Synthetic Strategies of Pyrazoline Derivatives for the Development of New Anticancer Agents: Recent Updates

Page: [92 - 132] Pages: 41

  • * (Excluding Mailing and Handling)

Abstract

Background: Pyrazoline is a heterocyclic compound with five members, two nitrogen atoms in a circle, and one endocyclic bond. Pyrazoline is a popular electron-rich nitrogen carrier that combines exciting electronic properties with the potential for dynamic applications. Pyrazine derivatives have been synthesized using a variety of methods, all of which have shown to have a strong biological effect.

Objective: The study of the biological activity of pyrazoline derivatives has been a fascinating field of pharmaceutical chemistry. Pyrazolines are used in a wide range of applications. The pyrazoline derivatives described in the literature between 2000 and 2021 were the focus of this study. Pyazolines have been discussed in terms of their introduction, general synthetic method, and anticancer potential in the current review.

Conclusion: Pyrazolines are well-known heterocyclic compounds. Pyrazoline is a five-membered ring containing three carbon and two nitrogen atoms nearby. The synthesis of pyrazolines has been described using a variety of methods. Anticancer activity has been discovered in a number of pyrazoline derivatives, which encourages further research. The use of pyrazoline to treat cancer has piqued researchers' interest in learning more about this moiety.

Keywords: Cancer, pyrazoline, anticancer potential, cell lines, receptors, synthetic methods.

Graphical Abstract

[1]
Girgis, A.S.; Basta, A.H.; El-Saied, H.; Mohamed, M.A.; Bedair, A.H.; Salim, A.S. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application. R. Soc. Open Sci., 2018, 5(3), 171964.
[http://dx.doi.org/10.1098/rsos.171964] [PMID: 29657796]
[2]
Babu, V.H.; Sridevi, C.H.; Joseph, A.; Srinivasan, K.K. Synthesis and biological evaluation of some novel pyrazolines. Indian J. Pharm. Sci., 2007, 69(3), 470.
[http://dx.doi.org/10.4103/0250-474X.34569]
[3]
Azarifar, D.; Shaebanzadeh, M. Synthesis and characterization of new 3, 5-dinaphthyl substituted 2-pyrazolines and study of their antimicrobial activity. Molecules, 2002, 7(12), 885-895.
[http://dx.doi.org/10.3390/71200885]
[4]
Kumar, S.; Bawa, S.; Drabu, S.; Kumar, R.; Gupta, H. Biological activities of pyrazoline derivatives--a recent development. Rec. Pat Antiinfect. Drug Discov., 2009, 4(3), 154-163.
[http://dx.doi.org/10.2174/157489109789318569] [PMID: 19545230]
[5]
Ali, M.A.; Shaharyar, M.; Siddiqui, A.A. Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(2), 268-275.
[http://dx.doi.org/10.1016/j.ejmech.2006.08.004] [PMID: 17007966]
[6]
Rizvi, S.U.; Siddiqui, H.L.; Johns, M.; Detorio, M.; Schinazi, R.F. Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med. Chem. Res., 2012, 21(11), 3741-3749.
[http://dx.doi.org/10.1007/s00044-011-9912-x]
[7]
Mishriky, N.; Asaad, F.M.; Ibrahim, Y.A.; Girgis, A.S. New 2-pyrazolines of anticipated molluscicidal activity. Pharmazie, 1996, 51(8), 544-548.
[PMID: 8794465]
[8]
Kawazura, H.; Takahashi, Y.; Shiga, Y.; Shimada, F.; Ohto, N.; Tamura, A. Cerebroprotective effects of a novel pyrazoline derivative, MS-153, on focal ischemia in rats. Jpn. J. Pharmacol., 1997, 73(4), 317-324.
[http://dx.doi.org/10.1254/jjp.60.317] [PMID: 9165368]
[9]
Li, J.T.; Zhang, X.H.; Lin, Z.P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem., 2007, 3(1), 13.
[http://dx.doi.org/10.1186/1860-5397-3-13] [PMID: 17374170]
[10]
Nehra, B.; Rulhania, S.; Jaswal, S.; Kumar, B.; Singh, G.; Monga, V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur. J. Med. Chem., 2020, 205, 112666.
[http://dx.doi.org/10.1016/j.ejmech.2020.112666] [PMID: 32795767]
[11]
Chorvat, R.J.; Berbaum, J.; Seriacki, K.; McElroy, J.F. JD-5006 and JD-5037: Peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipinabant) as metabolic disorder therapeutics devoid of CNS liabilities. Bioorg. Med. Chem. Lett., 2012, 22(19), 6173-6180.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.004] [PMID: 22959249]
[12]
Upadhyay, N.; Tilekar, K.; Loiodice, F.; Anisimova, N.Y.; Spirina, T.S.; Sokolova, D.V.; Smirnova, G.B.; Choe, J.Y.; Meyer-Almes, F.J.; Pokrovsky, V.S.; Lavecchia, A.; Ramaa, C.S. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg. Chem., 2021, 107, 104527.
[http://dx.doi.org/10.1016/j.bioorg.2020.104527] [PMID: 33317839]
[13]
Karkkainen, M.J.; Petrova, T.V. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene, 2000, 19(49), 5598-5605.
[http://dx.doi.org/10.1038/sj.onc.1203855] [PMID: 11114740]
[14]
Morabito, A.; De Maio, E.; Di Maio, M.; Normanno, N.; Perrone, F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: Current status and future directions. Oncologist, 2006, 11(7), 753-764.
[http://dx.doi.org/10.1634/theoncologist.11-7-753] [PMID: 16880234]
[15]
El-Miligy, M.M.; Abd El Razik, H.A.; Abu-Serie, M.M. Synthesis of piperazine-based thiazolidinones as VEGFR2 tyrosine kinase inhibitors inducing apoptosis. Future Med. Chem., 2017, 9(15), 1709-1729.
[http://dx.doi.org/10.4155/fmc-2017-0072] [PMID: 28925739]
[16]
Dell’Eva, R.; Ambrosini, C.; Vannini, N.; Piaggio, G.; Albini, A.; Ferrari, N. AKT/NF-kappaB inhibitor xanthohumol targets cell growth and angiogenesis in hematologic malignancies. Cancer, 2007, 110(9), 2007-2011.
[http://dx.doi.org/10.1002/cncr.23017] [PMID: 17823911]
[17]
Schöffski, P.; Cresta, S.; Mayer, I.A.; Wildiers, H.; Damian, S.; Gendreau, S.; Rooney, I.; Morrissey, K.M.; Spoerke, J.M.; Ng, V.W.; Singel, S.M.; Winer, E. A phase Ib study of pictilisib (GDC-0941) in combination with paclitaxel, with and without bevacizumab or trastuzumab, and with letrozole in advanced breast cancer. Breast Cancer Res., 2018, 20(1), 109.
[http://dx.doi.org/10.1186/s13058-018-1015-x] [PMID: 30185228]
[18]
Chang, L.C.; Lin, H.Y.; Tsai, M.T.; Chou, R.H.; Lee, F.Y.; Teng, C.M.; Hsieh, M.T.; Hung, H.Y.; Huang, L.J.; Yu, Y.L.; Kuo, S.C. YC-1 inhibits proliferation of breast cancer cells by down-regulating EZH2 expression via activation of c-Cbl and ERK. Br. J. Pharmacol., 2014, 171(17), 4010-4025.
[http://dx.doi.org/10.1111/bph.12708] [PMID: 24697523]
[19]
Ramaswamy, B.; Mrozek, E.; Kuebler, J.P.; Bekaii-Saab, T.; Kraut, E.H. Phase II trial of pyrazoloacridine (NSC#366140) in patients with metastatic breast cancer. Invest. New Drugs, 2011, 29(2), 347-351.
[http://dx.doi.org/10.1007/s10637-009-9338-1] [PMID: 19844661]
[20]
Li, Q.S.; Shen, B.N.; Zhang, Z.; Luo, S.; Ruan, B.F. Discovery of Anticancer Agents from 2-Pyrazoline-Based Compounds. Curr. Med. Chem., 2020, 2-6.
[http://dx.doi.org/10.2174/0929867327666200306120151] [PMID: 32141413]
[21]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h] [PMID: 16388628]
[22]
Lellek, V.; Chen, C.Y.; Yang, W.; Liu, J.; Ji, X.; Faessler, R. An Efficient Synthesis of Substituted Pyrazoles from One-Pot Reaction of Ketones, Aldehydes, and Hydrazine Monohydrochloride. Synlett, 2018, 29(08), 1071-1075.
[http://dx.doi.org/10.1055/s-0036-1591941]
[23]
Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Zinc-catalyzed synthesis of pyrazolines and pyrazoles via hydrohydrazination. Org. Lett., 2008, 10(12), 2377-2379.
[http://dx.doi.org/10.1021/ol800592s] [PMID: 18503279]
[24]
Yusuf, M.; Jain, P. Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arab. J. Chem., 2014, 7(5), 553-596.
[http://dx.doi.org/10.1016/j.arabjc.2011.09.013]
[25]
Gembus, V.; Bonnet, J.J.; Janin, F.; Bohn, P.; Levacher, V.; Brière, J.F. Synthesis of pyrazolines by a site isolated resin-bound reagents methodology. Org. Biomol. Chem., 2010, 8(14), 3287-3293.
[http://dx.doi.org/10.1039/c004704j] [PMID: 20502817]
[26]
Cui, S.L.; Wang, J.; Wang, Y.G. Facile access to pyrazolines via domino reaction of the Huisgen zwitterions with aziridines. Org. Lett., 2008, 10(1), 13-16.
[http://dx.doi.org/10.1021/ol7022888] [PMID: 18062691]
[27]
Wang, Z.; Yang, Y.; Gao, F.; Wang, Z.; Luo, Q.; Fang, L. Synthesis of 5-(Trifluoromethyl)pyrazolines by Formal [4 + 1]-. Annulation of Fluorinated Sulfur Ylides and Azoalkenes. Org. Lett., 2018, 20(4), 934-937.
[http://dx.doi.org/10.1021/acs.orglett.7b03811] [PMID: 29393649]
[28]
Waldo, J.P.; Mehta, S.; Larock, R.C. Room temperature ICl-induced dehydration/iodination of 1-acyl-5-hydroxy-4,5-dihydro-1H-pyrazoles. A selective route to substituted 1-acyl-4-iodo-1H-pyrazoles. J. Org. Chem., 2008, 73(17), 6666-6670.
[http://dx.doi.org/10.1021/jo800789p] [PMID: 18665643]
[29]
Chen, M.; Wang, L.J.; Ren, P.X.; Hou, X.Y.; Fang, Z.; Han, M.N.; Li, W. Copper-catalyzed diamination of alkenes of unsaturated ketohydrazones with amines. Org. Lett., 2018, 20(3), 510-513.
[http://dx.doi.org/10.1021/acs.orglett.7b03401] [PMID: 29355325]
[30]
Yang, M.N.; Yan, D.M.; Zhao, Q.Q.; Chen, J.R.; Xiao, W.J. Synthesis of dihydropyrazoles via ligand-free Pd-catalyzed alkene aminoarylation of unsaturated hydrazones with diaryliodonium salts. Org. Lett., 2017, 19(19), 5208-5211.
[http://dx.doi.org/10.1021/acs.orglett.7b02480] [PMID: 28898097]
[31]
Kumar, N.; Bhatnagar, A.; Dudhe, R. Synthesis of 3-(4, 5-dihydro-1-phenyl-5-substituted phenyl-1H-pyrazol-3-yl)-2H-chromen-2-one derivatives and evaluation of their anticancer activity. Arab. J. Chem., 2017, 10, S2443-S2452.
[http://dx.doi.org/10.1016/j.arabjc.2013.09.008]
[32]
George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem., 2019, 83, 186-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.038] [PMID: 30380447]
[33]
Abdel-Aziz, M.; Aly, O.M.; Khan, S.S.; Mukherjee, K.; Bane, S. Synthesis, cytotoxic properties and tubulin polymerization inhibitory activity of novel 2-pyrazoline derivatives. Arch. Pharm. (Weinheim), 2012, 345(7), 535-548.
[http://dx.doi.org/10.1002/ardp.201100471] [PMID: 22592968]
[34]
James, J.P.; Bhat, K.I.; More, U.A.; Joshi, S.D. Design, Synthesis, molecular modeling, and ADMET studies of some pyrazoline derivatives as shikimate kinase inhibitors. Med. Chem. Res., 2018, 27(2), 546-559.
[http://dx.doi.org/10.1007/s00044-017-2081-9]
[35]
Taj, T.; Kamble, R.R.; Gireesh, T.M.; Hunnur, R.K.; Margankop, S.B. One-pot synthesis of pyrazoline derivatised carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities. Eur. J. Med. Chem., 2011, 46(9), 4366-4373.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.007] [PMID: 21802797]
[36]
Akhtar, M.J.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Rafi, M.; Hassan, M.Q.; Akhtar, M.S.; Siddiqui, A.A.; Partap, S.; Pasha, S.; Yar, M.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem., 2018, 78, 158-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.002] [PMID: 29571113]
[37]
Shaharyar, M.; Abdullah, M.M.; Bakht, M.A.; Majeed, J. Pyrazoline bearing benzimidazoles: Search for anticancer agent. Eur. J. Med. Chem., 2010, 45(1), 114-119.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.032] [PMID: 19883957]
[38]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem., 2009, 44(4), 1396-1404.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.032] [PMID: 19000643]
[39]
Karabacak, M. Altıntop, M.D.; İbrahim Çiftçi, H.; Koga, R.; Otsuka, M.; Fujita, M.; Özdemir, A. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents. Molecules, 2015, 20(10), 19066-19084.
[http://dx.doi.org/10.3390/molecules201019066] [PMID: 26492233]
[40]
Havrylyuk, D.; Kovach, N.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates. Arch. Pharm. (Weinheim), 2011, 344(8), 514-522.
[http://dx.doi.org/10.1002/ardp.201100055] [PMID: 21681810]
[41]
Wang, H.H.; Qiu, K.M.; Cui, H.E.; Yang, Y.S. Yin-Luo; Xing, M.; Qiu, X.Y.; Bai, L.F.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem., 2013, 21(2), 448-455.
[http://dx.doi.org/10.1016/j.bmc.2012.11.020] [PMID: 23245802]
[42]
Banday, A.H.; Mir, B.P.; Lone, I.H.; Suri, K.A.; Kumar, H.M. Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 2010, 75(12), 805-809.
[http://dx.doi.org/10.1016/j.steroids.2010.02.014] [PMID: 20206644]
[43]
Al-Abdullah, E.S. Synthesis and anticancer activity of some novel tetralin-6-yl-pyrazoline, 2-thioxopyrimidine, 2-oxopyridine, 2-thioxo-pyridine and 2-iminopyridine derivatives. Molecules, 2011, 16(4), 3410-3419.
[http://dx.doi.org/10.3390/molecules16043410] [PMID: 21512449]
[44]
Lv, P.C.; Li, D.D.; Li, Q.S.; Lu, X.; Xiao, Z.P.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives as EGFR TK inhibitors and potential anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(18), 5374-5377.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.010] [PMID: 21802290]
[45]
Rostom, S.A.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.; Abdel Wahab, A.E. Synthesis of some pyrazolines and pyrimidines derived from polymethoxy chalcones as anticancer and antimicrobial agents. Arch. Pharm. (Weinheim), 2011, 344(9), 572-587.
[http://dx.doi.org/10.1002/ardp.201100077] [PMID: 21755528]
[46]
Altıntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı Ö.; Demirel, R.; Kaplancıklı Z.A. A novel series of thiazolyl-pyrazoline derivatives: Synthesis and evaluation of antifungal activity, cytotoxicity and genotoxicity. Eur. J. Med. Chem., 2015, 92, 342-352.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.055] [PMID: 25576739]
[47]
Amin, K.M.; Eissa, A.A.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin-pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.004] [PMID: 23291120]
[48]
Garazd, Y.; Garazd, M.; Lesyk, R. Synthesis and evaluation of anticancer activity of 6-pyrazolinylcoumarin derivatives. Saudi Pharm. J., 2017, 25(2), 214-223.
[http://dx.doi.org/10.1016/j.jsps.2016.05.005] [PMID: 28344471]
[49]
Mansour, E.; Aboelnaga, A.; Nassar, E.M.; Elewa, S.I. A new series of thiazolyl pyrazoline derivatives linked to benzo [1, 3] dioxole moiety: Synthesis and evaluation of antimicrobial and anti-proliferative activities. Synth. Commun., 2020, 50(3), 368-379.
[http://dx.doi.org/10.1080/00397911.2019.1695839]
[50]
Saleem, K.; Wani, W.A.; Haque, A.; Lone, M.N.; Hsieh, M.F.; Jairajpuri, M.A.; Ali, I. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Med. Chem., 2013, 5(2), 135-146.
[http://dx.doi.org/10.4155/fmc.12.201] [PMID: 23360139]
[51]
Ravula, P.; Vamaraju, H.B.; Paturi, M.; Bodige, S.; Gulipalli, K.C.; Narendra Sharath Chandra, J.N. Design, synthesis, and docking studies of novel dimethyl triazene incorporated thiazolyl pyrazolines for anticancer activity. J. Heterocycl. Chem., 2018, 55(6), 1313-1323.
[http://dx.doi.org/10.1002/jhet.3163]
[52]
Kuthyala, S.; Hanumanthappa, M.; Kumar, S.M.; Sheik, S.; Karikannar, N.G.; Prabhu, A. Crystal, Hirshfeld, ADMET, drug-like and anticancer study of some newly synthesized imidazopyridine containing pyrazoline derivatives. J. Mol. Struct., 2019, 1197, 65-72.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.031]
[53]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044] [PMID: 23811085]
[54]
Khanam, H.; Dar, A.M.; Siddiqui, N.; Rehman, S. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines. J. Saudi Chem. Soc., 2016, 20(1), 7-12.
[http://dx.doi.org/10.1016/j.jscs.2012.05.004]
[55]
Stefanes, N.M.; Toigo, J.; Maioral, M.F.; Jacques, A.V.; Chiaradia-Delatorre, L.D.; Perondi, D.M.; Ribeiro, A.A.B.; Bigolin, Á.; Pirath, I.M.S.; Duarte, B.F.; Nunes, R.J.; Santos-Silva, M.C. Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity. Bioorg. Med. Chem., 2019, 27(2), 375-382.
[http://dx.doi.org/10.1016/j.bmc.2018.12.012] [PMID: 30579801]
[56]
Wang, H.; Zheng, J.; Xu, W.; Chen, C.; Wei, D.; Ni, W.; Pan, Y. A new series of cytotoxic pyrazoline derivatives as potential anticancer agents that induce cell cycle arrest and Apoptosis. Molecules, 2017, 22(10), 1635.
[http://dx.doi.org/10.3390/molecules22101635] [PMID: 28961210]
[57]
Xu, W.; Pan, Y.; Wang, H.; Li, H.; Peng, Q.; Wei, D.; Chen, C.; Zheng, J. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents in HepG-2 Cell Line. Molecules, 2017, 22(3), 467.
[http://dx.doi.org/10.3390/molecules22030467] [PMID: 28300751]
[58]
Yang, W.; Hu, Y.; Yang, Y.S.; Zhang, F.; Zhang, Y.B.; Wang, X.L.; Tang, J.F.; Zhong, W.Q.; Zhu, H.L. Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2013, 21(5), 1050-1063.
[http://dx.doi.org/10.1016/j.bmc.2013.01.013] [PMID: 23391364]
[59]
Dinesha; Viveka, S.; Priya, B.K.; Pai, K.S.; Naveen, S.; Lokanath, N.K.; Nagaraja, G.K. Synthesis and pharmacological evaluation of some new fluorine containing hydroxypyrazolines as potential anticancer and antioxidant agents. Eur. J. Med. Chem., 2015, 104, 25-32.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.029] [PMID: 26433616]
[60]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity. J. Med. Chem., 2012, 55(20), 8630-8641.
[http://dx.doi.org/10.1021/jm300789g] [PMID: 22992049]
[61]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Alam, M.S. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. Eur. J. Med. Chem., 2011, 46(12), 5763-5768.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.015] [PMID: 22019186]
[62]
Chen, S.; Wu, H.; Li, A.J.; Pei, J.; Zhao, L. Synthesis and biological evaluation of hydrazone and pyrazoline derivatives derived from androstenedione. Res. Chem. Intermed., 2018, 44(11), 7029-7046.
[http://dx.doi.org/10.1007/s11164-018-3539-1]
[63]
Elmeligie, S.; Khalil, N.A.; Ahmed, E.M.; Emam, S.H.; Zaitone, S.A. Synthesis of new N1-substituted-5-aryl-3-(3, 4, 5-trimethoxyphenyl)-2-pyrazoline derivatives as anti-tumor agents targeting the colchicine site on tubulin. Biol. Pharm. Bull., 2016, 39(10), 1611-1622.
[http://dx.doi.org/10.1248/bpb.b16-00277] [PMID: 27725438]
[64]
Fahmy, H.H.; Khalifa, N.M.; Ismail, M.M.; El-Sahrawy, H.M.; Nossier, E.S. Biological validation of novel polysubstituted pyrazole candidates with in vitro anticancer activities. Molecules, 2016, 21(3), 271.
[http://dx.doi.org/10.3390/molecules21030271] [PMID: 26927048]
[65]
Edrees, M.M.; Melha, S.A.; Saad, A.M.; Kheder, N.A.; Gomha, S.M.; Muhammad, Z.A. Eco-friendly Synthesis, characterization and biological evaluation of some novel pyrazolines containing thiazole moiety as potential anticancer and antimicrobial agents. Molecules, 2018, 23(11), 2970.
[http://dx.doi.org/10.3390/molecules23112970] [PMID: 30441815]
[66]
Farghaly, T.A.; Hassaneen, H.M.; Elzahabi, H.S. Eco-friendly synthesis and 2D-QSAR study of novel pyrazolines as potential anticolon cancer agents. Med. Chem. Res., 2015, 24(2), 652-668.
[http://dx.doi.org/10.1007/s00044-014-1175-x]
[67]
Demirayak, S.; Kayagil, I.; Yurttas, L.; Aslan, R. Synthesis of some imidazolyl-thioacetyl-pyrazolinone derivatives and their antinociceptive and anticancer activities. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 74-79.
[http://dx.doi.org/10.3109/14756360903016751] [PMID: 20030511]
[68]
Gangarapu, K.; Thumma, G.; Manda, S.; Jallapally, A.; Jarapula, R.; Rekulapally, S. Design, Synthesis and molecular docking of novel structural hybrids of substituted isatin based pyrazoline and thiadiazoline as anti-tumor agents. Med. Chem. Res., 2017, 26(4), 819-829.
[http://dx.doi.org/10.1007/s00044-017-1781-5]
[69]
Amin, K.M.; Abou-Seri, S.M.; Awadallah, F.M.; Eissa, A.A.; Hassan, G.S.; Abdulla, M.M. Synthesis and anticancer activity of some 8-substituted-7-methoxy-2H-chromen-2-one derivatives toward hepatocellular carcinoma HepG2 cells. Eur. J. Med. Chem., 2015, 90, 221-231.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.027] [PMID: 25461322]
[70]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[71]
Tilekar, K.; Upadhyay, N.; Meyer-Almes, F.J.; Loiodice, F.; Anisimova, N.Y.; Spirina, T.S.; Sokolova, D.V.; Smirnova, G.B.; Choe, J.Y.; Pokrovsky, V.S.; Lavecchia, A.S.; Ramaa, C. Synthesis and biological evaluation of pyrazoline and pyrrolidine-2,5-dione hybrids as potential antitumor agents. ChemMedChem, 2020, 15(19), 1813-1825.
[http://dx.doi.org/10.1002/cmdc.202000458] [PMID: 32715626]
[72]
Sable, P.M.; Sayyad, N.B. Synthesis and QSAR Studies of Novel Pyrazoline Derivatives as Antiproliferative Agent. Synthesis and QSAR Studies of Novel Pyrazoline Derivatives as Antiproliferative Agent., 2020, 2-6(3s), s610-s619.
[http://dx.doi.org/10.5530/ijper.54.3s.161]
[73]
Insuasty, B.; Montoya, A.; Becerra, D.; Quiroga, J.; Abonia, R.; Robledo, S.; Vélez, I.D.; Upegui, Y.; Nogueras, M.; Cobo, J. Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents. Eur. J. Med. Chem., 2013, 67, 252-262.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.049] [PMID: 23871905]
[74]
Jainey, P.; Bhat, I. Antitumor, analgesic, and anti-inflammatory activities of synthesized pyrazolines. J. Young Pharm., 2012, 4(2), 82-87.
[http://dx.doi.org/10.4103/0975-1483.96621] [PMID: 22754259]
[75]
Khalil, N.A.; Ahmed, E.M.; El-Nassan, H.B. Synthesis, characterization, and biological evaluation of certain 1, 3-thiazolone derivatives bearing pyrazoline moiety as potential anti-breast cancer agents. Med. Chem. Res., 2013, 22(2), 1021-1027.
[http://dx.doi.org/10.1007/s00044-012-0098-7]
[76]
Iqbal Choudhary, M.; Shahab Alam, M. Atta-Ur-Rahman; Yousuf, S.; Wu, Y.C.; Lin, A.S.; Shaheen, F. Pregnenolone derivatives as potential anticancer agents. Steroids, 2011, 76(14), 1554-1559.
[http://dx.doi.org/10.1016/j.steroids.2011.09.006] [PMID: 21964577]
[77]
Kadasi, S.; Yerroju, R.; Gaddam, S.; Pullanagiri, N.; Chary, M.; Pingili, D.; Raj, S.; Raghavendra, N.M. Discovery of N-pyridoyl-Δ2 -pyrazolines as Hsp90 inhibitors. Arch. Pharm. (Weinheim), 2020, 353(2), e1900192.
[http://dx.doi.org/10.1002/ardp.201900192] [PMID: 31808979]
[78]
Gürdere, M.B. Gümüş O.; Yaglioglu, A.S.; Budak, Y.; Ceylan, M. Synthesis and anticancer activities of 1, 4-phenylene-bis-N-acetyl-and N-phenylpyrazoline derivatives. Res. Chem. Intermed., 2017, 43(3), 1277-1289.
[http://dx.doi.org/10.1007/s11164-016-2697-2]
[79]
Dawood, D.H.; Nossier, E.S.; Ali, M.M.; Mahmoud, A.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorg. Chem., 2020, 101, 103916.
[http://dx.doi.org/10.1016/j.bioorg.2020.103916] [PMID: 32559576]
[80]
Dofe, V.S.; Sarkate, A.P.; Tiwari, S.V.; Lokwani, D.K.; Karnik, K.S.; Kale, I.A.; Dodamani, S.; Jalalpure, S.S.; Burra, P.V.L.S. Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorg. Med. Chem. Lett., 2020, 30(22), 127592.
[http://dx.doi.org/10.1016/j.bmcl.2020.127592] [PMID: 33010448]
[81]
Nawaz, F.; Alam, O.; Perwez, A.; Rizvi, M.A.; Naim, M.J.; Siddiqui, N.; Pottoo, F.H.; Jha, M.F.; Alam, O.; Perwez, A.; Rizvi, M.A.; Naim, M.J.; Siddiqui, N.; Pottoo, F.H.; Jha, M. 3′‐(4‐ (Benzyloxy) Phenyl)‐1′‐phenyl‐5‐(heteroaryl/aryl)‐3, 4‐dihydro‐1′ H, 2H‐[3, 4′‐bipyrazole]‐2‐carboxamides as EGFR kinase inhibitors: Synthesis, anticancer evaluation, and molecular docking studies. Arch. Pharm. (Weinheim), 2020, 353(4), 1900262.
[http://dx.doi.org/10.1002/ardp.201900262]
[82]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[83]
Song, Y.; Feng, S.; Feng, J.; Dong, J.; Yang, K.; Liu, Z.; Qiao, X. Synthesis and biological evaluation of novel pyrazoline derivatives containing indole skeleton as anti-cancer agents targeting topoisomerase II. Eur. J. Med. Chem., 2020, 200, 112459.
[http://dx.doi.org/10.1016/j.ejmech.2020.112459] [PMID: 32502865]
[84]
Pyrih, A.; Jaskolski, M.; Gzella, A.K.; Lesyk, R. Synthesis, structure and evaluation of anticancer activity of 4-amino-1, 3-thiazolinone/pyrazoline hybrids. J. Mol. Struct., 2021, 1224, 129059.
[http://dx.doi.org/10.1016/j.molstruc.2020.129059]
[85]
Kocyigit, U.M.; Budak, Y.; Gürdere, M.B.; Dürü, N.; Taslimi, P. Gülçin, İ.; Ceylan, M. Synthesis and investigation of anticancer, antibacterial activities and carbonic anhydrase, acetylcholinesterase inhibition profiles of novel (3aR, 4S, 7R, 7aS)-2-[4-[1-acetyl-5-(aryl/heteroaryl)-4, 5-dihydro-1H-pyrazol-3-yl] Phenyl]-3a, 4, 7, 7a-tetrahydro-1H-4, 7-methanoisoindole-1, 3 (2H)-diones. Monatsh. Chem., 2019, 150(4), 721-731.
[http://dx.doi.org/10.1007/s00706-019-2350-z]
[86]
Kucukoglu, K.; Oral, F.; Aydin, T.; Yamali, C.; Algul, O.; Sakagami, H.; Gulcin, I.; Supuran, C.T.; Gul, H.I. Synthesis, cytotoxicity and carbonic anhydrase inhibitory activities of new pyrazolines. J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl. 4), 20-24.
[http://dx.doi.org/10.1080/14756366.2016.1217852]
[87]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Dhulap, A.; Bano, S.; Ali, Y. Antidiabetic effect of novel benzenesulfonylureas as PPAR-γ agonists and their anticancer effect. Bioorg. Med. Chem. Lett., 2015, 25(20), 4601-4605.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.062] [PMID: 26384286]
[88]
Lee, Y.; Kim, B.S.; Ahn, S.; Koh, D.; Lee, Y.H.; Shin, S.Y.; Lim, Y. Anticancer and structure-activity relationship evaluation of 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide analogs of chalcone. Bioorg. Chem., 2016, 68, 166-176.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.003] [PMID: 27543822]
[89]
Akhtar, W.; Marella, A.; Alam, M.M.; Khan, M.F.; Akhtar, M.; Anwer, T.; Khan, F.; Naematullah, M.; Azam, F.; Rizvi, M.A.; Shaquiquzzaman, M. Design and synthesis of pyrazole-pyrazoline hybrids as cancer-associated selective COX-2 inhibitors. Arch. Pharm. (Weinheim), 2021, 354(1), e2000116.
[http://dx.doi.org/10.1002/ardp.202000116] [PMID: 33015829]
[90]
Alkamaly, O.M.; Altwaijry, N.; Sabour, R.; Harras, M.F. Dual EGFR/VEGFR2 inhibitors and apoptosis inducers: Synthesis and antitumor activity of novel pyrazoline derivatives. Arch. Pharm. (Weinheim), 2021, 354(4), e2000351.
[http://dx.doi.org/10.1002/ardp.202000351] [PMID: 33252142]
[91]
Wahyuningsih, TD; Suma, AA; Astuti, E Synthesis, anticancer activity, and docking study of N-acetyl pyrazolines from veratraldehyde. J. Appl. Pharm. Sci., 2019, 03, 014-020.
[http://dx.doi.org/10.7324/JAPS.2019.90303]
[92]
Rathore, P.; Yaseen, S.; Ovais, S.; Bashir, R.; Yaseen, R.; Hameed, A.D.; Samim, M.; Gupta, R.; Hussain, F.; Javed, K. Synthesis and evaluation of some new pyrazoline substituted benzenesulfonylureas as potential antiproliferative agents. Bioorg. Med. Chem. Lett., 2014, 24(7), 1685-1691.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.059] [PMID: 24630557]
[93]
Moreno, L.M.; Quiroga, J.; Abonia, R.; Lauria, A.; Martorana, A.; Insuasty, H.; Insuasty, B. Synthesis, biological evaluation, and In silico studies of novel chalcone-and pyrazoline-based 1, 3, 5-triazines as potential anticancer agents. RSC Advances, 2020, 10(56), 34114-34129.
[http://dx.doi.org/10.1039/D0RA06799G]
[94]
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules, 2020, 25(5), 1047.
[http://dx.doi.org/10.3390/molecules25051047] [PMID: 32110945]
[95]
Kumar, A.D.; Vagish, C.B.; Lokeshwari, D.M.; Sowmya, R.; Kumar, K.A. Design, synthesis, characterization, evaluation for anticancer and cytotoxic properties of new pyrazole carbothioamides. Asian J. Org. Med. Chem., 2021, 1(6), 53-58.
[http://dx.doi.org/10.14233/ajomc.2021.AJOMC-P291]
[96]
Özdemir, A. Altıntop, M.D.; Kaplancıklı Z.A.; Turan-Zitouni, G.; Ciftçi, G.A.; Yıldırım, Ş.U. Synthesis of 1-acetyl-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and evaluation of their anticancer activity. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1221-1227.
[http://dx.doi.org/10.3109/14756366.2012.724682] [PMID: 23020635]
[97]
Zhang, Y.L.; Qin, Y.J.; Tang, D.J.; Yang, M.R.; Li, B.Y.; Wang, Y.T.; Cai, H.Y.; Wang, B.Z.; Zhu, H.L. Synthesis and biological evaluation of 1-methyl-1H-indole-pyrazoline hybrids as potential tubulin polymerization inhibitors. ChemMedChem, 2016, 11(13), 1446-1458.
[http://dx.doi.org/10.1002/cmdc.201600137] [PMID: 27159418]
[98]
Thach, T.D.; Nguyen, T.M.; Nguyen, T.A.; Dang, C.H.; Luong, T.B.; Dang, V.S.; Banh, K.S.; Luc, V.S.; Nguyen, T.D. Synthesis and antimicrobial, antiproliferative and anti-inflammatory activities of novel 1, 3, 5-substituted pyrazoline sulphonamides. Arab. J. Chem., 2021, 14(11), 103408.
[http://dx.doi.org/10.1016/j.arabjc.2021.103408]
[99]
Ozmen Ozgun, D.; Gul, H.I.; Yamali, C.; Sakagami, H.; Gulcin, I.; Sukuroglu, M.; Supuran, C.T. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg. Chem., 2019, 84, 511-517.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.028] [PMID: 30605787]
[100]
Tok, F. İrem Abas, B.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. Design, synthesis and biological evaluation of some new 2- Pyrazoline derivatives as potential anticancer agents. Bioorg. Chem., 2020, 102, 104063.
[http://dx.doi.org/10.1016/j.bioorg.2020.104063] [PMID: 32663669]
[101]
Schmitt, F.; Draut, H.; Biersack, B.; Schobert, R. Halogenated naphthochalcones and structurally related naphthopyrazolines with antitumor activity. Bioorg. Med. Chem. Lett., 2016, 26(21), 5168-5171.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.076] [PMID: 27727127]
[102]
Ahmed, M.F.; Santali, E.Y.; Mohi El-Deen, E.M.; Naguib, I.A.; El-Haggar, R. Development of pyridazine derivatives as potential EGFR inhibitors and apoptosis inducers: Design, synthesis, anticancer evaluation, and molecular modeling studies. Bioorg. Chem., 2021, 106, 104473.
[http://dx.doi.org/10.1016/j.bioorg.2020.104473] [PMID: 33243490]
[103]
Elewa, S.I.; Mansour, E.; Nassar, I.F.; Mekawey, A.A. Synthesis of some new pyrazoline-based thiazole derivatives and evaluation of their antimicrobial, antifungal, and anticancer activities. Russ. J. Bioorganic Chem., 2020, 46(3), 382-392.
[http://dx.doi.org/10.1134/S1068162020030061]
[104]
Romero-López, A.; Montiel-Smith, S.; Meza-Reyes, S.; Merino-Montiel, P.; Vega-Baez, J.L. Synthesis of steroidal derivatives containing substituted, fused and spiro pyrazolines. Steroids, 2014, 87, 86-92.
[http://dx.doi.org/10.1016/j.steroids.2014.05.013] [PMID: 24928724]
[105]
Sharma, M.; Sharma, S.; Buddhiraja, A.; Saxena, A.K.; Nepali, K.; Bedi, P.M. Synthesis and cytotoxicity studies of 3, 5-diaryl N-acetyl pyrazoline—isatin hybrids. Med. Chem. Res., 2014, 23(10), 4337-4344.
[http://dx.doi.org/10.1007/s00044-014-1001-5]
[106]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem., 2019, 13(1), 116.
[http://dx.doi.org/10.1186/s13065-019-0632-5] [PMID: 31572983]
[107]
Lin, Z.; Wang, Z.; Zhou, X.; Zhang, M.; Gao, D.; Zhang, L.; Wang, P.; Chen, Y.; Lin, Y.; Zhao, B.; Miao, J.; Kong, F. Discovery of new fluorescent thiazole-pyrazoline derivatives as autophagy inducers by inhibiting mTOR activity in A549 human lung cancer cells. Cell Death Dis., 2020, 11(7), 551.
[http://dx.doi.org/10.1038/s41419-020-02746-w] [PMID: 32686662]
[108]
Abdel Latif, N.A.; Batran, R.Z.; Khedr, M.A.; Abdalla, M.M. 3-Substituted-4-hydroxycoumarin as a new scaffold with potent CDK inhibition and promising anticancer effect: Synthesis, molecular modeling and QSAR studies. Bioorg. Chem., 2016, 67, 116-129.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.005] [PMID: 27372186]
[109]
Sever, B. Altıntop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem., 2019, 182, 111648.
[http://dx.doi.org/10.1016/j.ejmech.2019.111648] [PMID: 31493743]
[110]
Ahmad, P.; Woo, H.; Jun, K.Y.; Kadi, A.A.; Abdel-Aziz, H.A.; Kwon, Y.; Rahman, A.F. Design, synthesis, topoisomerase I & II inhibitory activity, antiproliferative activity, and structure-activity relationship study of pyrazoline derivatives: An ATP-competitive human topoisomerase IIα catalytic inhibitor. Bioorg. Med. Chem., 2016, 24(8), 1898-1908.
[http://dx.doi.org/10.1016/j.bmc.2016.03.017] [PMID: 26988802]