Ivabradine in the Management of COVID-19-related Cardiovascular Complications: A Perspective

Page: [1581 - 1588] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Besides acute respiratory distress syndrome, acute cardiac injury is a major complication in severe coronavirus disease 2019 (COVID-19) and is associated with a poor clinical outcome. Acute cardiac injury with COVID-19 can be of various etiologies, including myocardial ischemia or infarction and myocarditis, and may compromise cardiac function, resulting in acute heart failure or cardiogenic shock. Systemic inflammatory response increases heart rate (HR), which disrupts the myocardial oxygen supply/demand balance and worsens cardiac energy efficiency, thus further deteriorating the cardiac performance of the injured myocardium. In fact, the combination of elevated resting HR and markers of inflammation synergistically predicts adverse cardiovascular prognosis. Thus, targeted HR reduction may potentially be of benefit in cardiovascular pathologies associated with COVID-19. Ivabradine is a drug that selectively reduces HR via If current inhibition in the sinoatrial node without a negative effect on inotropy. Besides selective HR reduction, ivabradine was found to exert various beneficial pleiotropic effects, either HR-dependent or HR-independent, including anti-inflammatory, anti-atherosclerotic, anti-oxidant and antiproliferative actions and the attenuation of endothelial dysfunction and neurohumoral activation. Cardioprotection by ivabradine has already been indicated in cardiovascular pathologies that are prevalent with COVID-19, including myocarditis, acute coronary syndrome, cardiogenic shock or cardiac dysautonomia. Here, we suggest that ivabradine may be beneficial in the management of COVID-19- related cardiovascular complications.

Keywords: Ivabradine, COVID-19, cardiac injury, myocarditis, acute coronary syndrome, cardiogenic shock, cardiac dysautonomia.

[1]
Chung MK, Zidar DA, Bristow MR, et al. COVID-19 and cardiovascular disease: From bench to bedside. Circ Res 2021; 128(8): 1214-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.317997] [PMID: 33856918]
[2]
Sandoval Y, Januzzi JL Jr, Jaffe AS. Cardiac troponin for assessment of myocardial injury in COVID-19: JACC review topic of the week. J Am Coll Cardiol 2020; 76(10): 1244-58.
[http://dx.doi.org/10.1016/j.jacc.2020.06.068] [PMID: 32652195]
[3]
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(7): 811-8.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[4]
Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients With COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5(7): 802-10.
[http://dx.doi.org/10.1001/jamacardio.2020.0950] [PMID: 32211816]
[5]
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspec-tives. Nat Rev Cardiol 2020; 17(9): 543-58.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[6]
Ranard LS, Fried JA, Abdalla M, et al. Approach to acute cardiovascular complications in COVID-19 infection. Circ Heart Fail 2020; 13(7): e007220.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.007220] [PMID: 32500721]
[7]
Tian C, Xiang M. Therapeutic agents against COVID-19 with clinical evidence. Curr Pharm Des 2021; 27(13): 1608-17.
[http://dx.doi.org/10.2174/1381612827666210114150951] [PMID: 33459226]
[8]
Lovato ECW, Barboza LN, Wietzikoski S, et al. Repurposing drugs for the management of patients with confirmed coronavirus disease 2019 (COVID-19). Curr Pharm Des 2021; 27(1): 115-26.
[http://dx.doi.org/10.2174/1381612826666200707121636] [PMID: 32634080]
[9]
Simko F, Baka T. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: Potential allies in the COVID-19 pan-demic instead of a threat? Clin Sci (Lond) 2021; 135(8): 1009-14.
[http://dx.doi.org/10.1042/CS20210182] [PMID: 33881142]
[10]
Wu L, O’Kane AM, Peng H, Bi Y, Motriuk-Smith D, Ren J. SARS-CoV-2 and cardiovascular complications: From molecular mecha-nisms to pharmaceutical management. Biochem Pharmacol 2020; 178: 114114.
[http://dx.doi.org/10.1016/j.bcp.2020.114114] [PMID: 32579957]
[11]
Akhmerov A, Marbán E. COVID-19 and the heart. Circ Res 2020; 126(10): 1443-55.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317055] [PMID: 32252591]
[12]
Paramasivam A, Priyadharsini JV, Raghunandhakumar S, Elumalai P. A novel COVID-19 and its effects on cardiovascular disease. Hypertens Res 2020; 43(7): 729-30.
[http://dx.doi.org/10.1038/s41440-020-0461-x] [PMID: 32355222]
[13]
Simko F, Hrenak J, Dominguez-Rodriguez A, Reiter RJ. Melatonin as a putative protection against myocardial injury in COVID-19 infec-tion. Expert Rev Clin Pharmacol 2020; 13(9): 921-4.
[http://dx.doi.org/10.1080/17512433.2020.1814141] [PMID: 32893686]
[14]
Simko F, Hrenak J, Adamcova M, Paulis L. Renin-angiotensin-aldosterone system: Friend or foe-the matter of balance. insight on histo-ry, therapeutic implications and COVID-19 interactions. Int J Mol Sci 2021; 22(6): 3217.
[http://dx.doi.org/10.3390/ijms22063217] [PMID: 33809971]
[15]
Reil JC, Böhm M. The role of heart rate in the development of cardiovascular disease. Clin Res Cardiol 2007; 96(9): 585-92.
[http://dx.doi.org/10.1007/s00392-007-0537-5] [PMID: 17593316]
[16]
Böhm M, Reil JC, Deedwania P, Kim JB, Borer JS. Resting heart rate: Risk indicator and emerging risk factor in cardiovascular disease. Am J Med 2015; 128(3): 219-28.
[http://dx.doi.org/10.1016/j.amjmed.2014.09.016] [PMID: 25447617]
[17]
Giannoglou GD, Chatzizisis YS, Zamboulis C, Parcharidis GE, Mikhailidis DP, Louridas GE. Elevated heart rate and atherosclerosis: An overview of the pathogenetic mechanisms. Int J Cardiol 2008; 126(3): 302-12.
[http://dx.doi.org/10.1016/j.ijcard.2007.08.077] [PMID: 18068835]
[18]
Custodis F, Schirmer SH, Baumhäkel M, Heusch G, Böhm M, Laufs U. Vascular pathophysiology in response to increased heart rate. J Am Coll Cardiol 2010; 56(24): 1973-83.
[http://dx.doi.org/10.1016/j.jacc.2010.09.014] [PMID: 21126638]
[19]
Nikolovska Vukadinović A, Vukadinović D, Borer J, et al. Heart rate and its reduction in chronic heart failure and beyond. Eur J Heart Fail 2017; 19(10): 1230-41.
[http://dx.doi.org/10.1002/ejhf.902] [PMID: 28627045]
[20]
Guang-Yi C, Li-Sha G, Yue-Chun L. Role of heart rate reduction in the management of myocarditis. Curr Pharm Des 2018; 24(3): 365-78.
[http://dx.doi.org/10.2174/1381612824666180111105923] [PMID: 29332571]
[21]
Whelton SP, Narla V, Blaha MJ, et al. Association between resting heart rate and inflammatory biomarkers (high-sensitivity C-reactive protein, interleukin-6, and fibrinogen) (from the Multi-Ethnic Study of Atherosclerosis). Am J Cardiol 2014; 113(4): 644-9.
[http://dx.doi.org/10.1016/j.amjcard.2013.11.009] [PMID: 24393259]
[22]
Aeschbacher S, Schoen T, Dörig L, et al. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. Ann Med 2017; 49(1): 32-41.
[http://dx.doi.org/10.1080/07853890.2016.1226512] [PMID: 27534940]
[23]
Nanchen D, Stott DJ, Gussekloo J, et al. PROSPER Group. Resting heart rate and incident heart failure and cardiovascular mortality in older adults: Role of inflammation and endothelial dysfunction: The PROSPER study. Eur J Heart Fail 2013; 15(5): 581-8.
[http://dx.doi.org/10.1093/eurjhf/hfs195] [PMID: 23250912]
[24]
Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Abedini S, Hansen JF. Increased heart rate and reduced heart-rate variability are asso-ciated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. Eur Heart J 2004; 25(5): 363-70.
[http://dx.doi.org/10.1016/j.ehj.2003.12.003] [PMID: 15033247]
[25]
Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Hansen JF. C-reactive protein, heart rate variability and prognosis in community sub-jects with no apparent heart disease. J Intern Med 2006; 260(4): 377-87.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01701.x] [PMID: 16961675]
[26]
O Hartaigh B, Bosch JA, Carroll D, et al. Evidence of a synergistic association between heart rate, inflammation, and cardiovascular mortality in patients undergoing coronary angiography. Eur Heart J 2013; 34(12): 932-41.
[http://dx.doi.org/10.1093/eurheartj/ehs396] [PMID: 23178644]
[27]
Torabi-Rahvar M, Rezaei N. Storm at the time of corona: A glimpse at the current understanding and therapeutic opportunities of the SARS-CoV-2 cytokine storm. Curr Pharm Des 2021; 27(13): 1549-52.
[http://dx.doi.org/10.2174/1381612826666201125102649] [PMID: 33238863]
[28]
Swedberg K, Komajda M, Böhm M, et al. SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet 2010; 376(9744): 875-85.
[http://dx.doi.org/10.1016/S0140-6736(10)61198-1] [PMID: 20801500]
[29]
Ponikowski P, Voors AA, Anker SD, et al. ESC Scientific Document Group. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (ESC)developed with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J 2016; 37(27): 2129-200.
[http://dx.doi.org/10.1093/eurheartj/ehw128] [PMID: 27206819]
[30]
Gleiter CH, Deckert J. Adverse CNS-effects of beta-adrenoceptor blockers. Pharmacopsychiatry 1996; 29(6): 201-11.
[http://dx.doi.org/10.1055/s-2007-979572] [PMID: 8956349]
[31]
Carella AM, Antonucci G, Conte M, Di Pumpo M, Giancola A, Antonucci E. Antihypertensive treatment with beta-blockers in the meta-bolic syndrome: A review. Curr Diabetes Rev 2010; 6(4): 215-21.
[http://dx.doi.org/10.2174/157339910791658844] [PMID: 20459394]
[32]
Borer JS, Tardif JC. Efficacy of ivabradine, a selective I(f) inhibitor, in patients with chronic stable angina pectoris and diabetes mellitus. Am J Cardiol 2010; 105(1): 29-35.
[http://dx.doi.org/10.1016/j.amjcard.2009.08.642] [PMID: 20102886]
[33]
Aziriova S, Repova K, Krajcirovicova K, et al. Effect of ivabradine, captopril and melatonin on the behaviour of rats in L-nitro-arginine methyl ester-induced hypertension. J Physiol Pharmacol 2016; 67(6): 895-902.
[PMID: 28195070]
[34]
Simko F, Baka T. Ivabradine and blood pressure reduction: Underlying pleiotropic mechanisms and clinical implications. Front Cardiovasc Med 2021; 8: 607998.
[http://dx.doi.org/10.3389/fcvm.2021.607998] [PMID: 33644129]
[35]
Ceconi C, Cargnoni A, Francolini G, Parinello G, Ferrari R. Heart rate reduction with ivabradine improves energy metabolism and me-chanical function of isolated ischaemic rabbit heart. Cardiovasc Res 2009; 84(1): 72-82.
[http://dx.doi.org/10.1093/cvr/cvp158] [PMID: 19477966]
[36]
Kleinbongard P, Gedik N, Witting P, Freedman B, Klöcker N, Heusch G. Pleiotropic, heart rate-independent cardioprotection by ivabra-dine. Br J Pharmacol 2015; 172(17): 4380-90.
[http://dx.doi.org/10.1111/bph.13220] [PMID: 26076181]
[37]
Sabbah HN, Gupta RC, Kohli S, Wang M, Zhang K, Rastogi S. Heart rate reduction with ivabradine improves left ventricular function and reverses multiple pathological maladaptations in dogs with chronic heart failure. ESC Heart Fail 2014; 1(2): 94-102.
[http://dx.doi.org/10.1002/ehf2.12013] [PMID: 28834632]
[38]
Custodis F, Fries P, Müller A, et al. Heart rate reduction by ivabradine improves aortic compliance in apolipoprotein E-deficient mice. J Vasc Res 2012; 49(5): 432-40.
[http://dx.doi.org/10.1159/000339547] [PMID: 22759927]
[39]
Schirmer SH, Degen A, Baumhäkel M, et al. Heart-rate reduction by If-channel inhibition with ivabradine restores collateral artery growth in hypercholesterolemic atherosclerosis. Eur Heart J 2012; 33(10): 1223-31.
[http://dx.doi.org/10.1093/eurheartj/ehr255] [PMID: 21821843]
[40]
Dominguez-Rodriguez A, Abreu-Gonzalez P. Ivabradine and the anti-inflammatory effects in patients with ischemic heart disease. Int J Cardiol 2016; 221: 627-8.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.096] [PMID: 27420589]
[41]
Rohm I, Kretzschmar D, Pistulli R, et al. Impact of ivabradine on inflammatory markers in chronic heart failure. J Immunol Res 2016; 2016: 6949320.
[http://dx.doi.org/10.1155/2016/6949320] [PMID: 27822484]
[42]
Aquila G, Morelli MB, Vieceli Dalla Sega F, et al. Heart rate reduction with ivabradine in the early phase of atherosclerosis is protective in the endothelium of ApoE-deficient mice. J Physiol Pharmacol 2018; 69(1): 35-52.
[http://dx.doi.org/10.26402/jpp.2018.1.04] [PMID: 29769419]
[43]
Kröller-Schön S, Schulz E, Wenzel P, et al. Differential effects of heart rate reduction with ivabradine in two models of endothelial dys-function and oxidative stress. Basic Res Cardiol 2011; 106(6): 1147-58.
[http://dx.doi.org/10.1007/s00395-011-0227-3] [PMID: 21964558]
[44]
Busseuil D, Shi Y, Mecteau M, et al. Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 2010; 117(3): 234-42.
[http://dx.doi.org/10.1159/000322905] [PMID: 21212673]
[45]
Dedkov EI, Zheng W, Christensen LP, Weiss RM, Mahlberg-Gaudin F, Tomanek RJ. Preservation of coronary reserve by ivabradine-induced reduction in heart rate in infarcted rats is associated with decrease in perivascular collagen. Am J Physiol Heart Circ Physiol 2007; 293(1): H590-8.
[http://dx.doi.org/10.1152/ajpheart.00047.2007] [PMID: 17384136]
[46]
Simko F, Baka T, Poglitsch M, et al. Effect of ivabradine on a hypertensive heart and the renin-angiotensin-aldosterone system in L-NAME-induced hypertension. Int J Mol Sci 2018; 19(10): 3017.
[http://dx.doi.org/10.3390/ijms19103017] [PMID: 30282928]
[47]
Stanko P, Baka T, Repova K, et al. Ivabradine ameliorates kidney fibrosis in L-NAME-induced hypertension. Front Med (Lausanne) 2020; 7: 325.
[http://dx.doi.org/10.3389/fmed.2020.00325] [PMID: 32754607]
[48]
Simko F, Baka T. Chronotherapy as a potential approach to hypertensive patients with elevated heart rate? Br J Clin Pharmacol 2019; 85(8): 1861-2.
[http://dx.doi.org/10.1111/bcp.14020] [PMID: 31222884]
[49]
Baka T, Simko F. Ivabradine reversed nondipping heart rate in rats with l-NAME-induced hypertension. Clin Exp Pharmacol Physiol 2019; 46(6): 607-10.
[http://dx.doi.org/10.1111/1440-1681.13075] [PMID: 30790319]
[50]
Baka T, Simko F. Ivabradine modulates the autonomic nervous system by affecting the “little brain” of the heart: A hypothesis. Med Hypotheses 2019; 129: 109253.
[http://dx.doi.org/10.1016/j.mehy.2019.109253] [PMID: 31371087]
[51]
Yue-Chun L, Teng Z, Na-Dan Z, et al. Comparison of effects of ivabradine versus carvedilol in murine model with the Coxsackievirus B3-induced viral myocarditis. PLoS One 2012; 7(6): e39394.
[http://dx.doi.org/10.1371/journal.pone.0039394] [PMID: 22761780]
[52]
Yue-Chun L, Guang-Yi C, Li-Sha G, et al. The protective effects of ivabradine in preventing progression from viral myocarditis to dilat-ed cardiomyopathy. Front Pharmacol 2016; 7: 408.
[http://dx.doi.org/10.3389/fphar.2016.00408] [PMID: 27847478]
[53]
Li-Sha G, Li L, De-Pu Z, et al. Ivabradine treatment reduces cardiomyocyte apoptosis in a murine model of chronic viral myocarditis. Front Pharmacol 2018; 9: 182.
[http://dx.doi.org/10.3389/fphar.2018.00182] [PMID: 29556195]
[54]
Niccoli G, Borovac JA, Vetrugno V, Camici PG, Crea F. Ivabradine in acute coronary syndromes: Protection beyond heart rate lowering. Int J Cardiol 2017; 236: 107-12.
[http://dx.doi.org/10.1016/j.ijcard.2017.02.046] [PMID: 28256323]
[55]
Heusch G, Skyschally A, Gres P, van Caster P, Schilawa D, Schulz R. Improvement of regional myocardial blood flow and function and reduction of infarct size with ivabradine: Protection beyond heart rate reduction. Eur Heart J 2008; 29(18): 2265-75.
[http://dx.doi.org/10.1093/eurheartj/ehn337] [PMID: 18621770]
[56]
Langenbach MR, Schmitz-Spanke S, Brockert M, et al. Comparison of a beta-blocker and an If current inhibitor in rabbits with myocar-dial infarction. J Cardiovasc Surg (Torino) 2006; 47(6): 719-25.
[PMID: 17043621]
[57]
Mackiewicz U, Gerges JY, Chu S, et al. Ivabradine protects against ventricular arrhythmias in acute myocardial infarction in the rat. J Cell Physiol 2014; 229(6): 813-23.
[http://dx.doi.org/10.1002/jcp.24507] [PMID: 24590965]
[58]
Steg P, Lopez-de-Sà E, Schiele F, et al. Safety of intravenous ivabradine in acute ST-segment elevation myocardial infarction patients treated with primary percutaneous coronary intervention: A randomized, placebo-controlled, double-blind, pilot study. Eur Heart J Acute Cardiovasc Care 2013; 2(3): 270-9.
[http://dx.doi.org/10.1177/2048872613489305] [PMID: 24222839]
[59]
Gerbaud E, Montaudon M, Chasseriaud W, et al. Effect of ivabradine on left ventricular remodelling after reperfused myocardial infarc-tion: A pilot study. Arch Cardiovasc Dis 2014; 107(1): 33-41.
[http://dx.doi.org/10.1016/j.acvd.2013.12.001] [PMID: 24440004]
[60]
Roubille F, Lattuca B, Busseuil D, et al. Is ivabradine suitable to control undesirable tachycardia induced by dobutamine in cardiogenic shock treatment? Med Hypotheses 2013; 81(2): 202-6.
[http://dx.doi.org/10.1016/j.mehy.2013.05.002] [PMID: 23719030]
[61]
Lattuca B, Roubille F. Ivabradine: A promising drug in cardiogenic shock to prevent the undesirable sinus tachycardia induced by dobu-tamine? Int J Cardiol 2015; 178: 308-10.
[http://dx.doi.org/10.1016/j.ijcard.2014.09.106] [PMID: 25305680]
[62]
Akodad M, Lim P, Roubille F. Does ivabradine balance dobutamine effects in cardiogenic shock? A promising new strategy. Acta Physiol (Oxf) 2016; 218(2): 73-7.
[http://dx.doi.org/10.1111/apha.12733] [PMID: 27291979]
[63]
Bakkehaug JP, Naesheim T, Torgersen Engstad E, Kildal AB, Myrmel T, How OJ. Reversing dobutamine-induced tachycardia using ivabradine increases stroke volume with neutral effect on cardiac energetics in left ventricular post-ischaemia dysfunction. Acta Physiol (Oxf) 2016; 218(2): 78-88.
[http://dx.doi.org/10.1111/apha.12704] [PMID: 27145482]
[64]
Tesoro L, Ramirez-Carracedo R, Hernandez I, et al. Ivabradine induces cardiac protection by preventing cardiogenic shock-induced extracellular matrix degradation. Rev Esp Cardiol 2020. S1885-5857(20): 30415.
[http://dx.doi.org/10.1016/j.rec.2020.09.012]
[65]
Yang M, Chen L, Hua T, Zou Y, Yang Z. Beneficial effects of ivabradine on post-resuscitation myocardial dysfunction in a porcine model of cardiac arrest. Shock 2020; 53(5): 630-6.
[http://dx.doi.org/10.1097/SHK.0000000000001403] [PMID: 31274829]
[66]
Gallet R, Ternacle J, Damy T, et al. Hemodynamic effects of ivabradine in addition to dobutamine in patients with severe systolic dys-function. Int J Cardiol 2014; 176(2): 450-5.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.093] [PMID: 25129291]
[67]
Barillà F, Pannarale G, Torromeo C, et al. Ivabradine in patients with ST-elevation myocardial infarction complicated by cardiogenic shock: A preliminary randomized prospective study. Clin Drug Investig 2016; 36(10): 849-56.
[http://dx.doi.org/10.1007/s40261-016-0424-9] [PMID: 27312076]
[68]
Chiu MH, Howlett JG, Sharma NC. Initiation of ivabradine in cardiogenic shock. ESC Heart Fail 2019; 6(5): 1088-91.
[http://dx.doi.org/10.1002/ehf2.12499] [PMID: 31332966]
[69]
El-Naggar AE, El-Gowilly SM, Sharabi FM. Possible ameliorative effect of ivabradine on the autonomic and left ventricular dysfunction induced by doxorubicin in male rats. J Cardiovasc Pharmacol 2018; 72(1): 22-31.
[http://dx.doi.org/10.1097/FJC.0000000000000586] [PMID: 29688913]
[70]
Böhm M, Borer JS, Camm J, et al. Twenty-four-hour heart rate lowering with ivabradine in chronic heart failure: Insights from the SHIFT Holter substudy. Eur J Heart Fail 2015; 17(5): 518-26.
[http://dx.doi.org/10.1002/ejhf.258] [PMID: 25801408]
[71]
Shouman K, Vanichkachorn G, Cheshire WP, et al. Autonomic dysfunction following COVID-19 infection: An early experience. Clin Auton Res 2021; 31(3): 385-94.
[http://dx.doi.org/10.1007/s10286-021-00803-8] [PMID: 33860871]
[72]
Raj SR, Arnold AC, Barboi A, et al. American Autonomic Society. Long-COVID postural tachycardia syndrome: An American Auto-nomic Society statement. Clin Auton Res 2021; 31(3): 365-8.
[http://dx.doi.org/10.1007/s10286-021-00798-2] [PMID: 33740207]
[73]
Taub PR, Zadourian A, Lo HC, Ormiston CK, Golshan S, Hsu JC. Randomized trial of ivabradine in patients with hyperadrenergic pos-tural orthostatic tachycardia syndrome. J Am Coll Cardiol 2021; 77(7): 861-71.
[http://dx.doi.org/10.1016/j.jacc.2020.12.029] [PMID: 33602468]
[74]
O’Sullivan JS, Lyne A, Vaughan CJ. COVID-19-induced postural orthostatic tachycardia syndrome treated with ivabradine. BMJ Case Rep 2021; 14(6): e243585.
[http://dx.doi.org/10.1136/bcr-2021-243585] [PMID: 34127505]