A Review on the Drug Delivery Strategies for Parasitic Infections: Scope and Assertion

Page: [109 - 121] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Parasitic infections are prime causes of morbidity and mortality worldwide. Significant progress has been made to cure these infections, such as discovering antiparasitic drugs, developing new formulation strategies, site-directed drug delivery, chemotherapy, etc. Synthetic drugs are perilous and have various side effects, leading to the development of drug resistance and loss of health. Herbal medicines are economical and generally free from potential side effects; therefore, they are acclaiming recognition. However, it is difficult to produce antiparasitic vaccines; major efforts have been made and still, there are no licensed vaccines currently available to control human parasitic ailments. This systematic review assesses various techniques for the treatment of parasitic infections. Moreover, the advancements and challenges involved in establishing novel trends in the development of more effective drug delivery systems are also investigated. Over the years, the incidences of several infectious ailments in humans have enhanced and it is estimated to further increase in the future. Over thirty new infective agents have been identified globally in the last 30 years; approximately 60 % of them are from zoonotic sources. Efficient drug delivery plays a key role in treating parasitic infections. The main goal of the modern antiparasitic drug delivery system is to minimize the potential side effects and deliver the drug directly to the target pathogens. Therefore, more sophisticated drug formulations than a simple tablet or solution are necessary for the treatment of many human parasitic diseases.

Keywords: Antiparasitic drugs, parasitic infections, parasite, treatment, vaccines, zoonotic.

Graphical Abstract

[1]
Nii-Trebi, N.I. Emerging and neglected infectious diseases: Insights, advances, and challenges. BioMed Res. Int., 2017, 2017, 5245021.
[http://dx.doi.org/10.1155/2017/5245021] [PMID: 28286767]
[2]
Slifko, T.R.; Smith, H.V.; Rose, J.B. Emerging parasite zoonoses associated with water and food. Int. J. Parasitol., 2000, 30(12-13), 1379-1393.
[http://dx.doi.org/10.1016/S0020-7519(00)00128-4] [PMID: 11113263]
[3]
Borghardt, J.M.; Kloft, C.; Sharma, A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J., 2018, 2018, 2732017.
[http://dx.doi.org/10.1155/2018/2732017] [PMID: 30018677]
[4]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[5]
Liu, Q.; Wei, F.; Liu, W.; Yang, S.; Zhang, X. Paragonimiasis: An important food-borne zoonosis in China. Trends Parasitol., 2008, 24(7), 318-323.
[http://dx.doi.org/10.1016/j.pt.2008.03.014] [PMID: 18514575]
[6]
Vijayan, V.K. Tropical pulmonary eosinophilia: Pathogenesis, diagnosis and management. Curr. Opin. Pulm. Med., 2007, 13(5), 428-433.
[http://dx.doi.org/10.1097/MCP.0b013e3281eb8ec9] [PMID: 17940489]
[7]
Harhay, M.O.; Horton, J.; Olliaro, P.L. Epidemiology and control of human gastrointestinal parasites in children. Expert Rev. Anti Infect. Ther., 2010, 8(2), 219-234.
[http://dx.doi.org/10.1586/eri.09.119] [PMID: 20109051]
[8]
Labiaga, A.S.; Del Fierro, E.M.; Ulanday, G.E.L.; Ybanez, A. Short review on the zoonotic implications of detected gastrointestinal para-sites in poultry layer and pigs in selected farms in Cebu and Leyte, Philippines. Journal of Agriculture and Technology Management, 2019, 21(2), 17-22.
[9]
Arkun, R. 2004.Parasitic and fungal disease of bones and joints.,
[http://dx.doi.org/10.1055/s-2004-835363]
[10]
Song, X.H.; Ding, L.W.; Wen, H. Bone hydatid disease. Postgrad. Med. J., 2007, 83(982), 536-542.
[http://dx.doi.org/10.1136/pgmj.2007.057166] [PMID: 17675547]
[11]
Anitha, K.; Shenoy, R.K. Treatment of lymphatic filariasis: current trends. Indian J. Dermatol. Venereol. Leprol., 2001, 67(2), 60-65.
[PMID: 17664709]
[12]
Siddappa, S.; Karthikeyan, V.S. Genitourinary hydatid disease: A review. Trop. Med. Surg., 2016, 4(2)
[http://dx.doi.org/10.4172/2329-9088.1000208]
[13]
Padgett, J.J.; Jacobsen, K.H. Loiasis: African eye worm. Trans. R. Soc. Trop. Med. Hyg., 2008, 102(10), 983-989.
[http://dx.doi.org/10.1016/j.trstmh.2008.03.022] [PMID: 18466939]
[14]
Nawa, Y.; Yoshikawa, M.; Sawanyawisuth, K.; Chotmongkol, V.; Figueiras, S.F.; Benavides, M.; Diaz Camacho, S.P. Ocular gnathostomi-asis—update of earlier survey. Am. J. Trop. Med. Hyg., 2017, 97(4), 1232-1234.
[http://dx.doi.org/10.4269/ajtmh.17-0133] [PMID: 28722600]
[15]
Boatin, B.A.; Richards, F.O., Jr Control of onchocerciasis. Adv. Parasitol., 2006, 61, 349-394.
[http://dx.doi.org/10.1016/S0065-308X(05)61009-3] [PMID: 16735169]
[16]
Dickie, E.A.; Giordani, F.; Gould, M.K.; Mäser, P.; Burri, C.; Mottram, J.C.; Rao, S.P.S.; Barrett, M.P. New drugs for human African tryp-anosomiasis: A twenty first century success story. Trop. Med. Infect. Dis., 2020, 5(1), 29.
[http://dx.doi.org/10.3390/tropicalmed5010029] [PMID: 32092897]
[17]
Garcia, H.H.; Gonzalez, A.E.; Gilman, R.H. Cysticercosis of the central nervous system: How should it be managed? Curr. Opin. Infect. Dis., 2011, 24(5), 423-427.
[http://dx.doi.org/10.1097/QCO.0b013e32834a1b20] [PMID: 21788891]
[18]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[19]
Kennedy, P.G. Human African trypanosomiasis of the CNS: Current issues and challenges. J. Clin. Invest., 2004, 113(4), 496-504.
[http://dx.doi.org/10.1172/JCI200421052] [PMID: 14966556]
[20]
Carpio, A.; Romo, M.L.; Parkhouse, R.M.E.; Short, B.; Dua, T. Parasitic diseases of the central nervous system: Lessons for clinicians and policy makers. Expert Rev. Neurother., 2016, 16(4), 401-414.
[http://dx.doi.org/10.1586/14737175.2016.1155454] [PMID: 26894629]
[21]
Shih, R.Y.; Koeller, K.K. Bacterial, fungal, and parasitic infections of the central nervous system: Radiologic-pathologic correlation and historical perspectives: From the radiologic pathology archives. Radiographics, 2015, 35(4), 1141-1169.
[http://dx.doi.org/10.1148/rg.2015140317] [PMID: 26065933]
[22]
Abdel Razek, A.A.; Watcharakorn, A.; Castillo, M. Parasitic diseases of the central nervous system. Neuroimaging Clinics, 2011, 21(4), 815-841. viii
[http://dx.doi.org/10.1016/j.nic.2011.07.005] [PMID: 22032501]
[23]
de Vries, H.J.; Reedijk, S.H.; Schallig, H.D. Cutaneous leishmaniasis: Recent developments in diagnosis and management. Am. J. Clin. Dermatol., 2015, 16(2), 99-109.
[http://dx.doi.org/10.1007/s40257-015-0114-z] [PMID: 25687688]
[24]
Balaña-Fouce, R.; Reguera, R.M.; Cubría, J.C.; Ordóñez, D. The pharmacology of leishmaniasis. Gen. Pharmacol., 1998, 30(4), 435-443.
[http://dx.doi.org/10.1016/S0306-3623(97)00268-1] [PMID: 9580315]
[25]
Rajendran, V.; Rohra, S.; Raza, M.; Hasan, G.M.; Dutt, S.; Ghosh, P.C. Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob. Agents Chemother., 2015, 60(3), 1304-1318.
[http://dx.doi.org/10.1128/AAC.01796-15] [PMID: 26666937]
[26]
de Souza, M.L.; Gonzaga da Costa, L.A.; Silva, E.O.; de Sousa, A.L.M.D.; Dos Santos, W.M.; Rolim Neto, P.J. Recent strategies for the development of oral medicines for the treatment of visceral leishmaniasis. Drug Dev. Res., 2020, 81(7), 803-814.
[http://dx.doi.org/10.1002/ddr.21684] [PMID: 32394440]
[27]
El-Mansory, B.M.; El-Kowrany, S.I.; El-Marhoumy, S.M.; El-Nouby, K.A.; Abd Elazeem, M.A.; El Maghraby, G.M. An experimental study on the effect of pyrimethamine-loaded niosomes in the treatment of acute toxoplasmosis. Int. J. Curr. Microbiol. Appl. Sci., 2019, 8(12), 542-561.
[http://dx.doi.org/10.20546/ijcmas.2019.812.072]
[28]
Mohanraj, V.J.; Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
[http://dx.doi.org/10.4314/tjpr.v5i1.14634]
[29]
Barratt, G.M. Therapeutic applications of colloidal drug carriers. Pharm. Sci. Technol. Today, 2000, 3(5), 163-171.
[http://dx.doi.org/10.1016/S1461-5347(00)00255-8] [PMID: 10785658]
[30]
Das, P.; Paik, D.; Pramanik, A.; De, T.; Chakraborti, T. Antiproteolytic and leishmanicidal activity of Coccinia grandis (L.) Voigt leaf ex-tract against Leishmania donovani promastigotes. Indian J. Exp. Biol., 2015, 53(11), 740-746.
[PMID: 26669017]
[31]
De Moraes, A.R.; Tavares, G.D.; Rocha, F.J.; de Paula, E.; Giorgio, S. Effects of nanoemulsions prepared with essential oils of copaiba-and andiroba against Leishmania infantum and Leishmania amazonensis infections. Exp. Parasitol., 2018, 1(187), 12-21.
[http://dx.doi.org/10.1016/j.exppara.2018.03.005]
[32]
Holden-Dye, L.; Walker, R. Anthelmintic drugs and nematocides: Studies in Caenorhabditis elegans. WormBook: The online review of C. elegans biology; , 2014, pp. 1-29.
[http://dx.doi.org/10.1895/wormbook.1.143.2]
[33]
Yadav, P.; Singh, R. A review on anthelmintic drugs and their future scope. Int. J. Pharm. Pharm. Sci., 2011, 3(3), 17-21.
[34]
Taylor, M.A. Recent developments in ectoparasiticides. The Veterinary Journal, 2001, 161(3), 253-268.
[http://dx.doi.org/10.1053/tvjl.2000.0549]
[35]
Silva, L.D.; Arrúa, E.C.; Pereira, D.A.; Fraga, C.M.; Costa, T.L.; Hemphill, A.; Salomon, C.J.; Vinaud, M.C. Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci. Acta Trop., 2016, 161, 100-105.
[http://dx.doi.org/10.1016/j.actatropica.2016.06.002] [PMID: 27269203]
[36]
Lu, M.; Xiong, D.; Sun, W.; Yu, T.; Hu, Z.; Ding, J.; Cai, Y.; Yang, S.; Pan, B. Sustained release ivermectin-loaded solid lipid dispersion for subcutaneous delivery: In vitro and in vivo evaluation. Drug Deliv., 2017, 24(1), 622-631.
[http://dx.doi.org/10.1080/10717544.2017.1284945] [PMID: 28282989]
[37]
Sarangi, B.; Jana, U.; Sahoo, J.; Mohanta, G.P.; Manna, P.K. Systematic approach for the formulation and optimization of atorvastatin loaded solid lipid nanoaparticles using response surface methodology. Biomed. Microdevices, 2018, 20(3), 53.
[http://dx.doi.org/10.1007/s10544-018-0285-5] [PMID: 29946758]
[38]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clini-cal characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[39]
Lu, C.W.; Liu, X.F.; Jia, Z.F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet, 2020, 395(10224), e39.
[http://dx.doi.org/10.1016/S0140-6736(20)30313-5] [PMID: 32035510]
[40]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[41]
Hooda, R.; Tripathi, M.; Kapoor, K. A review on oral mucosal drug delivery system. Pharma Innov., 2012, 1(1), 1-14.
[42]
Purohit, T.J.; Hanning, S.M.; Wu, Z. Advances in rectal drug delivery systems. Pharm. Dev. Technol., 2018, 23(10), 942-952.
[http://dx.doi.org/10.1080/10837450.2018.1484766] [PMID: 29888992]
[43]
Chen, B.Z.; Yang, Y.; Wang, B.B.; Ashfaq, M.; Guo, X.D. Self-implanted tiny needles as alternative to traditional parenteral administra-tions for controlled transdermal drug delivery. Int. J. Pharm., 2019, 556, 338-348.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.019] [PMID: 30553955]
[44]
Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci., 2011, 50(5), 600-613.
[PMID: 22330705]
[45]
Levison, M.E.; Levison, J.H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infectious Disease Clinics, 2009, 23(4), 791-815,vii..
[PMID: 19909885]
[46]
Miyamoto, Y.; Eckmann, L. Drug development against the major diarrhea-causing parasites of the small intestine. Cryptosporidium and Giardia. Front. Microbiol., 2015, 6, 1208.
[http://dx.doi.org/10.3389/fmicb.2015.01208] [PMID: 26635732]
[47]
Kayser, O.; Kiderlen, A.F. Delivery strategies for antiparasitics. Expert Opin. Investig. Drugs, 2003, 12(2), 197-207.
[http://dx.doi.org/10.1517/13543784.12.2.197] [PMID: 12556214]
[48]
Lambkin, I.; Pinilla, C. Targeting approaches to oral drug delivery. Expert Opin. Biol. Ther., 2002, 2(1), 67-73.
[http://dx.doi.org/10.1517/14712598.2.1.67] [PMID: 11772341]
[49]
Groneberg, D.A.; Fischer, A.; Chung, K.F.; Daniel, H. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Am. J. Respir. Cell Mol. Biol., 2004, 30(3), 251-260.
[http://dx.doi.org/10.1165/rcmb.2003-0315TR] [PMID: 14969997]
[50]
Kayser, O. A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: Research and applications. Int. J. Pharm., 2001, 214(1-2), 83-85.
[http://dx.doi.org/10.1016/S0378-5173(00)00640-2] [PMID: 11282242]
[51]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[52]
ud Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291.
[http://dx.doi.org/10.2147/IJN.S146315]
[53]
Sheokand, S.; Reddy, V.; Bansal, A.K. Pharmaceutical nanocrystals: From fundamentals to advances 2018. Available from: https://www.researchgate.net/publication/324475605
[54]
Gigliobianco, M.R.; Casadidio, C.; Censi, R.; Di Martino, P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemi-cal stability. Pharmaceutics, 2018, 10(3), 134.
[http://dx.doi.org/10.3390/pharmaceutics10030134] [PMID: 30134537]
[55]
Manju, S.; Sreenivasan, K. Functionalised nanoparticles for targeted drug delivery. Biointegration of medical implant materials; Woodhead Publishing, 2010, pp. 267-297.
[http://dx.doi.org/10.1533/9781845699802.2.267]
[56]
Arora, R. Advances in niosome as a drug carrier: A review. Asian J. Pharm., 2016, 1(1)
[http://dx.doi.org/10.22377/ajp.v1i1.737]
[57]
Ge, X.; Wei, M.; He, S.; Yuan, W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics, 2019, 11(2), 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[58]
Zoghroban, H.S.; El-Kowrany, S.I.; Aboul Asaad, I.A.; El Maghraby, G.M.; El-Nouby, K.A.; Abd Elazeem, M.A. Niosomes for enhanced activity of praziquantel against Schistosoma mansoni: In vivo and in vitro evaluation. Parasitol. Res., 2019, 118(1), 219-234.
[http://dx.doi.org/10.1007/s00436-018-6132-z] [PMID: 30421348]
[59]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[60]
Sun, Y.; Chen, D.; Pan, Y.; Qu, W.; Hao, H.; Wang, X.; Liu, Z.; Xie, S. Nanoparticles for antiparasitic drug delivery. Drug Deliv., 2019, 26(1), 1206-1221.
[http://dx.doi.org/10.1080/10717544.2019.1692968] [PMID: 31746243]
[61]
Calvo, A.; Moreno, E.; Larrea, E.; Sanmartín, C.; Irache, J.M.; Espuelas, S. Berberine-loaded liposomes for the treatment of Leishmania infantum-infected BALB/c mice. Pharmaceutics, 2020, 12(9), 858.
[http://dx.doi.org/10.3390/pharmaceutics12090858] [PMID: 32916948]
[62]
Boas, U.; Heegaard, P.M. Dendrimers in drug research. Chem. Soc. Rev., 2004, 33(1), 43-63.
[http://dx.doi.org/10.1039/b309043b] [PMID: 14737508]
[63]
Asthana, S.; Jaiswal, A.K.; Gupta, P.K.; Dube, A.; Chourasia, M.K. Th-1 biased immunomodulation and synergistic antileishmanial activi-ty of stable cationic lipid-polymer hybrid nanoparticle: Biodistribution and toxicity assessment of encapsulated amphotericin B. Eur. J. Pharm. Biopharm., 2015, 89, 62-73.
[http://dx.doi.org/10.1016/j.ejpb.2014.11.019] [PMID: 25477079]
[64]
Kumar, R.; Pandey, K.; Sahoo, G.C.; Das, S.; Das, V.; Topno, R.K.; Das, P. Development of high efficacy peptide coated iron oxide nano-particles encapsulated amphotericin B drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2017, 75, 1465-1471.
[http://dx.doi.org/10.1016/j.msec.2017.02.145] [PMID: 28415438]
[65]
Talisuna, A.O.; Bloland, P.; D’Alessandro, U. History, dynamics, and public health importance of malaria parasite resistance. Clin. Microbiol. Rev., 2004, 17(1), 235-254.
[http://dx.doi.org/10.1128/CMR.17.1.235-254.2004] [PMID: 14726463]
[66]
Afonso, A.; Hunt, P.; Cheesman, S.; Alves, A.C.; Cunha, C.V.; do Rosário, V.; Cravo, P. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob. Agents Chemother., 2006, 50(2), 480-489.
[http://dx.doi.org/10.1128/AAC.50.2.480-489.2006] [PMID: 16436700]
[67]
Tripathy, S.; Mahapatra, S.K.; Chattopadhyay, S.; Das, S.; Dash, S.K.; Majumder, S.; Pramanik, P.; Roy, S. A novel chitosan based antima-larial drug delivery against Plasmodium berghei infection. Acta Trop., 2013, 128(3), 494-503.
[http://dx.doi.org/10.1016/j.actatropica.2013.07.011] [PMID: 23906613]
[68]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2012, 64, 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[69]
Üner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[PMID: 18019829]
[70]
Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull., 2020, 10(2), 150-165.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[71]
Starkloff, W.J.; Bucalá, V.; Palma, S.D.; Gonzalez Vidal, N.L. Design and in vitro characterization of ivermectin nanocrystals liquid formu-lation based on a top-down approach. Pharm. Dev. Technol., 2017, 22(6), 809-817.
[http://dx.doi.org/10.1080/10837450.2016.1200078] [PMID: 27346432]
[72]
Sutradhar, K.B.; Khatun, S.; Luna, I.P. Increasing possibilities of nanosuspension. J. Nanotechnol., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/346581]
[73]
Sattar, A.; Chen, D.; Jiang, L.; Pan, Y.; Tao, Y.; Huang, L.; Liu, Z.; Xie, S.; Yuan, Z. Preparation, characterization and pharmacokinetics of cyadox nanosuspension. Sci. Rep., 2017, 7(1), 2289.
[http://dx.doi.org/10.1038/s41598-017-02523-4] [PMID: 28536446]
[74]
Chavhan, S. S.; Petkar, K. C.; Sawant, K. Nanosuspensions in drug delivery: Recent advances, patent scenarios, and commercialization aspects Critical Reviews™ in Therapeutic Drug Carrier Systems, 2011, 28(5)
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i5.20]
[75]
Shubar, H.M.; Lachenmaier, S.; Heimesaat, M.M.; Lohman, U.; Mauludin, R.; Mueller, R.H.; Fitzner, R.; Borner, K.; Liesenfeld, O. SDS-coated atovaquone nanosuspensions show improved therapeutic efficacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood-brain barriers. J. Drug Target., 2011, 19(2), 114-124.
[http://dx.doi.org/10.3109/10611861003733995] [PMID: 20367080]
[76]
Virmani, T.; Gupta, J. Pharmaceutical application of microspheres: An approach for the treatment of various diseases. Int. J. Pharm. Sci. Res., 2017, 8, 3252-3260.
[77]
Townsend, R.W.; Zutshi, A.; Bekersky, I. Biodistribution of 4-[(14)C]cholesterol-AmBisome following a single intravenous administra-tion to rats. Drug Metab. Dispos., 2001, 29(5), 681-685.
[PMID: 11302934]
[78]
Saxena, S.; Ghosh, P.C. Biodistribution of amphotericin B when delivered through cholesterol hemisuccinate vesicles in normal and A. fumigatus infected mice. Pharm. Res., 2000, 17(10), 1236-1242.
[http://dx.doi.org/10.1023/A:1026418814417] [PMID: 11145229]
[79]
Kratz, F.; Roth, T.; Fichiner, I.; Schumacher, P.; Fiebig, H.H.; Unger, C. In vitro and in vivo efficacy of acid-sensitive transferrin and albu-min doxorubicin conjugates in a human xenograft panel and in the MDA-MB-435 mamma carcinoma model. J. Drug Target., 2000, 8(5), 305-318.
[http://dx.doi.org/10.3109/10611860008997908] [PMID: 11328658]
[80]
Nazari-Vanani, R.; Vais, R.D.; Sharifi, F.; Sattarahmady, N.; Karimian, K.; Motazedian, M.H.; Heli, H. Investigation of anti-leishmanial efficacy of miltefosine and ketoconazole loaded on nanoniosomes. Acta Trop., 2018, 185, 69-76.
[http://dx.doi.org/10.1016/j.actatropica.2018.05.002] [PMID: 29733808]
[81]
Parizi, M.H.; Farajzadeh, S.; Sharifi, I.; Pardakhty, A.; Parizi, M.H.D.; Sharifi, H.; Salarkia, E.; Hassanzadeh, S. Antileishmanial activity of niosomal combination forms of tioxolone along with benzoxonium chloride against Leishmania tropica. Korean J. Parasitol., 2019, 57(4), 359-368.
[http://dx.doi.org/10.3347/kjp.2019.57.4.359] [PMID: 31533402]
[82]
Mostafavi, M.; Sharifi, I.; Farajzadeh, S.; Khazaeli, P.; Sharifi, H.; Pourseyedi, E.; Kakooei, S.; Bamorovat, M.; Keyhani, A.; Parizi, M.H.; Khosravi, A.; Khamesipour, A. Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmanicidal effects. Biomed. Pharmacother., 2019, 116, 108942.
[http://dx.doi.org/10.1016/j.biopha.2019.108942] [PMID: 31152929]
[83]
Miret, J.A.; Moreno, J.; Nieto, J.; Carter, K.C.; Mullen, A.B.; Ambros, L.; Rodríguez, C.; San Andrés, M.I.; González, F. Antileishmanial efficacy and tolerability of combined treatment with non-ionic surfactant vesicle formulations of sodium stibogluconate and paromomycin in dogs. Exp. Parasitol., 2021, 220, 108033.
[http://dx.doi.org/10.1016/j.exppara.2020.108033] [PMID: 33166530]
[84]
Dvoroznáková, E.; Hrcková, G.; Borosková, Z.; Velebný, S.; Dubinský, P. Effect of treatment with free and liposomized albendazole on selected immunological parameters and cyst growth in mice infected with Echinococcus multilocularis. Parasitol. Int., 2004, 53(4), 315-325.
[http://dx.doi.org/10.1016/j.parint.2004.05.001] [PMID: 15464441]
[85]
Panwar, P.; Pandey, B.; Lakhera, P.C.; Singh, K.P. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int. J. Nanomedicine, 2010, 5, 101-108.
[http://dx.doi.org/10.2147/IJN.S8030] [PMID: 20309396]
[86]
Ismail, M.; Ling, L.; Du, Y.; Yao, C.; Li, X. Liposomes of dimeric artesunate phospholipid: A combination of dimerization and self-assembly to combat malaria. Biomaterials, 2018, 163, 76-87.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.026] [PMID: 29454237]
[87]
Moosavian, S.A.; Fallah, M.; Jaafari, M.R. The activity of encapsulated meglumine antimoniate in stearylamine-bearing liposomes against cutaneous leishmaniasis in BALB/c mice. Exp. Parasitol., 2019, 200, 30-35.
[http://dx.doi.org/10.1016/j.exppara.2019.03.004] [PMID: 30898544]
[88]
Bhadra, D.; Bhadra, S.; Jain, N.K. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J. Pharm. Pharm. Sci., 2005, 8(3), 467-482.
[PMID: 16401394]
[89]
Devarakonda, B.; Hill, R.A.; Liebenberg, W.; Brits, M.; de Villiers, M.M. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int. J. Pharm., 2005, 304(1-2), 193-209.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.023] [PMID: 16198076]
[90]
Jain, K.; Verma, A.K.; Mishra, P.R.; Jain, N.K. Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine (Lond.), 2015, 11(3), 705-713.
[http://dx.doi.org/10.1016/j.nano.2014.11.008] [PMID: 25596078]
[91]
Mansuri, S.; Kesharwani, P.; Tekade, R.K.; Jain, N.K. Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral de-livery of albendazole. Eur. J. Pharm. Biopharm., 2016, 102, 202-213.
[http://dx.doi.org/10.1016/j.ejpb.2015.10.015] [PMID: 26563727]
[92]
Ali, M.; Afzal, M.; Verma, M.; Misra-Bhattacharya, S.; Ahmad, F.J.; Dinda, A.K. Improved antifilarial activity of ivermectin in chitosan-alginate nanoparticles against human lymphatic filarial parasite, Brugia malayi. Parasitol. Res., 2013, 112(8), 2933-2943.
[http://dx.doi.org/10.1007/s00436-013-3466-4] [PMID: 23828187]
[93]
Wang, H.; Li, Q.; Reyes, S.; Zhang, J.; Zeng, Q.; Zhang, P.; Xie, L.; Lee, P.J.; Roncal, N.; Melendez, V.; Hickman, M.; Kozar, M.P. Nano-particle formulations of decoquinate increase antimalarial efficacy against liver stage Plasmodium infections in mice. Nanomedicine, 2014, 10(1), 57-65.
[http://dx.doi.org/10.1016/j.nano.2013.07.010] [PMID: 23891618]
[94]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.; Das, P. Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug de-livery system against Leishmania donovani. Drug Deliv., 2015, 22(3), 383-388.
[http://dx.doi.org/10.3109/10717544.2014.891271] [PMID: 24601828]
[95]
Manca, M.L.; Cassano, R.; Valenti, D.; Trombino, S.; Ferrarelli, T.; Picci, N.; Fadda, A.M.; Manconi, M. Isoniazid-gelatin conjugate mi-croparticles containing rifampicin for the treatment of tuberculosis. J. Pharm. Pharmacol., 2013, 65(9), 1302-1311.
[http://dx.doi.org/10.1111/jphp.12094] [PMID: 23927468]
[96]
Esfandiari, F.; Motazedian, M.H.; Asgari, Q.; Morowvat, M.H.; Molaei, M.; Heli, H. Paromomycin-loaded mannosylated chitosan nano-particles: Synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop., 2019, 197, 105072.
[http://dx.doi.org/10.1016/j.actatropica.2019.105072] [PMID: 31300160]
[97]
Hagras, N.A.E.; Allam, A.F.; Farag, H.F.; Osman, M.M.; Shalaby, T.I.; Fawzy Hussein Mogahed, N.M.; Tolba, M.M.; Shehab, A.Y. Suc-cessful treatment of acute experimental toxoplasmosis by spiramycin-loaded chitosan nanoparticles. Exp. Parasitol., 2019, 204, 107717.
[http://dx.doi.org/10.1016/j.exppara.2019.107717] [PMID: 31228418]
[98]
Xie, S.; Pan, B.; Wang, M.; Zhu, L.; Wang, F.; Dong, Z.; Wang, X.; Zhou, W. Formulation, characterization and pharmacokinetics of pra-ziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine (Lond.), 2010, 5(5), 693-701.
[http://dx.doi.org/10.2217/nnm.10.42] [PMID: 20662641]
[99]
Dwivedi, P.; Khatik, R.; Khandelwal, K.; Taneja, I.; Raju, K.S. Wahajuddin; Paliwal, S.K.; Dwivedi, A.K.; Mishra, P.R. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: An improved oral bioavailability in rats. Int. J. Pharm., 2014, 466(1-2), 321-327.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.036] [PMID: 24657144]
[100]
Heidari-Kharaji, M.; Taheri, T.; Doroud, D.; Habibzadeh, S.; Badirzadeh, A.; Rafati, S. Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunol., 2016, 38(10), 599-608.
[http://dx.doi.org/10.1111/pim.12340] [PMID: 27213964]
[101]
Paredes, A.J.; Llabot, J.M.; Sánchez Bruni, S.; Allemandi, D.; Palma, S.D. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying. Drug Dev. Ind. Pharm., 2016, 42(10), 1564-1570.
[http://dx.doi.org/10.3109/03639045.2016.1151036] [PMID: 26856301]
[102]
Shah, S.M.; Ullah, F.; Khan, S.; Shah, S.M.; de Matas, M.; Hussain, Z.; Minhas, M.U. AbdEl-Salam, N.M.; Assi, K.H.; Isreb, M. Smart nanocrystals of artemether: Fabrication, characterization, and comparative in vitro and in vivo antimalarial evaluation. Drug Des. Devel. Ther., 2016, 10, 3837-3850.
[http://dx.doi.org/10.2147/DDDT.S114962] [PMID: 27920499]
[103]
Kayser, O. Nanosuspensions for the formulation of aphidicolin to improve drug targeting effects against leishmania infected macrophages. Int. J. Pharm., 2000, 196(2), 253-256.
[http://dx.doi.org/10.1016/S0378-5173(99)00434-2] [PMID: 10699730]
[104]
Pavan Kumar, M.; Madhusudan Rao, Y.; Apte, S. Improved bioavailability of albendazole following oral administration of nanosuspen-sion in rats. Curr. Nanosci., 2007, 3(2), 191-194.
[http://dx.doi.org/10.2174/157341307780619224]
[105]
Lemke, A.; Kiderlen, A.F.; Petri, B.; Kayser, O. Delivery of amphotericin B nanosuspensions to the brain and determination of activity against Balamuthia mandrillaris amebas. Nanomedicine (Lond.), 2010, 6(4), 597-603.
[http://dx.doi.org/10.1016/j.nano.2009.12.004] [PMID: 20060497]
[106]
Zhou, Y.; Fang, Q.; Niu, B.; Wu, B.; Zhao, Y.; Quan, G.; Pan, X.; Wu, C. Comparative studies on amphotericin B nanosuspensions pre-pared by a high pressure homogenization method and an antisolvent precipitation method. Colloids Surf. B Biointerfaces, 2018, 172, 372-379.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.016] [PMID: 30193196]
[107]
Sangster, N.; Batterham, P.; Chapman, H.D.; Duraisingh, M.; Le Jambre, L.; Shirley, M.; Upcroft, J.; Upcroft, P. Resistance to antiparasitic drugs: The role of molecular diagnosis. Int. J. Parasitol., 2002, 32(5), 637-653.
[http://dx.doi.org/10.1016/S0020-7519(01)00365-4] [PMID: 11943235]
[108]
Singh, A.; Mishra, A.; Chaudhary, R.; Kumar, V. Role of herbal plants in prevention and treatment of parasitic diseases. Journal of Scien-tific Research, 2020, 64(1), 50-58.
[http://dx.doi.org/10.37398/JSR.2020.640106]
[109]
Alebie, G.; Urga, B.; Worku, A. Systematic review on traditional medicinal plants used for the treatment of malaria in Ethiopia: Trends and perspectives. Malar. J., 2017, 16(1), 307.
[http://dx.doi.org/10.1186/s12936-017-1953-2] [PMID: 28764723]
[110]
Polonio, T.; Efferth, T. Leishmaniasis: Drug resistance and natural products (review). Int. J. Mol. Med., 2008, 22(3), 277-286.
[PMID: 18698485]
[111]
García, M.; Monzote, L.; Montalvo, A.M.; Scull, R. Screening of medicinal plants against Leishmania amazonensis. Pharm. Biol., 2010, 48(9), 1053-1058.
[http://dx.doi.org/10.3109/13880200903485729] [PMID: 20731558]
[112]
Nussbaum, K.; Honek, J.; Cadmus, C.M.; Efferth, T. Trypanosomatid parasites causing neglected diseases. Curr. Med. Chem., 2010, 17(15), 1594-1617.
[http://dx.doi.org/10.2174/092986710790979953] [PMID: 20166934]
[113]
Tempone, A.G.; Martins de Oliveira, C.; Berlinck, R.G. Current approaches to discover marine antileishmanial natural products. Planta Med., 2011, 77(6), 572-585.
[http://dx.doi.org/10.1055/s-0030-1250663] [PMID: 21243582]
[114]
Azizi, K.; Shahidi-Hakak, F.; Asgari, Q.; Hatam, G.R.; Fakoorziba, M.R.; Miri, R.; Moemenbellah-Fard, M.D. In vitro efficacy of ethanolic extract of Artemisia absinthium (Asteraceae) against Leishmania major L. using cell sensitivity and flow cytometry assays. J. Parasit. Dis., 2016, 40(3), 735-740.
[http://dx.doi.org/10.1007/s12639-014-0569-5] [PMID: 27605775]
[115]
Kohansal, M.H.; Nourian, A.; Rahimi, M.T.; Daryani, A.; Spotin, A.; Ahmadpour, E. Natural products applied against hydatid cyst proto-scolices: A review of past to present. Acta Trop., 2017, 176, 385-394.
[http://dx.doi.org/10.1016/j.actatropica.2017.09.013] [PMID: 28935552]
[116]
Nezaratizade, S.; Hashemi, N.; Ommi, D.; Orhan, I.E.; Khamesipour, F. A systematic review of anti-Entamoeba histolytica activity of me-dicinal plants published in the last 20 years. Parasitology, 2021, 148(6), 672-684.
[http://dx.doi.org/10.1017/S0031182021000172] [PMID: 33536098]
[117]
Willcox, M. Improved traditional phytomedicines in current use for the clinical treatment of malaria. Planta Med., 2011, 77(6), 662-671.
[http://dx.doi.org/10.1055/s-0030-1250548] [PMID: 21204042]
[118]
Hellmann, J.K.; Münter, S.; Wink, M.; Frischknecht, F. Synergistic and additive effects of epigallocatechin gallate and digitonin on Plas-modium sporozoite survival and motility. PLoS One, 2010, 5(1), e8682.
[http://dx.doi.org/10.1371/journal.pone.0008682] [PMID: 20072627]
[119]
Bero, J.; Frédérich, M.; Quetin-Leclercq, J. Antimalarial compounds isolated from plants used in traditional medicine. J. Pharm. Pharmacol., 2009, 61(11), 1401-1433.
[http://dx.doi.org/10.1211/jpp.61.11.0001] [PMID: 19903367]
[120]
Bilia, A.R. Non-nitrogenous plant-derived constituents with antiplasmodial activity. Nat. Prod. Commun., 2006, 1(12), 1181-1204.
[http://dx.doi.org/10.1177/1934578X0600101218]
[121]
Wright, C.W. Plant derived antimalarial agents: New leads and challenges. Phytochem. Rev., 2005, 4(1), 55-61.
[http://dx.doi.org/10.1007/s11101-005-3261-7]
[122]
Saxena, S.; Pant, N.; Jain, D.C.; Bhakuni, R.S. Antimalarial agents from plant sources. Curr. Sci., 2003, 85, 1314-1329.
[123]
Schwikkard, S.; van Heerden, F.R. Antimalarial activity of plant metabolites. Nat. Prod. Rep., 2002, 19(6), 675-692.
[http://dx.doi.org/10.1039/b008980j] [PMID: 12521264]
[124]
Fournet, A.; Muñoz, V. Natural products as trypanocidal, antileishmanial and antimalarial drugs. Curr. Top. Med. Chem., 2002, 2(11), 1215-1237.
[http://dx.doi.org/10.2174/1568026023393011] [PMID: 12171582]
[125]
Fakhrieh Kashan, Z.; Delavari, M.; Arbabi, M.; Hooshyar, H. Therapeutic effects of Iranian herbal extracts against Trichomonas vaginalis. Iran. Biomed. J., 2017, 21(5), 285-293.
[http://dx.doi.org/10.18869/acadpub.ibj.21.5.285] [PMID: 28755655]
[126]
Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4(9), 727-740.
[http://dx.doi.org/10.1038/nrd1824] [PMID: 16138106]
[127]
Srikiatkhachorn, A. What translatable knowledge from dengue vaccine design can we pass onto future anti-parasitic vaccine development? Expert Opin. Drug Discov., 2020, 15(4), 391-395.
[http://dx.doi.org/10.1080/17460441.2020.1718099] [PMID: 32043379]
[128]
Nandi, A.; Kumar, S.; Shet, A.; Bloom, D.E.; Laxminarayan, R. Childhood vaccinations and adult schooling attainment: Long-term evi-dence from India’s Universal Immunization Programme. Soc. Sci. Med., 2020, 250, 112885.
[http://dx.doi.org/10.1016/j.socscimed.2020.112885] [PMID: 32143089]
[129]
Meeusen, E.N.; Walker, J.; Peters, A.; Pastoret, P.P.; Jungersen, G. Current status of veterinary vaccines. Clin. Microbiol. Rev., 2007, 20(3), 489-510.
[http://dx.doi.org/10.1128/CMR.00005-07] [PMID: 17630337]
[130]
Plotkin, S.A.; Plotkin, S.A. Vaccines: Correlates of vaccine-induced immunity. Clin. Infect. Dis., 2008, 47(3), 401-409.
[http://dx.doi.org/10.1086/589862] [PMID: 18558875]
[131]
Dumonteil, E. DNA vaccines against protozoan parasites: Advances and challenges. J. Biomed. Biotechnol., 2007, 2007(6), 90520.
[http://dx.doi.org/10.1155/2007/90520] [PMID: 17710244]
[132]
Molehin, A.J. Schistosomiasis vaccine development: Update on human clinical trials. J. Biomed. Sci., 2020, 27(1), 28.
[http://dx.doi.org/10.1186/s12929-020-0621-y] [PMID: 31969170]
[133]
Mutapi, F.; Billingsley, P.F.; Secor, W.E. Infection and treatment immunizations for successful parasite vaccines. Trends Parasitol., 2013, 29(3), 135-141.
[http://dx.doi.org/10.1016/j.pt.2013.01.003] [PMID: 23415733]
[134]
Sharma, N.; Singh, V.; Shyma, K.P. Role of parasitic vaccines in integrated control of parasitic diseases in livestock. Vet. World, 2015, 8(5), 590-598.
[http://dx.doi.org/10.14202/vetworld.2015.590-598] [PMID: 27047140]
[135]
Morrison, W.I.; Tomley, F. Development of vaccines for parasitic diseases of animals: Challenges and opportunities. Parasite Immunol., 2016, 38(12), 707-708.
[http://dx.doi.org/10.1111/pim.12398] [PMID: 27801988]