplasmodial agents from the leaves of Glossocalyx brevipes. Planta Med., 2004, 70(5), 437-440.
[http://dx.doi.org/10.1055/s-2004-818972] [PMID: 15124089]
[96]
Li, R.; Erpelding, J.E. Genetic diversity analysis of Gossypium arboreum germplasm accessions using genotyping-by-sequencing. Genetica, 2016, 144(5), 535-545.
[http://dx.doi.org/10.1007/s10709-016-9921-2] [PMID: 27604991]
[97]
Amoa Onguéné, P.; Ntie-Kang, F.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M. The potential of anti-malarial compounds derived from African medicinal plants, part I: A pharmacological evaluation of alkaloids and terpenoids. Malar. J., 2013, 12(1), 449.
[http://dx.doi.org/10.1186/1475-2875-12-449] [PMID: 24330395]
[98]
Nkunya, M.H.; Makangara, J.J.; Jonker, S.A. Prenylindoles from Tanzanian Monodora and Isolona species. Nat. Prod. Res., 2004, 18(3), 253-258.
[http://dx.doi.org/10.1080/14786410310001620529] [PMID: 15143836]
[99]
Bidla, G.; Titanji, V.P.; Joko, B.; Ghazali, G.E.; Bolad, A.; Berzins, K. Antiplasmodial activity of seven plants used in African folk medi-cine. Int. J. Pharmacol., 2004, 36, 245-246.
[100]
Okunji, C.O.; Iwu, M.M.; Ito, Y.; Smith, P.L. Preparative separation of indole alkaloids from the rind of Picralima nitida (Stapf) T. Du-rand & H. Durand by pH zone refining countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol., 2005, 28(5), 775-783.
[http://dx.doi.org/10.1081/JLC-200048915]
[101]
Kwansa-Bentum, B.; Agyeman, K.; Larbi-Akor, J.; Anyigba, C.; Appiah-Opong, R. In vitro assessment of antiplasmodial activity and cytotoxicity of Polyalthia longifolia leaf extracts on Plasmodium falciparum strain NF54. Malar. Res. Treat., 2019, 2019, 6976298.
[http://dx.doi.org/10.1155/2019/6976298] [PMID: 30805129]
[102]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[103]
Cao, M.; Muganga, R.; Tits, M.; Angenot, L.; Frédérich, M. 17-O-acetyl,10-hydroxycorynantheol, a selective antiplasmodial alkaloid iso-lated from Strychnos usambarensis leaves. Planta Med., 2011, 77(18), 2050-2053.
[http://dx.doi.org/10.1055/s-0031-1280124] [PMID: 21870325]
[104]
Waffo, A.F.K.; Coombes, P.H.; Crouch, N.R.; Mulholland, D.A.; El Amin, S.M.M.; Smith, P.J. Acridone and furoquinoline alkaloids from Teclea gerrardii (Rutaceae: Toddalioideae) of southern Africa. Phytochemistry, 2007, 68(5), 663-667.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.011] [PMID: 17174364]
[105]
Bringmann, G.; Messer, K.; Schwöbel, B.; Brun, R.; Aké Assi, L. Habropetaline A, an antimalarial naphthylisoquinoline alkaloid from Triphyophyllum peltatum. Phytochemistry, 2003, 62(3), 345-349.
[http://dx.doi.org/10.1016/S0031-9422(02)00547-2] [PMID: 12620347]
[106]
Cheplogoi, P.K.; Mulholland, D.A.; Coombes, P.H.; Randrianarivelojosia, M. An azole, an amide and a limonoid from Vepris uguenensis (Rutaceae). Phytochemistry, 2008, 69(6), 1384-1388.
[http://dx.doi.org/10.1016/j.phytochem.2007.12.013] [PMID: 18267321]
[107]
Gaichu, D.M.; Mawia, A.M.; Gitonga, G.M.; Ngugi, M.P.; Mburu, D.N. Phytochemical screening and antipyretic activities of dichloro-methane-methanolic leaf and stem bark extracts of Ximenia americana in rat models. J. Herb. Med. Pharmacol., 2017, 6(3), 107-113.
[108]
Ali, F.; Chorsiya, A.; Anjum, V.; Khasimbi, S.; Ali, A. A systematic review on phytochemicals for the treatment of dengue. Phytother. Res., 2021, 35(4), 1782-1816.
[http://dx.doi.org/10.1002/ptr.6917] [PMID: 33118251]
[109]
Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci., 2013, 14(6), 12780-12805.
[http://dx.doi.org/10.3390/ijms140612780] [PMID: 23783276]
[110]
Chen, E.; Chen, J.; Cao, S.L.; Zhang, Q.Z.; Jiang, X.G. Preparation of nasal temperature-sensitive in situ gel of Radix Bupleuri and evalua-tion of the febrile response mechanism. Drug Dev. Ind. Pharm., 2010, 36(4), 490-496.
[http://dx.doi.org/10.3109/03639040903264371] [PMID: 19857161]
[111]
Sharma, R.; Martins, N.; Chaudhary, A.; Garg, N.; Sharma, V.; Kuca, K.; Nepovimova, E.; Tuli, H.S.; Bishayee, A.; Chaudhary, A.; Pra-japati, P.K. Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends Food Sci. Technol., 2020, 106, 254-274.
[http://dx.doi.org/10.1016/j.tifs.2020.10.020]
[112]
Tungmunnithum, D.; Pinthong, D.; Hano, C. Flavonoids from Nelumbo nucifera Gaertn., a medicinal plant: Uses in traditional medicine, phytochemistry and pharmacological activities. Medicines (Basel), 2018, 5(4), 127.
[http://dx.doi.org/10.3390/medicines5040127] [PMID: 30477094]
[113]
Krishnaiah, D.; Devi, T.; Bono, A.; Sarbatly, R. Studies on phytochemical constituents of six Malaysian medicinal plants. J. Med. Plant Res. 2009, 3(2), 067-072.
[114]
Liu, Y.; Tong, J.; Tong, Y.; Li, P.; Cui, X.; Cao, H. In vitro anti-influenza virus effect of total flavonoid from Trollius ledebouri Reichb. J. Int. Med. Res., 2018, 46(4), 1380-1390.
[http://dx.doi.org/10.1177/0300060517750284] [PMID: 29444614]
[115]
Sharma, R.; Garg, N.; Verma, D.; Rathi, P.; Sharma, V.; Kuca, K.; Prajapati, P.K. Indian medicinal plants as drug leads in neurodegenera-tive disorders. Nutraceuticals in Brain Health and Beyond; Academic Press, 2020, pp. 31-45.
[116]
Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[117]
Zhang, Y.B.; Yang, L.; Luo, D.; Chen, N.H.; Wu, Z.N.; Ye, W.C.; Li, Y.L.; Wang, G.C. Sophalines E–I, Five quinolizidine-based alkaloids with antiviral activities against the hepatitis B virus from the seeds of Sophora alopecuroides. Org. Lett., 2018, 20(18), 5942-5946.
[http://dx.doi.org/10.1021/acs.orglett.8b02637] [PMID: 30204454]
[118]
Pong, L.Y.; Yew, P.N.; Lee, W.L.; Lim, Y.Y.; Sharifah, S.H. Anti-dengue virus serotype 2 activity of tannins from porcupine dates. Chin. Med., 2020, 15(1), 49.
[http://dx.doi.org/10.1186/s13020-020-00329-7] [PMID: 32467721]
[119]
Singh, A.P.; Kumar, S. Applications of tannins in industry.In:Tannins - structural properties, biological properties and current knowledge; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.85984]
[120]
Kimmel, E.M.; Jerome, M.; Holderness, J.; Snyder, D.; Kemoli, S.; Jutila, M.A.; Hedges, J.F. Oligomeric procyanidins stimulate innate antiviral immunity in dengue virus infected human PBMCs. Antiviral Res., 2011, 90(1), 80-86.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.011] [PMID: 21371507]
[121]
Troian, E.A.; Schallenberger, K.; da Silva, F.P.; Dietrich, G.K.; Ferreira Chiesa, F.; Olivaro, C.; Wallace, F.; Fleck, J.; Verza, S. Screening for antiviral activity of two purified saponin fractions of Quillaja spp. against yellow fever virus and chikungunya virus. Int. J. Innov. Educ. Res., 2020, 8(9), 205-214.
[http://dx.doi.org/10.31686/ijier.vol8.iss9.2615]
[122]
Amran, S.N.S.; Abidin, N.Z.; Hashim, H.; Zubairi, S.I. Saponin bitterness reduction of Carica papaya leaf extracts through adsorption of weakly basic ion exchange resins. J. Food Qual., 2018, 5602729, 1-11.
[http://dx.doi.org/10.1155/2018/5602729]
[123]
Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci., 2010, 72(5), 546-556.
[http://dx.doi.org/10.4103/0250-474X.78519] [PMID: 21694984]
[124]
Ren, J.; Xu, Y.; Huang, Q.; Yang, J.; Yang, M.; Hu, K.; Wei, K. Chabamide induces cell cycle arrest and apoptosis by the Akt/MAPK pathway and inhibition of P-glycoprotein in K562/ADR cells. Anticancer Drugs, 2015, 26(5), 498-507.
[http://dx.doi.org/10.1097/CAD.0000000000000209] [PMID: 25714087]
[125]
Pedersen, M.E.; Metzler, B.; Stafford, G.I.; van Staden, J.; Jäger, A.K.; Rasmussen, H.B. Amides from Piper capense with CNS activity - a preliminary SAR analysis. Molecules, 2009, 14(9), 3833-3843.
[http://dx.doi.org/10.3390/molecules14093833] [PMID: 19783959]
[126]
Kaushik, S.; Kaushik, S.; Sharma, V.; Yadav, J.P. Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses. Pharmacogn. Rev., 2018, 12(24), 177-185.
[http://dx.doi.org/10.4103/phrev.phrev_2_18]
[127]
Uzor, P.F. Alkaloids from plants with antimalarial activity: A review of recent studies. Evid. Based Complement. Alternat. Med., 2020, 2020, 8749083.
[http://dx.doi.org/10.1155/2020/8749083] [PMID: 32104196]
[128]
Saleh, M.S.M.; Kamisah, Y. Potential medicinal plants for the treatment of dengue fever and severe acute respiratory syndrome-coronavirus. Biomolecules, 2020, 11(1), 42.
[http://dx.doi.org/10.3390/biom11010042] [PMID: 33396926]
[129]
Teng, W.C.; Chan, W.; Suwanarusk, R.; Ong, A.; Ho, H.K.; Russell, B.; Rénia, L.; Koh, H.L. In vitro antimalarial evaluations and cytotoxi-city investigations of Carica papaya leaves and carpaine. Nat. Prod. Commun., 2019, 14(1), 1934578X1901400.
[http://dx.doi.org/10.1177/1934578X1901400110]
[130]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; Abubakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[131]
Gao, B.; Zhang, J.; Xie, L. Structure analysis of effective chemical compounds against dengue viruses isolated from Isatis tinctoria. Can. J. Infect. Dis. Med. Microbiol., 2018, 2018, 3217473.
[http://dx.doi.org/10.1155/2018/3217473] [PMID: 29808104]
[132]
Ma, L.L.; Liu, H.M.; Luo, C.H.; He, Y.N.; Wang, F.; Huang, H.Z.; Han, L.; Yang, M.; Xu, R.C.; Zhang, D.K. Fever and antipyretic sup-ported by traditional Chinese medicine: A multi-pathway regulation. Front. Pharmacol., 2021, 12, 583279.
[http://dx.doi.org/10.3389/fphar.2021.583279] [PMID: 33828481]
[133]
Scott, I.M.; Puniani, E.; Jensen, H.; Livesey, J.F.; Poveda, L.; Sánchez-Vindas, P.; Durst, T.; Arnason, J.T. Analysis of piperaceae germplasm by HPLC and LCMS: A method for isolating and identifying unsaturated amides from Piper spp. extracts. J. Agric. Food Chem., 2005, 53(6), 1907-1913.
[http://dx.doi.org/10.1021/jf048305a] [PMID: 15769112]
[134]
Mgbeahuruike, E.E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive compounds from medicinal plants: Focus on Piper species. S. Afr. J. Bot., 2017, 112, 54-69.
[http://dx.doi.org/10.1016/j.sajb.2017.05.007]
[135]
Yao, X.; Ling, Y.; Guo, S.; Wu, W.; He, S.; Zhang, Q.; Zou, M.; Nandakumar, K.S.; Chen, X.; Liu, S. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine, 2018, 42, 258-267.
[http://dx.doi.org/10.1016/j.phymed.2018.03.018] [PMID: 29655694]
[136]
Suganya, G.; Karthi, S.; Shivakumar, M.S. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol. Res., 2014, 113(3), 875-880.
[http://dx.doi.org/10.1007/s00436-013-3718-3] [PMID: 24337613]
[137]
Waris, M.; Nasir, S.; Abbas, S.; Azeem, M.; Ahmad, B.; Khan, N.A.; Hussain, B.; Al-Ghanim, K.A.; Al-Misned, F.; Mulahim, N.; Mahboob, S. Evaluation of larvicidal efficacy of Ricinus communis (Castor) and synthesized green silver nanoparticles against Aedes ae-gypti L. Saudi J. Biol. Sci., 2020, 27(9), 2403-2409.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.025] [PMID: 32884423]
[138]
Balu, S.; Periyasamy, V.; Mathalaimuthu, B. Biosynthesis of silver nanoparticles using Hygrophila auriculata: A novel route of malarial fever vector mosquito control. Int. J. Sci. Technol. Res., 2020, 8(12), 4010-4018.
[139]
Umekar, M.S.; Chaudhary, R.G.; Bhusari, G.S.; Mondal, A.; Potbhare, A.K.; Sami, M. Phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract. Mater. Today Proc., 2020, 29(3), 709-714.
[http://dx.doi.org/10.1016/j.matpr.2020.04.169]
[140]
Potbhare, A.K.; Chaudhary, R.G.; Chouke, P.B.; Yerpude, S.; Mondal, A.; Sonkusare, V.N.; Rai, A.R.; Juneja, H.D. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater. Sci. Eng. C, 2019, 99, 783-793.
[http://dx.doi.org/10.1016/j.msec.2019.02.010] [PMID: 30889753]
[141]
Prashant, B.; Chouke Ajay, K.; Potbhare, K.; Ganesh, S.B.; Subhash, S.; Dadamia, P.M.D.S.; Raghvendra, K.; Chaudhary, R.G. Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity. Adv. Mater. Lett., 2019, 10, 355-360.
[http://dx.doi.org/10.5185/amlett.2019.2235]
[142]
Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol., 2019, 103(2), 881-891.
[http://dx.doi.org/10.1007/s00253-018-9488-1] [PMID: 30413849]
[143]
Kumar, H.; Bhardwaj, K.; Kuča, K.; Kalia, A.; Nepovimova, E.; Verma, R.; Kumar, D. Flower-based green synthesis of metallic nanopar-ticles: Applications beyond fragrance. Nanomaterials (Basel), 2020, 10(4), 766.
[http://dx.doi.org/10.3390/nano10040766] [PMID: 32316212]
[144]
Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett., 2021, 19(1), 355-374.
[http://dx.doi.org/10.1007/s10311-020-01074-x]
[145]
Muthamil Selvan, S.; Vijai Anand, K.; Govindaraju, K.; Tamilselvan, S.; Kumar, V.G.; Subramanian, K.S.; Kannan, M.; Raja, K. Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes ae-gypti. IET Nanobiotechnol., 2018, 12(8), 1042-1046.
[http://dx.doi.org/10.1049/iet-nbt.2018.5083] [PMID: 30964011]
[146]
Potbhare, A.K.; Chouke, P.B.; Mondal, A.; Thakare, R.U.; Mondal, S.; Chaudhary, R.G.; Rai, A.R. Rhizoctonia solani assisted biosynthe-sis of silver nanoparticles for antibacterial assay. Mater. Today Proc., 2020, 29, 933-945.
[http://dx.doi.org/10.1016/j.matpr.2020.05.419]
[147]
Potbhare, A.K.; Umekar, M.S.; Chouke, P.B.; Bagade, M.B.; Aziz, S.K.T.; Abdala, A.A. Bioinspired graphene-based silver nanoparticles: Fabrication, characterization, and antibacterial activity. Mater. Today Proc., 2020, 29, 720-725.
[http://dx.doi.org/10.1016/j.matpr.2020.04.212]
[148]
Chouke, P.B.; Potbhare, A.K.; Dadure, K.M.; Mungole, A.J.; Meshram, N.P.; Chaudhary, R.R.; Rai, A.R.; Chaudhary, R.G. An antibacterial activity of Bauhinia racemose assisted ZnO nanoparticles during lunar eclipse and docking assay. Mater. Today Proc., 2020, 29, 815-821.
[http://dx.doi.org/10.1016/j.matpr.2020.04.758]
[149]
Suresh, M.; Jeevanandam, J.; Chan, Y.S.; Danquah, M.K.; Kalaiarasi, J.M.V. Opportunities for metal oxide nanoparticles as a potential mosquitocide. Bionanoscience, 2020, 10(1), 292-310.
[http://dx.doi.org/10.1007/s12668-019-00703-2]
[150]
Hirose, J.; Ando, S.; Kidani, Y. Excess zinc ions are a competitive inhibitor for carboxypeptidase A. Biochemistry, 1987, 26(20), 6561-6565.
[http://dx.doi.org/10.1021/bi00394a041] [PMID: 3427026]
[151]
Lozano, L.C.; Dussán, J. Metal tolerance and larvicidal activity of Lysinibacillus sphaericus. World J. Microbiol. Biotechnol., 2013, 29(8), 1383-1389.
[http://dx.doi.org/10.1007/s11274-013-1301-9] [PMID: 23504213]
[152]
Bekele, E.T.; Gonfa, B.A.; Zelekew, O.A.; Belay, H.H.; Sabir, F.K. Synthesis of titanium oxide nanoparticles using root extract of Knipho-fia foliosa as a template, characterization, and its application on drug resistance bacteria. J. Nanomater., 2020, 2817037, 1-10.
[http://dx.doi.org/10.1155/2020/2817037]
[153]
Rajakumar, G.; Rahuman, A.A.; Roopan, S.M.; Chung, I.M.; Anbarasan, K.; Karthikeyan, V. Efficacy of larvicidal activity of green syn-thesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol. Res., 2015, 114(2), 571-581.
[http://dx.doi.org/10.1007/s00436-014-4219-8] [PMID: 25403378]
[154]
Sundrarajan, M.; Gowri, S. Green synthesis of titanium dioxide nanoparticles by Nyctanthes Arbor-Tristis leaves extract. Chalcogenide Lett., 2011, 8(8), 447-451.
[155]
Jayaseelan, C.; Rahuman, A.A.; Rajakumar, G.; Vishnu Kirthi, A.; Santhoshkumar, T.; Marimuthu, S.; Bagavan, A.; Kamaraj, C.; Zahir, A.A.; Elango, G. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol. Res., 2011, 109(1), 185-194.
[http://dx.doi.org/10.1007/s00436-010-2242-y] [PMID: 21212979]
[156]
Rajakumar, G.; Abdul Rahuman, A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against fila-riasis and malaria vectors. Acta Trop., 2011, 118(3), 196-203.
[http://dx.doi.org/10.1016/j.actatropica.2011.03.003] [PMID: 21419749]
[157]
Santhoshkumar, T.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Bagavan, A.; Jayaseelan, C.; Zahir, A.A.; Elango, G.; Kamaraj, C. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res., 2011, 108(3), 693-702.
[http://dx.doi.org/10.1007/s00436-010-2115-4] [PMID: 20978795]
[158]
Muthukumaran, U.; Govindarajan, M.; Rajeswary, M.; Hoti, S.L. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol. Res., 2015, 114(5), 1817-1827.
[http://dx.doi.org/10.1007/s00436-015-4368-4] [PMID: 25666372]
[159]
Benelli, G.; Caselli, A.; Canale, A. Nanoparticles for mosquito control: Challenges and constraints. J. King Saud Univ. Sci., 2016, 29(4), 424-435.
[http://dx.doi.org/10.1016/j.jksus.2016.08.006]
[160]
Kavitha, G.; Gokulakrishnan, J.; Baranitharan, M. Biosynthesis of silver nanoparticles using Argemone Mexicana: A novel route of malar-ial fever vector mosquito control. Biochem. Cell. Arch., 2020, 20(2), 3267-3274. [Available from https://connectjournals.com/03896.2020.20.3267
[161]
Amarasinghe, L.D.; Wickramarachchi, P.A.S.R.; Aberathna, A.A.A.U.; Sithara, W.S.; De Silva, C.R. Comparative study on larvicidal ac-tivity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes al-bopictus (Diptera: Culicidae). Heliyon, 2020, 6(6), e04322.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04322] [PMID: 32637705]
[162]
Elumalai, D.; Kaleena, P.K.; Ashok, K.; Suresh, A.; Hemavathi, M. Green synthesis of silver nanoparticles using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Eng. Agric. Environ. Food, 2016, 9(1), 1-8.
[http://dx.doi.org/10.1016/j.eaef.2015.08.002]
[163]
Elumalai, D.; Hemavathi, M.; Deepaa, C.V.; Kaleena, P.K. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leu-cas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol. Control, 2017, 2(4), 15-26.
[http://dx.doi.org/10.1016/j.parepi.2017.09.001] [PMID: 29774292]
[164]
Patil, C.D.; Borase, H.P.; Patil, S.V.; Salunkhe, R.B.; Salunke, B.K. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol. Res., 2012, 111(2), 555-562.
[http://dx.doi.org/10.1007/s00436-012-2867-0] [PMID: 22371271]
[165]
Veerakumar, K.; Govindarajan, M.; Rajeswary, M.; Muthukumaran, U. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res., 2014, 113(6), 2363-2373.
[http://dx.doi.org/10.1007/s00436-014-3895-8] [PMID: 24770671]
[166]
Sundaravadivelan, C.; Nalini Padmanabhan, M.; Sivaprasath, P.; Kishmu, L. Biosynthesized silver nanoparticles from Pedilanthus tithy-maloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Parasitol. Res., 2013, 112(1), 303-311.
[http://dx.doi.org/10.1007/s00436-012-3138-9] [PMID: 23052770]
[167]
Pilaquinga, F.; Morejón, B.; Ganchala, D.; Morey, J.; Piña, N.; Debut, A.; Neira, M. Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae). PLoS One, 2019, 14(10), e0224109.
[http://dx.doi.org/10.1371/journal.pone.0224109] [PMID: 31671165]
[168]
Kumar, K.R.; Nattuthurai, N.; Gopinath, P.; Mariappan, T. Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf ex-tract and its larvicidal activity against Culex quinquefasciatus. Parasitol. Res., 2015, 114(2), 411-417.
[http://dx.doi.org/10.1007/s00436-014-4198-9] [PMID: 25373452]
[169]
Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Hwang, J.S. Evaluation of leaf aqueous extract and synthesized silver nano-particles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol. Res., 2013, 112(3), 981-990.
[http://dx.doi.org/10.1007/s00436-012-3220-3] [PMID: 23239092]
[170]
Arokiyaraj, S.; Dinesh Kumar, V.; Elakya, V.; Kamala, T.; Park, S.K.; Ragam, M.; Saravanan, M.; Bououdina, M.; Arasu, M.V.; Koven-dan, K.; Vincent, S. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.--potential for malaria vector control. Environ. Sci. Pollut. Res. Int., 2015, 22(13), 9759-9765.
[http://dx.doi.org/10.1007/s11356-015-4148-9] [PMID: 25637241]
[171]
Ananth, S.; Thangamathi, P. Larvicidal efficacy of fabricated silver nanoparticles from Butea monosperma flower extract against dengue vector, Aedes aegypti. Biotech Today. Int. J. Biol. Sci., 2018, 8(1), 20-29.
[http://dx.doi.org/10.5958/2322-0996.2018.00004.2]
[172]
Kovendan, K.; Chandramohan, B.; Govindarajan, M.; Jebanesan, A.; Kamalakannan, S.; Vincent, S.; Benelli, G. Orchids as sources of novel nanoinsecticides? Efficacy of Bacillus sphaericus and Zeuxine gracilis- Fabricated silver nanoparticles against dengue, malaria and filariasis mosquito vectors. J. Cluster Sci., 2018, 29(2), 345-357.
[http://dx.doi.org/10.1007/s10876-018-1331-4]
[173]
Pavithra Bharathi, V.; Ragavendran, C.; Murugan, N.; Natarajan, D. Ipomoea batatas (Convolvulaceae)-mediated synthesis of silver nano-particles for controlling mosquito vectors of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus (Diptera:Culicidae). Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1568-1580.
[http://dx.doi.org/10.1080/21691401.2016.1261873] [PMID: 27929364]
[174]
Murugan, K.; Dinesh, D.; Paulpandi, M.; Althbyani, A.D.M.; Subramaniam, J.; Madhiyazhagan, P.; Wang, L.; Suresh, U.; Kumar, P.M.; Mohan, J.; Rajaganesh, R.; Wei, H.; Kalimuthu, K.; Parajulee, M.N.; Mehlhorn, H.; Benelli, G. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vec-tor Aedes aegypti (Diptera: Culicidae). Parasitol. Res., 2015, 114(12), 4349-4361.
[http://dx.doi.org/10.1007/s00436-015-4676-8] [PMID: 26290219]
[175]
Gá’al, H.; Fouad, H.; Mao, G.; Tian, J.; Jianchu, M. Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aqui-laria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopatho-logical analysis. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1171-1179.
[http://dx.doi.org/10.1080/21691401.2017.1365723] [PMID: 28859534]
[176]
Chitra, G.; Balasubramani, G.; Ramkumar, R.; Sowmiya, R.; Perumal, P. Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol. Res., 2015, 114(4), 1407-1415.
[http://dx.doi.org/10.1007/s00436-015-4320-7] [PMID: 25601441]
[177]
Govindarajan, M.; Rajeswary, M.; Veerakumar, K.; Muthukumaran, U.; Hoti, S.L.; Benelli, G. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Exp. Parasitol., 2016, 161, 40-47.
[http://dx.doi.org/10.1016/j.exppara.2015.12.011] [PMID: 26708933]
[178]
Ponarulselvam, S.; Panneerselvam, C.; Murugan, K.; Aarthi, N.; Kalimuthu, K.; Thangamani, S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed., 2012, 2(7), 574-580.
[http://dx.doi.org/10.1016/S2221-1691(12)60100-2] [PMID: 23569974]
[179]
Mary, S.C.; Murugan, K.; Roni, M.; Sivapriyajothi, S.; Suganya, N.A. Larvicidal potential of silver nanoparticles synthesized using Adian-tum capillusverenis against Anopheles stephensi (Diptera; Culcidae). Int. J. Curr. Trop Med Health Res., 2013, 1(1), 9-18.
[180]
Kumar, D.; Kumar, G.; Agrawal, V. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol. Res., 2018, 117(2), 377-389.
[http://dx.doi.org/10.1007/s00436-017-5711-8] [PMID: 29250727]
[181]
Larayetan, R.; Ojemaye, M.O.; Okoh, O.O.; Okoh, A.I. Silver nanoparticles mediated by Callistemon citrinus extracts and their antimalaria, antitrypanosoma and antibacterial efficacy. J. Mol. Liq., 2019, 273, 615-625.
[http://dx.doi.org/10.1016/j.molliq.2018.10.020]
[182]
Lallawmawma, H.; Sathishkumar, G.; Sarathbabu, S.; Ghatak, S.; Sivaramakrishnan, S.; Gurusubramanian, G.; Kumar, N.S. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ. Sci. Pollut. Res. Int., 2015, 22(22), 17753-17768.
[http://dx.doi.org/10.1007/s11356-015-5001-x] [PMID: 26154045]
[183]
Subramaniam, J.; Murugan, K.; Panneerselvam, C.; Kovendan, K.; Madhiyazhagan, P.; Dinesh, D.; Kumar, P.M.; Chandramohan, B.; Suresh, U.; Rajaganesh, R.; Alsalhi, M.S.; Devanesan, S.; Nicoletti, M.; Canale, A.; Benelli, G. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplochei-lus lineatus predators. Environ. Sci. Pollut. Res. Int., 2016, 23(8), 7543-7558.
[http://dx.doi.org/10.1007/s11356-015-6007-0] [PMID: 26732702]
[184]
Hajra, A.; Dutta, S.; Mondal, N.K. Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J. Parasit. Dis., 2016, 40(4), 1519-1527.
[http://dx.doi.org/10.1007/s12639-015-0719-4] [PMID: 27876974]
[185]
Sowndarya, P.; Ramkumar, G.; Shivakumar, M.S. Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf ex-tract and their insecticidal potential against mosquito vectors. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1490-1495.
[http://dx.doi.org/10.1080/21691401.2016.1252383] [PMID: 27832715]
[186]
Elemike, E.E.; Onwudiwe, D.C.; Ekennia, A.C.; Sonde, C.U.; Ehiri, R.C. Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activities. Molecules, 2017, 22(5), 674.
[http://dx.doi.org/10.3390/molecules22050674] [PMID: 28452944]
[187]
Suman, T.Y.; Ravindranath, R.R.S.; Elumalai, D.; Kaleena, P.K.; Ramkumar, R.; Perumal, P.; Aranganathan, L.; Chitrarasu, P.S. Larvicidal activity of titanium dioxide nanoparticles synthesized using Morinda citrifolia root extract against Anopheles stephansi, Aedes aegypti, and Culex quinquifasciatus and its other effect on non-target fish. Asian Pac. J. Trop. Dis., 2015, 5(3), 224-230.
[http://dx.doi.org/10.1016/S2222-1808(14)60658-7]
[188]
Gandhi, P.R.; Jayaseelan, C.; Kamaraj, C.; Rajasree, S.R.R.; Mary, R.R. In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum. J. Appl. Biomed., 2018, 16(4), 378-386.
[http://dx.doi.org/10.1016/j.jab.2018.04.001]
[189]
Hussain, M.; Raja, N.I.; Iqbal, M.; Aslam, S. Applications of plant flavonoids in the green synthesis of colloidal silver nanoparticles and impacts on human health. Iran. J. Sci. Technol. Trans. Sci., 2019, 43(3), 1381-1392.
[http://dx.doi.org/10.1007/s40995-017-0431-6]
[190]
Jain, S.; Mehata, M.S. Medicinal plants leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their en-hanced antibacterial property. Sci. Rep., 2017, 7(1), 15867.
[http://dx.doi.org/10.1038/s41598-017-15724-8] [PMID: 29158537]
[191]
Khatami, M.; Pourseyedi, S.; Khatami, M.; Hamidi, H.; Zaeifi, M.; Soltani, L. Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource and the evaluation of their antifungal activity. Bioresour. Bioprocess., 2015, 2(1), 19.
[http://dx.doi.org/10.1186/s40643-015-0043-y]
[192]
Sahu, N.; Soni, D.; Chandrashekhar, B.; Satpute, D.B.; Saravanadevi, S.; Sarangi, B.K.; Pandey, R.A. Synthesis of silver nanoparticles using flavonoids: Hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int. Nano Lett., 2016, 6(3), 173-181.
[http://dx.doi.org/10.1007/s40089-016-0184-9]
[193]
Fahmy, S.A.; Fawzy, I.M.; Saleh, B.M.; Issa, M.Y.; Bakowsky, U.; Azzazy, H.M.E. Green synthesis of platinum and palladium nanoparti-cles using Peganum harmala L. seed alkaloid: Biological and computational studies. Nanomaterials (Basel), 2021, 11(4), 965.
[http://dx.doi.org/10.3390/nano11040965] [PMID: 33918743]
[194]
El-Seedi, H.R.; El-Shabasy, R.M.; Khalifa, S.A.M.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F.J.; Abdel-Daim, M.M.; Omri, A.; Hajrahand, N.H.; Sabir, J.S.M.; Zou, X.; Halabi, M.F.; Sathan, W.; Guo, W. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances, 2019, 9(42), 24539-24559.
[http://dx.doi.org/10.1039/C9RA02225B]
[195]
Mashwani, Z.U.R.; Khan, M.A.; Khan, T.; Nadhman, A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Colloid Interface Sci., 2016, 234, 132-141.
[http://dx.doi.org/10.1016/j.cis.2016.04.008] [PMID: 27181393]
[196]
Safaepour, M.; Shahverdi, A.R.; Shahverdi, H.R.; Khorramizadeh, M.R.; Gohari, A.R. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J. Med. Biotechnol., 2009, 1(2), 111-115.
[PMID: 23407598]
[197]
Sharma, R.; Kuca, K.; Nepovimova, E.; Kabra, A.; Rao, M.M.; Prajapati, P.K. Traditional Ayurvedic and herbal remedies for Alzheimer’s disease: From bench to bedside. Expert Rev. Neurother., 2019, 19(5), 359-374.
[http://dx.doi.org/10.1080/14737175.2019.1596803] [PMID: 30884983]
[198]
Sharma, R.; Martins, N.; Kuca, K.; Chaudhary, A.; Kabra, A.; Rao, M.M.; Prajapati, P.K.; Chyawanprash, A. Chyawanprash: A traditional Indian bioactive health supplement. Biomolecules, 2019, 9(5), 161.
[http://dx.doi.org/10.3390/biom9050161] [PMID: 31035513]
[199]
Shah, D.; Gandhi, M.; Kumar, A.; Cruz-Martins, N.; Sharma, R.; Nair, S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Crit. Rev. Food Sci. Nutr., 2021, 1-37.
[http://dx.doi.org/10.1080/10408398.2021.1968786] [PMID: 34433338]
[200]
Sharma, R.; Martins, N. Telomeres, DNA damage and ageing: Potential leads from Ayurvedic Rasayana (anti-ageing) drugs. J. Clin. Med., 2020, 9(8), 2544.
[http://dx.doi.org/10.3390/jcm9082544] [PMID: 32781627]
[201]
Jain, D.; Chaudhary, P.; Tripathi, R.; Janmeda, P. The impact of various environmental factors on secondary metabolites in plants. In book: The Life of Plants in a Changing Environment; Cambridge Scholars Publishing: UK, 2022, pp. 1-33.
[202]
Moazzem Hossen, S.M.; Hossain, M.S.; Yusuf, A.T.M.; Chaudhary, P.; Emon, N.U.; Janmeda, P. Profiling of phytochemical and antioxi-dant activity of wild mushrooms: Evidence from the in vitro study and phytoconsitutent’s binding affibity to the human erythrocyte cata-lase and human glutathione reductase. Food Sci. Nutr., 2021, 10(1), 88-102.
[http://dx.doi.org/10.1002/fsn3.2650]
[203]
Din, M.I.; Rani, A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: A green adeptness. Int. J. Anal. Chem., 2016, 3512145, 1-14.
[http://dx.doi.org/10.1155/2016/3512145]
[204]
Sharma, R.; Galib, R.; Prajapati, P.K. Good pharmacovigilance practice: Accountability of Ayurvedic pharmaceutical companies. Anc. Sci. Life, 2017, 36(3), 167-169.
[http://dx.doi.org/10.4103/asl.ASL_10_17] [PMID: 28867862]
[205]
Sharma, R.; Hazra, J.; Prajapati, P.K. Knowledge and awareness of pharmacovigilance among ayurveda physicians in Himachal Pradesh. Anc. Sci. Life, 2017, 36(4), 234-235.
[http://dx.doi.org/10.4103/asl.ASL_41_17] [PMID: 29269978]
[206]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[207]
El Shafey, A.M. Green synthesis of metal and metal oxide nanoparticles from plant extracts and their applications: A review. Green Pro-cessSynth, 2020, 9(1), 304-339.
[http://dx.doi.org/10.1515/gps-2020-0031]
[208]
Rautela, A.; Rani, J.; Debnath, M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mech-anism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol., 2019, 10, 5.
[http://dx.doi.org/10.1186/s40543-018-0163-z]
[209]
Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of light scattering techniques to nanoparticle characterization and development. Front Chem., 2018, 6, 237.
[http://dx.doi.org/10.3389/fchem.2018.00237] [PMID: 29988578]
[210]
Chandra, H.; Kumari, P.; Bontempi, E.; Yadav, S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol., 2020, 24, 101518.
[http://dx.doi.org/10.1016/j.bcab.2020.101518]
[211]
Sharma, R.; Prajapati, P.K. Nanotechnology in medicine: Leads from Ayurveda. J. Pharm. Bioallied Sci., 2016, 8(1), 80-81.
[http://dx.doi.org/10.4103/0975-7406.171730] [PMID: 26957877]
[212]
Sharma, R.; Galib, R.; Prajapati, P.K. Revisiting the ancient claims of nano-medicine. BAOJ Nanotech., 2016, 23(2), 011.
[213]
Sharma, R.; Prajapati, P.K. Liquid media’s in Bhavana Samskara: A pharmaceutico-therapeutic prospect. J. Phytopharm., 2015, 4, 49-57.
[214]
Sharma, R.; Rai, H.; Gautam, D.N.S.; Prajapati, P.K.; Sharma, R. Emerging evidence on Omicron (B.1.1.529) SARS-CoV-2 variant. J. Med. Virol., 2022, 1-10.
[http://dx.doi.org/10.1002/jmv.27626]
[215]
Sharma, R.; Hazra, J.; Prajapati, P.K. Nanophytomedicines: A novel approach to improve drug delivery and pharmacokinetics of herbal medicine. Bio Bull, 2017, 3, 132-135.
[216]
Patra, J.K.; Baek, K.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater., 2014, 417305, 1-12.
[http://dx.doi.org/10.1155/2014/417305]
[217]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. (Engl. Ed.), 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[218]
Zhang, D.; Ma, X.L.; Gu, Y.; Huang, H.; Zhang, G.W. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem., 2020, 8, 799.
[http://dx.doi.org/10.3389/fchem.2020.00799] [PMID: 33195027]