Nicorandil and Bone Marrow-derived Mesenchymal Stem Cells Therapeutic Effect after Ureteral Obstruction in Adult Male Albino Rats

Article ID: e220322202514 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Chronic kidney disease is a global health problem for which renal fibrogenesis is the final treatment target.

Objective: In our work, we have highlighted two new strategies, nicorandil and Bone marrow-derived mesenchymal stem cells (BM-MSCs), as effective in reversing renal fibrosis induced by partial unilateral ureteral obstruction (PUUO).

Methods: The current study included 96 male albino rats randomly divided into four groups, with 24 rats per group; Group I, the control group; Group II, PUUO, where two-thirds of the left ureter was entrenched in the psoas muscle; Group III, same surgical procedure as in Group II for 7 days, and then the rats received 15 mg/kg/day nicorandil once daily for 21 days; and Group IV, same surgical procedure as in Group II for 7 days, and then rats were given 3 × 106 of labeled MSCs injected intravenous, and left for 21 days. Blood and kidney tissues were collected for biochemical, histological, and molecular analyses.

Results: Both the nicorandil and BM-MSCs treatment groups could ameliorate kidney damage evidenced by inhibition of MDA elevation and total antioxidant capacity reduction caused by PUUO. Also, there was a significant reduction observed in TNF, TGF, IL6, collagen I, and α-SMA in addition to improvement in histological examination. However, a significant difference was found between the BM-MSCs and nicorandil-treated groups.

Conclusion: Our results suggest that BM-MSCs and nicorandil improved renal fibrosis progression through their antiapoptotic, anti-inflammatory, and antifibrotic effects in male albino rats subjected to PUUO, with BM-MSCs being more effective compared to nicorandil.

Keywords: BM-MSCs, nicrorandil, renal fibrosis, ureteral obstruction, TNF, α-SMA.

Graphical Abstract

[1]
Chang, Y.K.; Hsu, C.C.; Chen, P.C.; Chen, Y.S.; Hwang, S.J.; Li, T.C.; Huang, C.C.; Li, C.Y.; Sung, F.C. Trends of cost and mortality of patients on haemodialysis with end stage renal disease. Nephrology (Carlton), 2015, 20(4), 243-249.
[http://dx.doi.org/10.1111/nep.12380] [PMID: 25516387]
[2]
Sugandhi, N.; Srinivas, M.; Agarwala, S.; Gupta, D.K.; Shar-ma, S.; Sinha, A.; Dinda, A.; Mohanty, S. Effect of stem cells on renal recovery in rat model of partial unilateral upper ure-teric obstruction. Pediatr. Surg. Int., 2014, 30(2), 233-238.
[http://dx.doi.org/10.1007/s00383-013-3456-8] [PMID: 24370792]
[3]
Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global prevalence of chronic kidney disease - A systematic review and meta-analysis. PLoS One, 2016, 11(7), e0158765.
[http://dx.doi.org/10.1371/journal.pone.0158765] [PMID: 27383068]
[4]
Sayed, W.M.; Rashed, L.A. Therapeutic role of bone marrow-derived mesenchymal stem cells in cyclophosphamide-induced cardiotoxicity in adult male albino rat: A morphologi-cal and immunohistochemical study. Egypt. J. Histol., 2016, 39, 281-293.
[http://dx.doi.org/10.1097/01.EHX.0000508456.99217.6e]
[5]
Chen, L.; Yang, T.; Lu, D.W.; Zhao, H.; Feng, Y.L.; Chen, H.; Chen, D.Q.; Vaziri, N.D.; Zhao, Y.Y. Central role of dysregu-lation of TGF-β/Smad in CKD progression and potential tar-gets of its treatment. Biomed. Pharmacother., 2018, 101, 670-681.
[http://dx.doi.org/10.1016/j.biopha.2018.02.090] [PMID: 29518614]
[6]
Nakae, I.; Matsumoto, T.; Horie, H.; Yokohama, H.; Omura, T.; Minai, K.; Matsui, T.; Nozawa, M.; Takahashi, M.; Sugimoto, Y.; Ito, M.; Izumi, M.; Nakamura, Y.; Mitsunami, K.; Kinoshita, M. Effects of intravenous nicorandil on coro-nary circulation in humans: plasma concentration and action mechanism. J. Cardiovasc. Pharmacol., 2000, 35(6), 919-925.
[http://dx.doi.org/10.1097/00005344-200006000-00014] [PMID: 10836727]
[7]
Yasar, S.; Xia, J.; Yao, W.; Furberg, C.D.; Xue, Q.L.; Mercado, C.I.; Fitzpatrick, A.L.; Fried, L.P.; Kawas, C.H.; Sink, K.M.; Williamson, J.D.; DeKosky, S.T.; Carlson, M.C. Antihyperten-sive drugs decrease risk of Alzheimer disease: ginkgo evalua-tion of memory study. Neurology, 2013, 81(10), 896-903.
[http://dx.doi.org/10.1212/WNL.0b013e3182a35228] [PMID: 23911756]
[8]
Ahmed, L.A.; Salem, H.A.; Attia, A.S.; Agha, A.M. Pharmaco-logical preconditioning with nicorandil and pioglitazone atten-uates myocardial ischemia/reperfusion injury in rats. Eur. J. Pharmacol., 2011, 663(1-3), 51-58.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.038] [PMID: 21549700]
[9]
Ozturk, H.; Firat, T.; Tekce, B.K.; Yilmaz, F.; Ozturk, H. Ef-fects of nicorandil on renal function and histopathology in rats with partial unilateral ureteral obstruction. Kaohsiung J. Med. Sci., 2017, 33(5), 236-245.
[http://dx.doi.org/10.1016/j.kjms.2017.03.003] [PMID: 28433070]
[10]
Herrera, M.B.; Bussolati, B.; Bruno, S.; Fonsato, V.; Romanazzi, G.M.; Camussi, G. Mesenchymal stem cells con-tribute to the renal repair of acute tubular epithelial injury. Int. J. Mol. Med., 2004, 14(6), 1035-1041.
[http://dx.doi.org/10.3892/ijmm.14.6.1035] [PMID: 15547670]
[11]
Soleimani, M.; Nadri, S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc., 2009, 4(1), 102-106.
[http://dx.doi.org/10.1038/nprot.2008.221] [PMID: 19131962]
[12]
Aziz, M.T.A. Mesenchymal stem cells therapy in acute renal failure: possible role of hepatocyte growth factor. J. Stem Cell Res. Ther., 2011, 01
[13]
Suvarna, K. Bancroft’s Theory and Practice of Histological Techniques E-Book, 7th ed; Elsevier, 2012.
[14]
Clive, T.; Lars, R. Immunohistochemical staining methods - education guide. 2013; 217. Available from: https://www.agilent.com/cs/library/technicaloverviews/public/08002_ihc_staining_methods.pdf
[15]
Djudjaj, S.; Boor, P. Cellular and molecular mechanisms of kidney fibrosis. Mol. Aspects Med., 2019, 65, 16-36.
[http://dx.doi.org/10.1016/j.mam.2018.06.002] [PMID: 29909119]
[16]
Rocco, M.V.; Berns, J.S. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am. J. Kidney Dis., 2012, 60(5), 850-886.
[http://dx.doi.org/10.1053/j.ajkd.2012.07.005] [PMID: 23067652]
[17]
Li, T.; Ai, Z.; Ji, W. Primate stem cells: bridge the translation from basic research to clinic application. Sci. China Life Sci., 2019, 62(1), 12-21.
[http://dx.doi.org/10.1007/s11427-018-9334-2] [PMID: 30099707]
[18]
El Agha, E.; Kramann, R.; Schneider, R.K.; Li, X.; Seeger, W.; Humphreys, B.D.; Bellusci, S. Mesenchymal stem cells in fi-brotic disease. Cell Stem Cell, 2017, 21(2), 166-177.
[http://dx.doi.org/10.1016/j.stem.2017.07.011] [PMID: 28777943]
[19]
Gulmi, F.A.; Felsen, D. Pathophysiology of urinary tract ob-struction, 3rd ed; Smith’s Textb Endourol, 2012.
[http://dx.doi.org/10.1002/9781444345148.ch7]
[20]
Abo-Salem, O.M.; El-Edel, R.H.; Harisa, G.E.I.; El-Halawany, N.; Ghonaim, M.M. Experimental diabetic nephropathy can be prevented by propolis: Effect on metabolic disturbances and renal oxidative parameters. Pak. J. Pharm. Sci., 2009, 22(2), 205-210.
[PMID: 19339234]
[21]
Ozbek, E.; Ilbey, Y.O.; Ozbek, M.; Simsek, A.; Cekmen, M.; Somay, A. Melatonin attenuates unilateral ureteral obstruction-induced renal injury by reducing oxidative stress, iNOS, MAPK, and NF-kB expression. J. Endourol., 2009, 23(7), 1165-1173.
[http://dx.doi.org/10.1089/end.2009.0035] [PMID: 19530942]
[22]
Moriyama, T.; Kawada, N.; Nagatoya, K.; Takeji, M.; Horio, M.; Ando, A.; Imai, E.; Hori, M. Fluvastatin suppresses oxi-dative stress and fibrosis in the interstitium of mouse kidneys with unilateral ureteral obstruction. Kidney Int., 2001, 59(6), 2095-2103.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00724.x] [PMID: 11380811]
[23]
Tashiro, Y.; Yogo, K.; Serizawa, K.; Endo, K. Nicorandil sup-presses urinary protein excretion and activates eNOS in Dahl salt-sensitive hypertensive rats. Clin. Exp. Nephrol., 2015, 19(3), 343-349.
[http://dx.doi.org/10.1007/s10157-014-0998-6] [PMID: 24952900]
[24]
Kim, H.S.; Cho, I.H.; Kim, J.E.; Shin, Y.J.; Jeon, J.H.; Kim, Y.; Yang, Y.M.; Lee, K.H.; Lee, J.W.; Lee, W.J.; Ye, S.K.; Chung, M.H. Ethyl pyruvate has an anti-inflammatory effect by inhib-iting ROS-dependent STAT signaling in activated microglia. Free Radic. Biol. Med., 2008, 45(7), 950-963.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.06.009] [PMID: 18625301]
[25]
Jang, H.R.; Rabb, H. The innate immune response in ischemic acute kidney injury. Clin. Immunol., 2009, 130(1), 41-50.
[http://dx.doi.org/10.1016/j.clim.2008.08.016] [PMID: 18922742]
[26]
Asanuma, H.; Vanderbrink, B.A.; Campbell, M.T.; Hile, K.L.; Zhang, H.; Meldrum, D.R.; Meldrum, K.K. Arterially delivered mesenchymal stem cells prevent obstruction-induced renal fi-brosis. J. Surg. Res., 2011, 168(1), e51-e59.
[http://dx.doi.org/10.1016/j.jss.2010.06.022] [PMID: 20850784]
[27]
Zheng, J.; Wang, Q.; Leng, W.; Sun, X.; Peng, J. Bone mar-row derived mesenchymal stem cell conditioned medium at-tenuates tubulointerstitial fibrosis by inhibiting monocyte mo-bilization in an irreversible model of unilateral ureteral ob-struction. Mol. Med. Rep., 2018, 17(6), 7701-7707.
[http://dx.doi.org/10.3892/mmr.2018.8848] [PMID: 29620281]
[28]
Sato, M.; Muragaki, Y.; Saika, S.; Roberts, A.B.; Ooshima, A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest., 2003, 112(10), 1486-1494.
[http://dx.doi.org/10.1172/JCI200319270] [PMID: 14617750]
[29]
Tögel, F.; Cohen, A.; Zhang, P.; Yang, Y.; Hu, Z.; Westenfelder, C. Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev., 2009, 18(3), 475-485.
[http://dx.doi.org/10.1089/scd.2008.0092] [PMID: 18564903]
[30]
Lang, H.; Dai, C. Effects of bone marrow mesenchymal stem cells on plasminogen activator inhibitor-1 and renal fibrosis in rats with diabetic nephropathy. Arch. Med. Res., 2016, 47(2), 71-77.
[http://dx.doi.org/10.1016/j.arcmed.2016.03.002] [PMID: 27018336]
[31]
Hewitson, T.D.; Ho, W.Y.; Samuel, C.S. Antifibrotic proper-ties of relaxin: in vivo mechanism of action in experimental renal tubulointerstitial fibrosis. Endocrinology, 2010, 151(10), 4938-4948.
[http://dx.doi.org/10.1210/en.2010-0286] [PMID: 20826562]
[32]
Wu, H.J.; Yiu, W.H.; Li, R.X.; Wong, D.W.L.; Leung, J.C.K.; Chan, L.Y.Y.; Zhang, Y.; Lian, Q.; Lin, M.; Tse, H.F.; Lai, K.N.; Tang, S.C. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis. PLoS One, 2014, 9(3), e90883.
[http://dx.doi.org/10.1371/journal.pone.0090883] [PMID: 24646687]
[33]
Sudo, H.; Hirata, M.; Kanada, H.; Yorozu, K.; Tashiro, Y.; Serizawa, K.; Yogo, K.; Kataoka, M.; Moriguchi, Y.; Ishizuka, N. Nicorandil improves glomerular injury in rats with mesan-gioproliferative glomerulonephritis via inhibition of proprolif-erative and profibrotic growth factors. J. Pharmacol. Sci., 2009, 111(1), 53-59.
[http://dx.doi.org/10.1254/jphs.09072FP] [PMID: 19721333]
[34]
Sung, R. Contribution of enhanced intrinsic apoptosis to renal ischemia reperfusion injury in the absence of RIPK3 and Caspase-8 dependent regulated cell death. 2015. Available from: https://ir.lib.uwo.ca/etd/3080/
[35]
Aboryag, N.B.; Mohamed, D.M.; Dehe, L.; Shaqura, M.; Treskatsch, S.; Shakibaei, M. Histopathological changes in the kidney following congestive heart failure by volume overload in rats. Oxid. Med. Cell. Longev., 2017, 2017, 689-4040.
[http://dx.doi.org/10.1155/2017/6894040]
[36]
Guo, Y.; Zhang, W.; Yan, Y.Y.; Ma, C.G.; Wang, X.; Wang, C.; Zhao, J.L. Triterpenoid pristimerin induced HepG2 cells apop-tosis through ROS-mediated mitochondrial dysfunction. J. BUON, 2013, 18(2), 477-485.
[PMID: 23818365]
[37]
Xu, Y.; Ruan, S.; Wu, X.; Chen, H.; Zheng, K.; Fu, B. Autoph-agy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int. J. Mol. Med., 2013, 31(3), 628-636.
[http://dx.doi.org/10.3892/ijmm.2013.1232] [PMID: 23314838]
[38]
Eirin, A.; Lerman, A.; Lerman, L.O. The emerging role of mitochondrial targeting in kidney disease. Handb. Exp. Pharmacol., 2017, 240, 229-250.
[http://dx.doi.org/10.1007/164_2016_6] [PMID: 27316914]
[39]
Felser, A.; Blum, K.; Lindinger, P.W.; Bouitbir, J. Krähenbühl, S. Mechanisms of hepatocellular toxicity associated with dronedarone-a comparison to amiodarone. Toxicol. Sci., 2013, 131(2), 480-490.
[http://dx.doi.org/10.1093/toxsci/kfs298] [PMID: 23135547]