Multifunctional 99mTc-5-azacitidine Gold Nanoparticles: Formulation, In Vitro Cytotoxicity, Radiosynthesis, and In Vivo Pharmacokinetic Study

Page: [387 - 399] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: 5-azacitidine is a very potent chemotherapeutic agent that suffers from certain disadvantages.

Objective: This study aims to prepare gold nanoparticles as a new nano-formula of 5-azacitidine that can improve its bioavailability and decrease its side effects.

Methods: 5-azacytidine-loaded GA-AuNPs were prepared and characterized by UV-Vis spectroscopy, infrared (IR), and electronic transmission microscope (TEM). This new platform was characterized in vitro by measuring its zeta potential, particle size, and drug loading efficacy, and the anti-proliferative effect on the MCF-7 cell line was evaluated. In vivo biodistribution studies of 99mTc-5-aza solution and 99mTc-5-aza-gold nano formula were conducted in tumor-bearing mice by different routes of administration (intravenous and intra-tumor).

Results: 5-Aza-GA-AuNPs formula was successfully prepared with an optimum particle size of ≈34.66 nm, the zeta potential of -14.4 mV, and high entrapment efficiency. 99mTc-5-Aza-GA-AuNPs were successfully radiosynthesized with a labeling yield of 95.4%. Biodistribution studies showed high selective accumulation in tumor and low uptake in non-target organs in the case of the 5-Aza-GA-AuNPs formula than the 99mTc-5-azacitidine solution.

Conclusion: 99mTc-5-Aza-GA-AuNPs improved the selectivity and uptake of 5-azacitidine in cancer. Moreover, 99mTc-5-Aza-GA-AuNPs could be used as hopeful theranostic radiopharmaceutical preparation for cancer.

Keywords: Gold Nanoparticles, Technetium-99m, 5-Azacytidine, Cancer chemotherapeutics, Theranostic radiopharmaceuticals.

[1]
Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; Abebe, N.D.; Abraha, H.N.; Abu-Raddad, L.J.; Abualhasan, A.; Adedeji, I.A.; Advani, S.M.; Afarideh, M.; Afshari, M.; Aghaali, M.; Agius, D.; Agrawal, S.; Ahmadi, A.; Ahmadian, E.; Ahmadpour, E.; Ahmed, M.B.; Akbari, M.E.; Akinyemiju, T.; Al-Aly, Z.; AlAbdulKader, A.M.; Alahdab, F.; Alam, T.; Alamene, G.M.; Alemnew, B.T.T.; Alene, K.A.; Alinia, C.; Alipour, V.; Aljunid, S.M.; Bakeshei, F.A.; Almadi, M.A.H.; Almasi-Hashiani, A.; Alsharif, U.; Alsowaidi, S.; Alvis-Guzman, N.; Amini, E.; Amini, S.; Amoako, Y.A.; Anbari, Z.; Anber, N.H.; Andrei, C.L.; Anjomshoa, M.; Ansari, F.; Ansariadi, A.; Appiah, S.C.Y.; Arab-Zozani, M.; Arabloo, J.; Arefi, Z.; Aremu, O.; Areri, H.A.; Artaman, A.; Asayesh, H.; Asfaw, E.T.; Ashagre, A.F.; Assadi, R.; Ataeinia, B.; Atalay, H.T.; Ataro, Z.; Atique, S.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Awoke, N.; Ayala Quintanilla, B.P.; Ayanore, M.A.; Ayele, H.T.; Babaee, E.; Bacha, U.; Badawi, A.; Bagherzadeh, M.; Bagli, E.; Balakrishnan, S.; Balouchi, A.; Bärnighausen, T.W.; Battista, R.J.; Behzadifar, M.; Behzadifar, M.; Bekele, B.B.; Belay, Y.B.; Belayneh, Y.M.; Berfield, K.K.S.; Berhane, A.; Bernabe, E.; Beuran, M.; Bhakta, N.; Bhattacharyya, K.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Birungi, C.; Bisignano, C.; Bitew, H.; Bjørge, T.; Bleyer, A.; Bogale, K.A.; Bojia, H.A.; Borzì, A.M.; Bosetti, C.; Bou-Orm, I.R.; Brenner, H.; Brewer, J.D.; Briko, A.N.; Briko, N.I.; Bustamante-Teixeira, M.T.; Butt, Z.A.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castro, C.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chanie, W.F.; Chattu, V.K.; Chaturvedi, P.; Chauhan, N.S.; Chehrazi, M.; Chiang, P.P.; Chichiabellu, T.Y.; Chido-Amajuoyi, O.G.; Chimed-Ochir, O.; Choi, J.J.; Christopher, D.J.; Chu, D.T.; Constantin, M.M.; Costa, V.M.; Crocetti, E.; Crowe, C.S.; Curado, M.P.; Dahlawi, S.M.A.; Damiani, G.; Darwish, A.H.; Daryani, A.; das Neves, J.; Demeke, F.M.; Demis, A.B.; Demissie, B.W.; Demoz, G.T.; Denova-Gutiérrez, E.; Derakhshani, A.; Deribe, K.S.; Desai, R.; Desalegn, B.B.; Desta, M.; Dey, S.; Dharmaratne, S.D.; Dhimal, M.; Diaz, D.; Dinberu, M.T.T.; Djalalinia, S.; Doku, D.T.; Drake, T.M.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Ebrahimi, H.; Effiong, A.; Eftekhari, A.; El Sayed, I.; Zaki, M.E.S.; El-Jaafary, S.I.; El-Khatib, Z.; Elemineh, D.A.; Elkout, H.; Ellenbogen, R.G.; Elsharkawy, A.; Emamian, M.H.; Endalew, D.A.; Endries, A.Y.; Eshrati, B.; Fadhil, I.; Fallah Omrani, V.; Faramarzi, M.; Farhangi, M.A.; Farioli, A.; Farzadfar, F.; Fentahun, N.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fisher, J.L.; Force, L.M.; Foroutan, M.; Freitas, M.; Fukumoto, T.; Futran, N.D.; Gallus, S.; Gankpe, F.G.; Gayesa, R.T.; Gebrehiwot, T.T.; Gebremeskel, G.G.; Gedefaw, G.A.; Gelaw, B.K.; Geta, B.; Getachew, S.; Gezae, K.E.; Ghafourifard, M.; Ghajar, A.; Ghashghaee, A.; Gholamian, A.; Gill, P.S.; Ginindza, T.T.G.; Girmay, A.; Gizaw, M.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Goulart, B.N.G.; Grada, A.; Ribeiro Guerra, M.; Guimaraes, A.L.S.; Gupta, P.C.; Gupta, R.; Hadkhale, K.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hanfore, L.K.; Haro, J.M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, R.J.; Hay, S.I.; Henok, A.; Henry, N.J.; Herteliu, C.; Hidru, H.D.; Hoang, C.L.; Hole, M.K.; Hoogar, P.; Horita, N.; Hosgood, H.D.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hussen, M.M.; Ileanu, B.; Ilic, M.D.; Innos, K.; Irvani, S.S.N.; Iseh, K.R.; Islam, S.M.S.; Islami, F.; Jafari Balalami, N.; Jafarinia, M.; Jahangiry, L.; Jahani, M.A.; Jahanmehr, N.; Jakovljevic, M.; James, S.L.; Javanbakht, M.; Jayaraman, S.; Jee, S.H.; Jenabi, E.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joo, T.; Jungari, S.B.; Jürisson, M.; Kabir, A.; Kamangar, F.; Karch, A.; Karimi, N.; Karimian, A.; Kasaeian, A.; Kasahun, G.G.; Kassa, B.; Kassa, T.D.; Kassaw, M.W.; Kaul, A.; Keiyoro, P.N.; Kelbore, A.G.; Kerbo, A.A.; Khader, Y.S.; Khalilarjmandi, M.; Khan, E.A.; Khan, G.; Khang, Y.H.; Khatab, K.; Khater, A.; Khayamzadeh, M.; Khazaee-Pool, M.; Khazaei, S.; Khoja, A.T.; Khosravi, M.H.; Khubchandani, J.; Kianipour, N.; Kim, D.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Komaki, H.; Koyanagi, A.; Krohn, K.J.; Bicer, B.K.; Kugbey, N.; Kumar, V.; Kuupiel, D.; La Vecchia, C.; Lad, D.P.; Lake, E.A.; Lakew, A.M.; Lal, D.K.; Lami, F.H.; Lan, Q.; Lasrado, S.; Lauriola, P.; Lazarus, J.V.; Leigh, J.; Leshargie, C.T.; Liao, Y.; Limenih, M.A.; Listl, S.; Lopez, A.D.; Lopukhov, P.D.; Lunevicius, R.; Madadin, M.; Magdeldin, S.; El Razek, H.M.A.; Majeed, A.; Maleki, A.; Malekzadeh, R.; Manafi, A.; Manafi, N.; Manamo, W.A.; Mansourian, M.; Mansournia, M.A.; Mantovani, L.G.; Maroufizadeh, S.; Martini, S.M.S.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Maswabi, M.T.; Mathur, M.R.; McAlinden, C.; McKee, M.; Meheretu, H.A.A.; Mehrotra, R.; Mehta, V.; Meier, T.; Melaku, Y.A.; Meles, G.G.; Meles, H.G.; Melese, A.; Melku, M.; Memiah, P.T.N.; Mendoza, W.; Menezes, R.G.; Merat, S.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Mihretie, K.M.M.; Miller, T.R.; Mills, E.J.; Mir, S.M.; Mirzaei, H.; Mirzaei, H.R.; Mishra, R.; Moazen, B.; Mohammad, D.K.; Mohammad, K.A.; Mohammad, Y.; Darwesh, A.M.; Mohammadbeigi, A.; Mohammadi, H.; Mohammadi, M.; Mohammadian, M.; Mohammadian-Hafshejani, A.; Mohammadoo-Khorasani, M.; Mohammadpourhodki, R.; Mohammed, A.S.; Mohammed, J.A.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moossavi, M.; Moradi, G.; Moradi-Joo, M.; Moradi-Lakeh, M.; Moradpour, F.; Morawska, L.; Morgado-da-Costa, J.; Morisaki, N.; Morrison, S.D.; Mosapour, A.; Mousavi, S.M.; Muche, A.A.; Muhammed, O.S.S.; Musa, J.; Nabhan, A.F.; Naderi, M.; Nagarajan, A.J.; Nagel, G.; Nahvijou, A.; Naik, G.; Najafi, F.; Naldi, L.; Nam, H.S.; Nasiri, N.; Nazari, J.; Negoi, I.; Neupane, S.; Newcomb, P.A.; Nggada, H.A.; Ngunjiri, J.W.; Nguyen, C.T.; Nikniaz, L.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Nnaji, C.A.; Nojomi, M.; Nosratnejad, S.; Shiadeh, M.N.; Obsa, M.S.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I.H.; Olagunju, A.T.; Olagunju, T.O.; Oluwasanu, M.M.; Omonisi, A.E.; Onwujekwe, O.E.; Oommen, A.M.; Oren, E.; Ortega-Altamirano, D.D.V.; Ota, E.; Otstavnov, S.S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakhale, S.; Pakpour, A.H.; Pana, A.; Park, E.K.; Parsian, H.; Pashaei, T.; Patel, S.; Patil, S.T.; Pennini, A.; Pereira, D.M.; Piccinelli, C.; Pillay, J.D.; Pirestani, M.; Pishgar, F.; Postma, M.J.; Pourjafar, H.; Pourmalek, F.; Pourshams, A.; Prakash, S.; Prasad, N.; Qorbani, M.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi, M.; Rahman, M.A.; Rajati, F.; Rana, S.M.; Raoofi, S.; Rath, G.K.; Rawaf, D.L.; Rawaf, S.; Reiner, R.C.; Renzaho, A.M.N.; Rezaei, N.; Rezapour, A.; Ribeiro, A.I.; Ribeiro, D.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Saad, R.S.; Sabbagh, P.; Sabour, S.; Saddik, B.; Safiri, S.; Sahebkar, A.; Salahshoor, M.R.; Salehi, F.; Salem, H.; Salem, M.R.; Salimzadeh, H.; Salomon, J.A.; Samy, A.M.; Sanabria, J.; Santric Milicevic, M.M.; Sartorius, B.; Sarveazad, A.; Sathian, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Sayyah, M.; Schneider, I.J.C.; Schöttker, B.; Sekerija, M.; Sepanlou, S.G.; Sepehrimanesh, M.; Seyedmousavi, S.; Shaahmadi, F.; Shabaninejad, H.; Shahbaz, M.; Shaikh, M.A.; Shamshirian, A.; Shamsizadeh, M.; Sharafi, H.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Sharifi, H.; Sharma, R.; Sheikh, A.; Shirkoohi, R.; Shukla, S.R.; Si, S.; Siabani, S.; Silva, D.A.S.; Silveira, D.G.A.; Singh, A.; Singh, J.A.; Sisay, S.; Sitas, F.; Sobngwi, E.; Soofi, M.; Soriano, J.B.; Stathopoulou, V.; Sufiyan, M.B.; Tabarés-Seisdedos, R.; Tabuchi, T.; Takahashi, K.; Tamtaji, O.R.; Tarawneh, M.R.; Tassew, S.G.; Taymoori, P.; Tehrani-Banihashemi, A.; Temsah, M.H.; Temsah, O.; Tesfay, B.E.; Tesfay, F.H.; Teshale, M.Y.; Tessema, G.A.; Thapa, S.; Tlaye, K.G.; Topor-Madry, R.; Tovani-Palone, M.R.; Traini, E.; Tran, B.X.; Tran, K.B.; Tsadik, A.G.; Ullah, I.; Uthman, O.A.; Vacante, M.; Vaezi, M.; Varona Pérez, P.; Veisani, Y.; Vidale, S.; Violante, F.S.; Vlassov, V.; Vollset, S.E.; Vos, T.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wabinga, H.; Wachamo, T.M.; Wagnew, F.S.; Waheed, Y.; Weldegebreal, F.; Weldesamuel, G.T.; Wijeratne, T.; Wondafrash, D.Z.; Wonde, T.E.; Wondmieneh, A.B.; Workie, H.M.; Yadav, R.; Yadegar, A.; Yadollahpour, A.; Yaseri, M.; Yazdi-Feyzabadi, V.; Yeshaneh, A.; Yimam, M.A.; Yimer, E.M.; Yisma, E.; Yonemoto, N.; Younis, M.Z.; Yousefi, B.; Yousefifard, M.; Yu, C.; Zabeh, E.; Zadnik, V.; Moghadam, T.Z.; Zaidi, Z.; Zamani, M.; Zandian, H.; Zangeneh, A.; Zaki, L.; Zendehdel, K.; Zenebe, Z.M.; Zewale, T.A.; Ziapour, A.; Zodpey, S.; Murray, C.J.L. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol., 2019, 5(12), 1749-1768.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[2]
Cancer, I.A.O.R.O. Cancer Statistics, 2020, 4.
[3]
WHO. Latest global cancer data, 2018.
[4]
Leal, Y.A. The importance of registries in cancer control. Salud Pública de México, 2016, 58, 309-316.
[5]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[6]
Cammie Barnes, M.F.B.; Drope, J.; Fedewa, S.; Ferlay, J. Global cancer facts and figures American Cancer Society; , 2018, pp. 1-76.
[7]
Steichen, S.D.C-M.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013, 48(3), 416-427.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006] [PMID: 23262059]
[8]
Kim, E.S.; Putnam, J.B.; Komaki, R.; Walsh, G.L.; Ro, J.Y.; Shin, H.J.; Truong, M.; Moon, H.; Swisher, S.G.; Fossella, F.V.; Khuri, F.R.; Hong, W.K.; Shin, D.M. Phase II study of a multidisciplinary approach with induction chemotherapy, followed by surgical resection, radiation therapy, and consolidation chemotherapy for unresectable malignant thymomas: Final report. Lung Cancer, 2004, 44(3), 369-379.
[http://dx.doi.org/10.1016/j.lungcan.2003.12.010] [PMID: 15140551]
[9]
Reddy, A.V.; Hill, C.S.; Sehgal, S.; Ding, D.; Hacker-Prietz, A.; He, J.; Zheng, L.; Herman, J.M.; Meyer, J.; Narang, A.K. Impact of somatic mutations on clinical and pathologic outcomes in borderline resectable and locally advanced pancreatic cancer treated with neoadjuvant chemotherapy and stereotactic body radiotherapy followed by surgical resection. Radiat. Oncol. J., 2021, 39(4), 304-314.
[http://dx.doi.org/10.3857/roj.2021.00815] [PMID: 34986552]
[10]
Sakr, T.M.; El-Hashash, M.A.; El-Mohty, A.A.; Essa, B.M. 99mTc-gallic-gold nanoparticles as a new imaging platform for tumor targeting. Appl. Radiat. Isot., 2020, 164, 109269.
[http://dx.doi.org/10.1016/j.apradiso.2020.109269] [PMID: 32819507]
[11]
Almohammadi, A.; Alqarni, A.; Alraddadi, R.; Alzahrani, F. Assessment of patients’ knowledge in managing side effects of chemotherapy: Case of King Abdul-Aziz University Hospital. J. Cancer Educ., 2020, 35(2), 334-338.
[http://dx.doi.org/10.1007/s13187-019-1469-2] [PMID: 30637532]
[12]
Dhruba, J.; Bharali, S.A.M. Emerging nonamedicines for early cancer detection. Pharmacol. Ther., 2010, 324-335.
[13]
Her, S.; Jaffray, D.A.; Allen, C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev., 2017, 109, 84-101.
[http://dx.doi.org/10.1016/j.addr.2015.12.012] [PMID: 26712711]
[14]
Portney, N.G.; Ozkan, M. Nano-oncology: Drug delivery, imaging, and sensing. Anal. Bioanal. Chem., 2006, 384(3), 620-630.
[http://dx.doi.org/10.1007/s00216-005-0247-7] [PMID: 16440195]
[15]
Alphandéry, E. Natural metallic nanoparticles for application in nano-oncology. Int. J. Mol. Sci., 2020, 21(12), 4412.
[http://dx.doi.org/10.3390/ijms21124412] [PMID: 32575884]
[16]
Dykman, L. A. Gold nanoparticles in biology and medicine Recent advances and prospects. Acta Naturae, 2011, 3(2), 22.
[17]
Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Mol. Pharm., 2019, 16(1), 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810] [PMID: 30452861]
[18]
Haume, K.; Rosa, S.; Grellet, S.; Śmiałek, M.A.; Butterworth, K.T.; Solov’yov, A.V.; Prise, K.M.; Golding, J.; Mason, N.J. Gold nanoparticles for cancer radiotherapy: A review. Cancer Nanotechnol., 2016, 7(1), 8.
[http://dx.doi.org/10.1186/s12645-016-0021-x] [PMID: 27867425]
[19]
Goddard, Z.R.; Marín, M.J.; Russell, D.A.; Searcey, M. Active targeting of gold nanoparticles as cancer therapeutics. Chem. Soc. Rev., 2020, 49(23), 8774-8789.
[http://dx.doi.org/10.1039/D0CS01121E] [PMID: 33089858]
[20]
Kang, M.S.; Lee, S.Y.; Kim, K.S.; Han, D.W. State of the art biocompatible gold nanoparticles for cancer theragnosis. Pharmaceutics, 2020, 12(8), 701.
[http://dx.doi.org/10.3390/pharmaceutics12080701] [PMID: 32722426]
[21]
Yeh, Y.C.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[22]
Mohammad Zaki Ahmad, S.A. Metallic nanoparticles technology overview drug delivery applications in oncology. Expert Opin. Drug Deliv., 2010, 7(8), 927-942.
[23]
Huynh, N.T.; Roger, E.; Lautram, N.; Benoît, J.P.; Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: Passive versus active targeting. Nanomedicine (Lond.), 2010, 5(9), 1415-1433.
[http://dx.doi.org/10.2217/nnm.10.113] [PMID: 21128723]
[24]
Saeideh Same, A.A.; Nakhjavani, S.A.; Barar, J.; Omidi, Y. Radiolabeled theranostics: Magnetic and gold nanoparticles. 2016, 6(3), 169-181.
[25]
Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[26]
Cheng, Y.; Morshed, R.A.; Auffinger, B.; Tobias, A.L.; Lesniak, M.S. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv. Drug Deliv. Rev., 2014, 66, 42-57.
[http://dx.doi.org/10.1016/j.addr.2013.09.006] [PMID: 24060923]
[27]
Ferreira-Gonçalves, T.; Gaspar, M.M.; Coelho, J.M.P.; Marques, V.; Viana, A.S.; Ascensão, L.; Carvalho, L.; Rodrigues, C.M.P.; Ferreira, H.A.; Ferreira, D.; Reis, C.P. The role of rosmarinic acid on the bioproduction of gold nanoparticles as part of a photothermal approach for breast cancer treatment. Biomolecules, 2022, 12(1), 71.
[http://dx.doi.org/10.3390/biom12010071] [PMID: 35053219]
[28]
Li, J.; Rashidi, K.; Mahdavi, B.; Goorani, S.; Karimian, M.; Abbasi, N.; Ghaneialvar, H.; Karimi, E.; Aidy, A.; Zangeneh, A. Gold nanoparticles formulated with Nigella aqueous extract having potent antioxidant and anti-human ovarian cancer activities in vitro condition. Arch. Med. Sci., 2021.
[http://dx.doi.org/10.5114/aoms/144119]
[29]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[30]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[31]
Al-Jawad, S.M.H.; Taha, A.A.; Al-Halbosiy, M.M.F.; Al-Barram, L.F.A. Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagn. Photodyn. Ther., 2018, 21, 201-210.
[http://dx.doi.org/10.1016/j.pdpdt.2017.12.004] [PMID: 29223737]
[32]
Li, J-L.; Gu, M. Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J. Sel. Top. Quantum Electron., 2009, 16(4), 989-996.
[33]
Chegel, V.; Rachkov, O.; Lopatynskyi, A.; Ishihara, S.; Yanchuk, I.; Nemoto, Y.; Hill, J.P.; Ariga, K. Gold nanoparticles aggregation: Drastic effect of cooperative functionalities in a single molecular conjugate. J. Phys. Chem. C, 2012, 116(4), 2683-2690.
[http://dx.doi.org/10.1021/jp209251y]
[34]
Graczyk, A.; Pawlowska, R.; Jedrzejczyk, D.; Chworos, A. Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules, 2020, 25(1), E204.
[http://dx.doi.org/10.3390/molecules25010204] [PMID: 31947834]
[35]
Kim, C.K.; Ghosh, P.; Rotello, V.M. Multimodal drug delivery using gold nanoparticles. Nanoscale, 2009, 1(1), 61-67.
[http://dx.doi.org/10.1039/b9nr00112c] [PMID: 20644861]
[36]
Park, C.; Youn, H.; Kim, H.; Noh, T.; Kook, Y.H.; Oh, E.T.; Park, H.J.; Kim, C. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J. Mater. Chem., 2009, 19(16), 2310-2315.
[http://dx.doi.org/10.1039/b816209c]
[37]
Maccora, D.; Dini, V.; Battocchio, C.; Fratoddi, I.; Cartoni, A.; Rotili, D.; Castagnola, M.; Faccini, R.; Bruno, I.; Scotognella, T.; Giordano, A.; Venditti, I. Gold nanoparticles and nanorods in nuclear medicine: A mini review. Appl. Sci. (Basel), 2019, 9(16), 3232.
[http://dx.doi.org/10.3390/app9163232]
[38]
Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles–an eco-friendly approach. Resource-Efficient Technologies, 2017, 3(4), 406-413.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]
[39]
Abo-Hamed, E.K.; Pennycook, T.; Vaynzof, Y.; Toprakcioglu, C.; Koutsioubas, A.; Scherman, O.A. Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane. Small, 2014, 10(15), 3145-3152.
[http://dx.doi.org/10.1002/smll.201303507] [PMID: 24777891]
[40]
Psimadas, D.; Valotassiou, V.; Loudo, G. Molecular nanomedicine towards cancer. J. Pharm. Sci., 2012, 10.
[41]
Li, X.; Wang, C.; Tan, H.; Cheng, L.; Liu, G.; Yang, Y.; Zhao, Y.; Zhang, Y.; Li, Y.; Zhang, C.; Xiu, Y.; Cheng, D.; Shi, H. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials, 2016, 108, 71-80.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.048] [PMID: 27619241]
[42]
Sigma-Aldrich, I. 5-Azacytidine; Sigma-Aldrich, I., Ed.; , 2018.
[43]
Momparler, M.K.a.R.L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2’-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy; Clinical Epigenetics Journal, 2013.
[44]
Biological effects of 5-azacytidine in eukaryotes. Oncology, 2009, 30, 405.
[45]
Jahanfar, F.; Hasani, A.; Shanebandi, D.; Rahmati, M.; Hamishehkar, H. Enhanced in vitro anti-tumor activity of 5-azacytidine by entrapment into solid lipid nanoparticles. Adv. Pharm. Bull., 2016, 6(3), 367-375.
[http://dx.doi.org/10.15171/apb.2016.048] [PMID: 27766220]
[46]
Christman, J.K. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. 2002, 13.
[47]
Stresemann, C.; Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer, 2008, 123(1), 8-13.
[http://dx.doi.org/10.1002/ijc.23607] [PMID: 18425818]
[48]
Momparler, R.L. A perspective on the comparative antileukemic activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (vidaza). Pharmaceuticals (Basel), 2012, 5(8), 875-881.
[http://dx.doi.org/10.3390/ph5080875] [PMID: 24280679]
[49]
Chandramohan Reddy, T.; Bharat Reddy, D.; Aparna, A.; Arunasree, K.M.; Gupta, G.; Achari, C.; Reddy, G.V.; Lakshmipathi, V.; Subramanyam, A.; Reddanna, P. Anti-leukemic effects of gallic acid on human leukemia K562 cells: Downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicol. In Vitro, 2012, 26(3), 396-405.
[http://dx.doi.org/10.1016/j.tiv.2011.12.018] [PMID: 22245431]
[50]
Laura, E. 5-Aza-29-deoxycytidine is chemopreventive in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced primary mouse lung tumor model. Carcinogenesis, 1999, 20(2), 343-346.
[51]
Pascual, L.; Sanceón, F.; Martínez-Máñez, R.; Barja-Fidalgo, T.C.; da Silva, S.V.; Sousa-Batista, A.J.; Cerqueira-Coutinho, C.; Santos-Oliveira, R. Mesoporous silica as multiple nanoparticles systems for inflammation imaging as nano-radiopharmaceuticals. Microporous Mesoporous Mater., 2017, 239, 426-431.
[http://dx.doi.org/10.1016/j.micromeso.2016.10.041]
[52]
Datta, P.; Ray, S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J. Labelled Comp. Radiopharm., 2020, 63(7), 333-355.
[http://dx.doi.org/10.1002/jlcr.3839] [PMID: 32220029]
[53]
Alkandaria, A.; Shafaaa, M.; Alsayed, Y. Preclinical assessment of Tc-99m labeled nano colloid liposomes as an effective blood pool radiopharmaceutical. Egyptian J. Nucl. Med, 2020, 20(1)
[54]
Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem., 2016, 27(10), 2225-2238.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[55]
El-Ghareb, W.I.; Swidan, M.M.; Ibrahim, I.T.; Abd El-Bary, A.; Tadros, M.I.; Sakr, T.M. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int. J. Pharm., 2020, 586, 119514.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119514] [PMID: 32565281]
[56]
Pluchery, O.; Remita, H.; Schaming, D. Demonstrative experiments about gold nanoparticles and nanofilms: An introduction to nanoscience. Gold Bull., 2013, 46(4), 319-327.
[http://dx.doi.org/10.1007/s13404-013-0122-9]
[57]
Meneghetti, V.A.M. Size evaluation of gold nanoparticles by UV-vis spectroscopy. J. Phys. Chem. C, 2009, 113, 4277-4285.
[58]
Ines Delfino, M.L.; Tatè, R.; Portaccio, M. Preparation and characterization of Au nanoparticles for theranostic applications. International Conference On Sensors and Applications, 2014.
[59]
Abdelhalim, M.A.K.; Mady, M.M. Physical properties of different gold nanoparticles: Ultraviolet-visible and fluorescence measurements. J. Nanomed. Nanotechnol., 2012, 03(03)
[http://dx.doi.org/10.4172/2157-7439.1000133]
[60]
Mukherjee, A.; Sasikala, W.D. Drug-DNA intercalation: From discovery to the molecular mechanism. Adv. Protein Chem. Struct. Biol., 2013, 92, 1-62.
[http://dx.doi.org/10.1016/B978-0-12-411636-8.00001-8] [PMID: 23954098]
[61]
El-Safoury, D.M.; Ibrahim, A.B.; El-Setouhy, D.A.; Khowessah, O.M.; Motaleb, M.A.; Sakr, T.M. Amelioration of tumor targeting and in vivo biodistribution of 99mTc-methotrexate-gold nanoparticles (99mTc-Mex-AuNPs). J. Pharm. Sci., 2021, 110(8), 2955-2965.
[http://dx.doi.org/10.1016/j.xphs.2021.03.021] [PMID: 33812886]
[62]
Ramachandra, B.; Naidu, N.V. Determination of azacitidine by spectrophotometric method. Open J. Med. Chem., 2018, 08(02), 15-21.
[http://dx.doi.org/10.4236/ojmc.2018.82002]
[63]
Philip Skehan, R.S. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82.
[64]
Chattopadhyay, S.; Saha Das, S.; Chandra, S.; De, K.; Mishra, M.; Ranjan Sarkar, B.; Sinha, S.; Ganguly, S. Synthesis and evaluation of (99m)Tc-moxifloxacin, a potential infection specific imaging agent. Appl. Radiat. Isot., 2010, 68(2), 314-316.
[http://dx.doi.org/10.1016/j.apradiso.2009.10.030] [PMID: 19900818]
[65]
Chattopadhyay, S.; Ghosh, M.; Sett, S.; Das, M.K.; Chandra, S.; De, K.; Mishra, M.; Sinha, S.; Ranjan Sarkar, B.; Ganguly, S. Preparation and evaluation of 99mTc-cefuroxime, a potential infection specific imaging agent: A reliable thin layer chromatographic system to delineate impurities from the 99mTc-antibiotic. Appl. Radiat. Isot., 2012, 70(10), 2384-2387.
[http://dx.doi.org/10.1016/j.apradiso.2012.06.007] [PMID: 22871442]
[66]
Soliman, M.M.; Sakr, T.M.; Rashed, H.M.; Hamed, A.A.; Abd El-Rehim, H.A. Polyethylene oxide-polyacrylic acid-folic acid (PEO-PAAc) nanogel as a 99m Tc targeting receptor for cancer diagnostic imaging. J. Labelled Comp. Radiopharm., 2021, 64(14), 534-547.
[http://dx.doi.org/10.1002/jlcr.3952] [PMID: 34582054]
[67]
Ahmed, I.S.; Rashed, H.M.; Fayez, H.; Farouk, F.; Shamma, R.N. Nanoparticle-mediated dual targeting: An approach for enhanced baicalin delivery to the liver. Pharmaceutics, 2020, 12(2), E107.
[http://dx.doi.org/10.3390/pharmaceutics12020107] [PMID: 32013203]
[68]
Sakr, T.M.; Khowessah, O.M.; Motaleb, M.A.; Abd El-Bary, A.; El-Kolaly, M.T.; Swidan, M.M. I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur. J. Pharm. Sci., 2018, 122, 239-245.
[http://dx.doi.org/10.1016/j.ejps.2018.06.029] [PMID: 29981892]
[69]
Rashed, H.M.; Marzook, F.A.; Farag, H. 99mTc-zolmitriptan: Radiolabeling, molecular modeling, biodistribution and gamma scintigraphy as a hopeful radiopharmaceutical for lung nuclear imaging. Radiol. Med. (Torino), 2016, 121(12), 935-943.
[http://dx.doi.org/10.1007/s11547-016-0677-7] [PMID: 27586132]
[70]
Ibrahim, A.; Sakr, T.M.; Khoweysa, O.M.A.; Motaleb, M.A.; Abd El-Bary, A.; El-Kolaly, M.T. Formulation and preclinical evaluation of 99m Tc–gemcitabine as a novel radiopharmaceutical for solid tumor imaging. J. Radioanal. Nucl. Chem., 2014, 302(1), 179-186.
[http://dx.doi.org/10.1007/s10967-014-3233-8]
[71]
Sakr, T.M.; Khedr, M.A.; Rashed, H.M.; Mohamed, M.E. In silico-based repositioning of phosphinothricin as a novel technetium-99m imaging probe with potential anti-cancer activity. Molecules, 2018, 23(2), E496.
[http://dx.doi.org/10.3390/molecules23020496] [PMID: 29473879]
[72]
Khan, N.U.H.; Naqvi, S.A.R.; Roohi, S.; Sherazi, T.A.; Khan, Z.A.; Zahoor, A.F. Technetium-99m radiolabeling and biological study of epirubicin for in vivo imaging of multi-drug-resistant Staphylococcus aureus infections via single photon emission computed tomography. Chem. Biol. Drug Des., 2019, 93(2), 154-162.
[http://dx.doi.org/10.1111/cbdd.13393] [PMID: 30216686]
[73]
Essam, H.M.; Refaye, M.S.; El-Sharawy, D.M. Radiolabelling and biological assessment of 99mTc-mebeverine as a possible tracer for solid tumor diagnosis. Egyptian Journal of Radiation Sciences and Applications, 2021.
[74]
Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol., 2020, 8, 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[75]
Gregorio-Jauregui, K.M.; Pineda, M.G.; Rivera-Salinas, J.E.; Hurtado, G.; Saade, H.; Martinez, J.L.; Ilyina, A.; López, R.G. One-step method for preparation of magnetic nanoparticles coated with chitosan. J. Nanomater., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/813958]
[76]
Kissinger, L.D.; Stemm, N.L. Determination of the antileukemia agents cytarabine and azacitidine and their respective degradation products by high-performance liquid chromatography. J. Chromatogr. A, 1986, 353, 309-318.
[http://dx.doi.org/10.1016/S0021-9673(01)87101-6] [PMID: 2422189]
[77]
Iqbal, M.; Usanase, G.; Oulmi, K.; Aberkane, F.; Bendaikha, T.; Fessi, H.; Zine, N.; Agusti, G.; Errachid, E-S.; Elaissari, A. Preparation of gold nanoparticles and determination of their particles size via different methods. Mater. Res. Bull., 2016, 79, 97-104.
[http://dx.doi.org/10.1016/j.materresbull.2015.12.026]
[78]
Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release, 2014, 190, 15-28.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.053] [PMID: 24747160]
[79]
Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomedicine, 2017, 12, 4085-4109.
[http://dx.doi.org/10.2147/IJN.S132780] [PMID: 28615938]
[80]
Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1638), 20130099.
[http://dx.doi.org/10.1098/rstb.2013.0099] [PMID: 24493747]
[81]
Cheow, W.S.; Hadinoto, K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf. B Biointerfaces, 2011, 85(2), 214-220.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.033] [PMID: 21439797]
[82]
Liu, W.; Deacon, J.; Yan, H.; Sun, B.; Liu, Y.; Hegan, D.; Li, Q.; Coman, D.; Parent, M.; Hyder, F.; Roberts, K.; Nath, R.; Tillement, O.; Engelman, D.; Glazer, P. Tumor-targeted pH-low insertion peptide delivery of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy. Transl. Oncol., 2020, 13(11), 100839.
[http://dx.doi.org/10.1016/j.tranon.2020.100839] [PMID: 32763504]
[83]
Amina, S.J.; Guo, B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomedicine, 2020, 15, 9823-9857.
[http://dx.doi.org/10.2147/IJN.S279094] [PMID: 33324054]
[84]
You, B.R.; Park, W.H. Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol. In vitro, 2010, 24(5), 1356-1362.
[http://dx.doi.org/10.1016/j.tiv.2010.04.009] [PMID: 20417267]
[85]
Chen, D.; Ganesh, S.; Wang, W.; Amiji, M. Protein corona-enabled systemic delivery and targeting of nanoparticles. AAPS J., 2020, 22(4), 83.
[http://dx.doi.org/10.1208/s12248-020-00464-x] [PMID: 32495039]
[86]
Alberg, I.; Kramer, S.; Schinnerer, M.; Hu, Q.; Seidl, C.; Leps, C.; Drude, N.; Möckel, D.; Rijcken, C.; Lammers, T.; Diken, M.; Maskos, M.; Morsbach, S.; Landfester, K.; Tenzer, S.; Barz, M.; Zentel, R. Polymeric nanoparticles with neglectable protein corona. Small, 2020, 16(18), e1907574.
[http://dx.doi.org/10.1002/smll.201907574] [PMID: 32250017]
[87]
Barrán-Berdón, A.L.; Pozzi, D.; Caracciolo, G.; Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Riccioli, A.; Palchetti, S.; Laganà, A. Time evolution of nanoparticle-protein corona in human plasma: Relevance for targeted drug delivery. Langmuir, 2013, 29(21), 6485-6494.
[http://dx.doi.org/10.1021/la401192x] [PMID: 23631648]
[88]
Götze, K.; Platzbecker, U.; Giagounidis, A.; Haase, D.; Lübbert, M.; Aul, C.; Ganser, A.; Germing, U.; Hofmann, W.K. Azacitidine for treatment of patients with myelodysplastic syndromes (MDS): Practical recommendations of the German MDS Study Group. Ann. Hematol., 2010, 89(9), 841-850.
[http://dx.doi.org/10.1007/s00277-010-1015-0] [PMID: 20567826]
[89]
Graef, T.; Kuendgen, A.; Fenk, R.; Zohren, F.; Haas, R.; Kobbe, G. Successful treatment of relapsed AML after allogeneic stem cell transplantation with azacitidine. Leuk. Res., 2007, 31(2), 257-259.
[http://dx.doi.org/10.1016/j.leukres.2006.03.003] [PMID: 16620971]
[90]
Inoue, M.; Sakaguchi, N.; Isuzugawa, K.; Tani, H.; Ogihara, Y. Role of reactive oxygen species in gallic acid-induced apoptosis. Biol. Pharm. Bull., 2000, 23(10), 1153-1157.
[http://dx.doi.org/10.1248/bpb.23.1153] [PMID: 11041242]
[91]
Tsai, C-L.; Chiu, Y.M.; Ho, T.Y.; Hsieh, C.T.; Shieh, D.C.; Lee, Y.J.; Tsay, G.J.; Wu, Y.Y. Gallic acid induces apoptosis in human gastric adenocarcinoma cells. Anticancer Res., 2018, 38(4), 2057-2067.
[PMID: 29599323]
[92]
Fakhrabadi, H.G.; Rabbani-Chadegani, A.; Ghadam, P.; Amiri, S. Protective effect of bleomycin on 5-azacitidine induced cytotoxicity and apoptosis in mice hematopoietic stem cells via Bcl-2/Bax and HMGB1 signaling pathway. Toxicol. Appl. Pharmacol., 2020, 396, 114996.
[http://dx.doi.org/10.1016/j.taap.2020.114996] [PMID: 32278510]
[93]
Mirković, M.; Radović, M.; Stanković, D.; Milanović, Z.; Janković, D.; Matović, M.; Jeremić, M.; Antić, B.; Vranješ-Đurić, S. 99mTc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent. Mater. Sci. Eng. C, 2019, 102, 124-133.
[http://dx.doi.org/10.1016/j.msec.2019.04.034] [PMID: 31146983]
[94]
Faheem, A.R.; Bokhari, T.H.; Roohi, S.; Mushtaq, A.; Sohaib, M. (99m)Tc-daunorubicin a potential brain imaging and theranostic agent: Synthesis, quality control, characterization, biodistribution and scintigraphy. Nucl. Med. Biol., 2013, 40(1), 148-152.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.08.010] [PMID: 23146307]