The Protective Effect of Vitexin Compound B-1 on Rat Cerebral I/R Injury through a Mechanism Involving Modulation of miR-92b/NOX4 Pathway

Page: [137 - 147] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Recent studies have uncovered that vitexin compound B-1 (VB-1) can protect neurons against hypoxia/reoxygenation (H/R)-induced oxidative injury through suppressing NOX4 expression.

Objective: The aims of this study are to investigate whether VB-1 can protect the rat brain against ischemia/ reperfusion (I/R) injury and whether its effect on NOX4 expression is related to modulation of certain miRNAs expression.

Methods: Rats were subjected to 2 h of cerebral ischemia followed by 24 h of reperfusion to establish an I/R injury model, which showed an increase in neurological deficit score and infarct volume concomitant with an upregulation of NOX4 expression, increase in NOX activity, and downregulation of miR-92b.

Results: Administration of VB-1 reduced I/R cerebral injury accompanied by a reverse in NOX4 and miR-92b expression. Similar results were achieved in a neuron H/R injury model. Next, we evaluated the association of miR-92b with NOX4 by its mimics in the H/R model. H/R treatment increased neurons apoptosis concomitant with an upregulation of NOX4 and NOX activity while downregulation of miR-92b. All these effects were reversed in the presence of miR-92b mimics, confirming the function of miR-92b in suppressing NOX4 expression.

Conclusion: We conclude the protective effect of VB-1 against rat cerebral I/R injury through a mechanism involving modulation of miR-92b/NOX4 pathway.

Keywords: Ischemic stroke, ischemia/reperfusion injury, miR-92b, NADPH oxidase, vitexin compound B-1, cerebral injury.

Graphical Abstract

[1]
Li S, Hafeez A, Noorulla F, et al. Preconditioning in neuroprotection: From hypoxia to ischemia. Prog Neurobiol 2017; 157: 79-91.
[http://dx.doi.org/10.1016/j.pneurobio.2017.01.001] [PMID: 28110083]
[2]
Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 2016; 15(8): 869-81.
[http://dx.doi.org/10.1016/S1474-4422(16)00114-9] [PMID: 27180033]
[3]
Rodrigo R, Fernández-Gajardo R, Gutiérrez R, et al. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol Disord Drug Targets 2013; 12(5): 698-714.
[http://dx.doi.org/10.2174/1871527311312050015] [PMID: 23469845]
[4]
Zhang HF, Li TB, Liu B, et al. Inhibition of myosin light chain kinase reduces NADPH oxidase-mediated oxidative injury in rat brain following cerebral ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(9): 953-63.
[http://dx.doi.org/10.1007/s00210-015-1125-2] [PMID: 25920934]
[5]
Zhou Y, Liu YE, Cao J, et al. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth. Clin Cancer Res 2009; 15(16): 5161-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0661] [PMID: 19671865]
[6]
Lee HJ, Kim KA, Kang KD, et al. The compound isolated from the leaves of Phyllostachys nigra protects oxidative stress-induced retinal ganglion cells death. Food Chem Toxicol 2010; 48(6): 1721-7.
[http://dx.doi.org/10.1016/j.fct.2010.03.052] [PMID: 20381571]
[7]
Hajdú Z, Hohmann J, Forgo P, et al. Diterpenoids and flavonoids from the fruits of Vitex agnus-castus and antioxidant activity of the fruit extracts and their constituents. Phytother Res 2007; 21(4): 391-4.
[http://dx.doi.org/10.1002/ptr.2021] [PMID: 17262892]
[8]
Ma LY, Liu RH, Xu XD, Yu MQ, Zhang Q, Liu HL. The pharmacokinetics of C-glycosyl flavones of hawthorn leaf flavonoids in rat after single dose oral administration. Phytomedicine 2010; 17(8-9): 640-5.
[http://dx.doi.org/10.1016/j.phymed.2009.12.010] [PMID: 20096549]
[9]
Zucolotto SM, Fagundes C, Reginatto FH, et al. Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem Anal 2012; 23(3): 232-9.
[http://dx.doi.org/10.1002/pca.1348] [PMID: 21858882]
[10]
Borghi SM, Carvalho TT, Staurengo-Ferrari L, et al. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J Nat Prod 2013; 76(6): 1141-9.
[http://dx.doi.org/10.1021/np400222v] [PMID: 23742617]
[11]
Lee EB, Kim JH, Cha YS, et al. Lifespan extending and stress resistant properties of vitexin from Vigna angularis in caenorhabditis elegans. Biomol Ther (Seoul) 2015; 23(6): 582-9.
[http://dx.doi.org/10.4062/biomolther.2015.128] [PMID: 26535084]
[12]
Dong LY, Li S, Zhen YL, Wang YN, Shao X, Luo ZG. Cardioprotection of vitexin on myocardial ischemia/reperfusion injury in rat via regulating inflammatory cytokines and MAPK pathway. Am J Chin Med 2013; 41(6): 1251-66.
[http://dx.doi.org/10.1142/S0192415X13500845] [PMID: 24228599]
[13]
Wang F, Yin J, Ma Y, Jiang H, Li Y. Vitexin alleviates lipopolysaccharide induced islet cell injury by inhibiting HMGB1 release. Mol Med Rep 2017; 15(3): 1079-86.
[http://dx.doi.org/10.3892/mmr.2017.6114] [PMID: 28098903]
[14]
Zhu Q, Mao LN, Liu CP, et al. Antinociceptive effects of vitexin in a mouse model of postoperative pain. Sci Rep 2016; 6(1): 19266.
[http://dx.doi.org/10.1038/srep19266] [PMID: 26763934]
[15]
Yang SH, Liao PH, Pan YF, Chen SL, Chou SS, Chou MY. The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother Res 2013; 27(8): 1154-61.
[http://dx.doi.org/10.1002/ptr.4841] [PMID: 22976055]
[16]
Can ÖD, Demir Özkay Ü, Üçel Uİ. Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms Eur J Pharmacol 2013; 699(1-3): 250-7.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.017] [PMID: 23099258]
[17]
Yang ZB, Tan B, Li TB, et al. Protective effect of vitexin compound B-1 against hypoxia/reoxygenation-induced injury in differentiated PC12 cells via NADPH oxidase inhibition. Naunyn Schmiedebergs Arch Pharmacol 2014; 387(9): 861-71.
[http://dx.doi.org/10.1007/s00210-014-1006-0] [PMID: 24947869]
[18]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[19]
Yang ZB, Luo XJ, Ren KD, et al. Beneficial effect of magnesium lithospermate B on cerebral ischemia-reperfusion injury in rats involves the regulation of miR-107/glutamate transporter 1 pathway. Eur J Pharmacol 2015; 766: 91-8.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.042] [PMID: 26420356]
[20]
Fu SH, Zhang HF, Yang ZB, et al. Alda-1 reduces cerebral ischemia/reperfusion injury in rat through clearance of reactive aldehydes. Naunyn Schmiedebergs Arch Pharmacol 2014; 387(1): 87-94.
[http://dx.doi.org/10.1007/s00210-013-0922-8] [PMID: 24081521]
[21]
Yang ZB, Zhang Z, Li TB, et al. Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke. Clin Sci (Lond) 2014; 127(12): 679-89.
[http://dx.doi.org/10.1042/CS20140084] [PMID: 24943094]
[22]
Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 1998; 29(5): 1037-46.
[http://dx.doi.org/10.1161/01.STR.29.5.1037] [PMID: 9596255]
[23]
Zhang S, Guo C, Chen Z, Zhang P, Li J, Li Y. Vitexin alleviates ox-LDL-mediated endothelial injury by inducing autophagy via AMPK signaling activation. Mol Immunol 2017; 85: 214-21.
[http://dx.doi.org/10.1016/j.molimm.2017.02.020] [PMID: 28288411]
[24]
Che X, Wang X, Zhang J, et al. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation. Am J Transl Res 2016; 8(8): 3319-28.
[PMID: 27648122]
[25]
He M, Min JW, Kong WL, He XH, Li JX, Peng BW. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016; 115: 74-85.
[http://dx.doi.org/10.1016/j.fitote.2016.09.011] [PMID: 27693342]
[26]
Rosa SI, Rios-Santos F, Balogun SO, Martins DT. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine 2016; 23(1): 9-17.
[http://dx.doi.org/10.1016/j.phymed.2015.11.003] [PMID: 26902402]
[27]
Li S, Liang T, Zhang Y, et al. Vitexin alleviates high-fat diet induced brain oxidative stress and inflammation via anti-oxidant, anti-inflammatory and gut microbiota modulating properties. Free Radic Biol Med 2021; 171: 332-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.05.028] [PMID: 34029693]
[28]
Babaei F, Moafizad A, Darvishvand Z, Mirzababaei M, Hosseinzadeh H, Nassiri-Asl M. Review of the effects of vitexin in oxidative stress-related diseases. Food Sci Nutr 2020; 8(6): 2569-80.
[http://dx.doi.org/10.1002/fsn3.1567] [PMID: 32566174]
[29]
Xue W, Wang X, Tang H, et al. Vitexin attenuates myocardial ischemia/reperfusion injury in rats by regulating mitochondrial dysfunction induced by mitochondrial dynamics imbalance. Biomed Pharmacother 2020; 124: 109849.
[http://dx.doi.org/10.1016/j.biopha.2020.109849] [PMID: 31972356]
[30]
Zhang Q, Fan Z, Xue W, et al. Vitexin regulates Epac and NLRP3 and ameliorates chronic cerebral hypoperfusion injury. Can J Physiol Pharmacol 2021; 99(10): 1079-87.
[http://dx.doi.org/10.1139/cjpp-2021-0034] [PMID: 33915055]
[31]
Yang H, Xue W, Ding C, et al. Vitexin mitigates myocardial ischemia/reperfusion injury in rats by regulating mitochondrial dysfunction via Epac1-Rap1 signaling. Oxid Med Cell Longev 2021; 2021: 9921982.
[http://dx.doi.org/10.1155/2021/9921982] [PMID: 34257823]
[32]
Lima LKF, Pereira SKS, Junior RDSS, et al. A brief review on the neuroprotective mechanisms of vitexin. BioMed Res Int 2018; 2018: 4785089.
[http://dx.doi.org/10.1155/2018/4785089] [PMID: 30627560]
[33]
Qi Y, Chen L, Shan S, Nie Y, Wang Y. Vitexin improves neuron apoptosis and memory impairment induced by isoflurane via regulation of miR-409 expression. Adv Clin Exp Med 2020; 29(1): 135-45.
[http://dx.doi.org/10.17219/acem/104556] [PMID: 32011832]
[34]
Zhou K, Chang Y, Han B, Li R, Wei Y. MicroRNAs as crucial mediators in the pharmacological activities of triptolide (Review). Exp Ther Med 2021; 21(5): 499.
[http://dx.doi.org/10.3892/etm.2021.9930] [PMID: 33791008]
[35]
Hong M, Wang N, Tan HY, Tsao SW, Feng Y. MicroRNAs and Chinese medicinal herbs: new possibilities in cancer therapy. Cancers (Basel) 2015; 7(3): 1643-57.
[http://dx.doi.org/10.3390/cancers7030855] [PMID: 26305257]
[36]
Zuo ML, Wang AP, Song GL, Yang ZB. miR-652 protects rats from cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2. Biomed Pharmacother 2020; 124: 109860.
[http://dx.doi.org/10.1016/j.biopha.2020.109860] [PMID: 32000043]
[37]
Tan Y, Zhou F, Yang D, Zhang X, Zeng M, Wan L. MicroRNA-126a-5p exerts neuroprotective effects on ischemic stroke via targeting NADPH oxidase 2. Neuropsychiatr Dis Treat 2021; 17: 2089-103.
[http://dx.doi.org/10.2147/NDT.S293611] [PMID: 34234438]
[38]
Xu N, Meng H, Liu T, Feng Y, Qi Y, Wang H. TRPC1 deficiency exacerbates cerebral ischemia/reperfusion-induced neurological injury by potentiating nox4-derived reactive oxygen species generation. Cell Physiol Biochem 2018; 51(4): 1723-38.
[39]
Wang J, Liu Y, Shen H, Li H, Wang Z, Chen G. Nox2 and Nox4 Participate in ROS-Induced neuronal apoptosis and brain injury during ischemia-reperfusion in rats. Acta Neurochir Suppl (Wien) 2020; 127: 47-54.
[http://dx.doi.org/10.1007/978-3-030-04615-6_8] [PMID: 31407062]
[40]
Lou Z, Wang AP, Duan XM, et al. Upregulation of NOX2 and NOX4 Mediated by TGF-β signaling pathway exacerbates cerebral ischemia/reperfusion oxidative stress injury. Cell Physiol Biochem 2018; 46(5): 2103-13.
[41]
Radermacher KA, Wingler K, Langhauser F, et al. Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress. Antioxid Redox Signal 2013; 18(12): 1418-27.
[http://dx.doi.org/10.1089/ars.2012.4797] [PMID: 22937798]
[42]
Kriegel AJ, Baker MA, Liu Y, Liu P, Cowley AW Jr, Liang M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension 2015; 66(4): 793-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05645] [PMID: 26283043]