The ATP-dependent Pathways and Human Diseases

Page: [1232 - 1255] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.

Keywords: ATP, adenosine triphosphate, ATP-dependent pathways, purinergic signaling, nervous system, cardiovascular diseases.

[1]
Yan, K.; Gao, L.N.; Cui, Y.L.; Zhang, Y.; Zhou, X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol. Med. Rep., 2016, 13(5), 3715-3723.
[http://dx.doi.org/10.3892/mmr.2016.5005] [PMID: 27035868]
[2]
Lu, S.; Huang, W.; Wang, Q.; Shen, Q.; Li, S.; Nussinov, R.; Zhang, J. The structural basis of ATP as an allosteric modulator. PLOS Comput. Biol., 2014, 10(9), e1003831.
[http://dx.doi.org/10.1371/journal.pcbi.1003831] [PMID: 25211773]
[3]
Ramzan, R.; Vogt, S.; Kadenbach, B. Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J. Mol. Med. (Berl.), 2020, 98(5), 651-657.
[http://dx.doi.org/10.1007/s00109-020-01905-y] [PMID: 32313986]
[4]
Yegutkin, G.G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta, 2008, 1783(5), 673-694.
[http://dx.doi.org/10.1016/j.bbamcr.2008.01.024] [PMID: 18302942]
[5]
Pawlowska, R.; Korczynski, D.; Nawrot, B.; Stec, W.J.; Chworos, A. The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase. Bioorg. Chem., 2016, 67, 110-115.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.003] [PMID: 27337226]
[6]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry; Freeman: New York, 2002.
[7]
Bonora, M.; Patergnani, S.; Rimessi, A.; De Marchi, E.; Suski, J.M.; Bononi, A.; Giorgi, C.; Marchi, S.; Missiroli, S.; Poletti, F.; Wieckowski, M.R.; Pinton, P. ATP synthesis and storage. Purinergic Signal., 2012, 8(3), 343-357.
[http://dx.doi.org/10.1007/s11302-012-9305-8] [PMID: 22528680]
[8]
Rich, P.R. The molecular machinery of Keilin’s respiratory chain. Biochem. Soc. Trans., 2003, 31(Pt 6), 1095-1105.
[http://dx.doi.org/10.1042/bst0311095] [PMID: 14641005]
[9]
Ruprecht, J.J.; King, M.S.; Zögg, T.; Aleksandrova, A.A.; Pardon, E.; Crichton, P.G.; Steyaert, J.; Kunji, E.R.S. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell, 2019, 176(3), 435-447.e15.
[http://dx.doi.org/10.1016/j.cell.2018.11.025] [PMID: 30611538]
[10]
Boyer, P.D. Catalytic site forms and controls in ATP synthase catalysis. Biochim. Biophys. Acta, 2000, 1458(2-3), 252-262.
[http://dx.doi.org/10.1016/S0005-2728(00)00077-3] [PMID: 10838041]
[11]
Ferguson, S.J. ATP synthase: From sequence to ring size to the P/O ratio. Proc. Natl. Acad. Sci. USA, 2010, 107(39), 16755-16756.
[http://dx.doi.org/10.1073/pnas.1012260107] [PMID: 20858734]
[12]
Liu, Y.; Chen, X.J. Adenine nucleotide translocase, mitochondrial stress, and degenerative cell death. Oxid. Med. Cell. Longev., 2013, 2013, 146860.
[http://dx.doi.org/10.1155/2013/146860] [PMID: 23970947]
[13]
Rich, T.C.; Karpen, J.W. Review article: Cyclic AMP sensors in living cells: What signals can they actually measure? Ann. Biomed. Eng., 2002, 30(8), 1088-1099.
[http://dx.doi.org/10.1114/1.1511242] [PMID: 12449769]
[14]
Meurer, F.; Do, H.T.; Sadowski, G.; Held, C. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis. Biophys. Chem., 2017, 223, 30-38.
[http://dx.doi.org/10.1016/j.bpc.2017.02.005] [PMID: 28282626]
[15]
Cooper, G.M. The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, 2000.
[16]
Kiani, F.A.; Fischer, S. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors. Phys. Chem. Chem. Phys., 2016, 18(30), 20219-20233.
[http://dx.doi.org/10.1039/C6CP01364C] [PMID: 27296627]
[17]
Dzeja, P.P.; Terzic, A. Phosphotransfer networks and cellular energetics. J. Exp. Biol., 2003, 206(Pt 12), 2039-2047.
[http://dx.doi.org/10.1242/jeb.00426] [PMID: 12756286]
[18]
Carrasco, A.J.; Dzeja, P.P.; Alekseev, A.E.; Pucar, D.; Zingman, L.V.; Abraham, M.R.; Hodgson, D.; Bienengraeber, M.; Puceat, M.; Janssen, E.; Wieringa, B.; Terzic, A. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc. Natl. Acad. Sci. USA, 2001, 98(13), 7623-7628.
[http://dx.doi.org/10.1073/pnas.121038198] [PMID: 11390963]
[19]
Plattner, H.; Verkhratsky, A. Inseparable tandem: Evolution chooses ATP and Ca2+ to control life, death and cellular signalling. Phil. Trans. R. Soc., 2016, 371(1700), 20150419.
[http://dx.doi.org/10.1098/rstb.2015.0419]
[20]
Johnson, C.N.; Adkins, N.L.; Georgel, P. Chromatin remodeling complexes: ATP-dependent machines in action. Biochem. Cell Biol., 2005, 83(4), 405-417.
[http://dx.doi.org/10.1139/o05-115] [PMID: 16094444]
[21]
Paul, S.; Bartholomew, B. Regulation of ATP-dependent chromatin remodelers: Accelerators/brakes, anchors and sensors. Biochem. Soc. Trans., 2018, 46(6), 1423-1430.
[http://dx.doi.org/10.1042/BST20180043] [PMID: 30467122]
[22]
Hargreaves, D.C.; Crabtree, G.R. ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms. Cell Res., 2011, 21(3), 396-420.
[http://dx.doi.org/10.1038/cr.2011.32] [PMID: 21358755]
[23]
Clapier, C.R. Chromatin Remodeling Complexes. In: Fundamentals of Chromatin; Workman, J.; Abmayr, S., Eds.; Springer: New York, NY, 2014; pp. 69-146.
[http://dx.doi.org/10.1007/978-1-4614-8624-4_3]
[24]
Clapier, C.R.; Iwasa, J.; Cairns, B.R.; Peterson, C.L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol., 2017, 18(7), 407-422.
[http://dx.doi.org/10.1038/nrm.2017.26] [PMID: 28512350]
[25]
Fudenberg, G.; Imakaev, M.; Lu, C.; Goloborodko, A.; Abdennur, N.; Mirny, L.A. Formation of chromosomal domains by loop extrusion. Cell Rep., 2016, 15(9), 2038-2049.
[http://dx.doi.org/10.1016/j.celrep.2016.04.085] [PMID: 27210764]
[26]
Mirny, L.A.; Imakaev, M.; Abdennur, N. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol., 2019, 58, 142-152.
[http://dx.doi.org/10.1016/j.ceb.2019.05.001] [PMID: 31228682]
[27]
Bell, S.P.; Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature, 1992, 357(6374), 128-134.
[http://dx.doi.org/10.1038/357128a0] [PMID: 1579162]
[28]
Coster, G.; Frigola, J.; Beuron, F.; Morris, E.P.; Diffley, J.F.X. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol. Cell, 2014, 55(5), 666-677.
[http://dx.doi.org/10.1016/j.molcel.2014.06.034] [PMID: 25087873]
[29]
Tang, Q.; Liu, Y.P.; Shan, H.H.; Tian, L.F.; Zhang, J.Z.; Yan, X.X. ATP-dependent conformational change in ABC-ATPase RecF serves as a switch in DNA repair. Sci. Rep., 2018, 8(1), 2127.
[http://dx.doi.org/10.1038/s41598-018-20557-0] [PMID: 29391496]
[30]
Osley, M.A.; Tsukuda, T.; Nickoloff, J.A. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat. Res., 2007, 618(1-2), 65-80.
[http://dx.doi.org/10.1016/j.mrfmmm.2006.07.011] [PMID: 17291544]
[31]
Milanese, C.; Bombardieri, C.R.; Sepe, S.; Barnhoorn, S.; Payán-Goméz, C.; Caruso, D.; Audano, M.; Pedretti, S.; Vermeij, W.P.; Brandt, R.M.C.; Gyenis, A.; Wamelink, M.M.; de Wit, A.S.; Janssens, R.C.; Leen, R.; van Kuilenburg, A.B.P.; Mitro, N.; Hoeijmakers, J.H.J.; Mastroberardino, P.G. DNA damage and transcription stress cause ATP-mediated redesign of metabolism and potentiation of anti-oxidant buffering. Nat. Commun., 2019, 10(1), 4887.
[http://dx.doi.org/10.1038/s41467-019-12640-5] [PMID: 31653834]
[32]
Dzeja, P.; Terzic, A. Adenylate kinase and AMP signaling networks: Metabolic monitoring, signal communication and body energy sensing. Int. J. Mol. Sci., 2009, 10(4), 1729-1772.
[http://dx.doi.org/10.3390/ijms10041729] [PMID: 19468337]
[33]
Glosse, P.; Föller, M. AMP-activated protein kinase (AMPK)-dependent regulation of renal transport. Int. J. Mol. Sci., 2018, 19(11), E3481.
[http://dx.doi.org/10.3390/ijms19113481] [PMID: 30404151]
[34]
Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol., 2017, 45, 31-37.
[http://dx.doi.org/10.1016/j.ceb.2017.01.005] [PMID: 28232179]
[35]
Higgins, C.F.; Linton, K.J. The ATP switch model for ABC transporters. Nat. Struct. Mol. Biol., 2004, 11(10), 918-926.
[http://dx.doi.org/10.1038/nsmb836] [PMID: 15452563]
[36]
Rees, D.C.; Johnson, E.; Lewinson, O. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol., 2009, 10(3), 218-227.
[http://dx.doi.org/10.1038/nrm2646] [PMID: 19234479]
[37]
Jones, P.M.; George, A.M. Role of the D-loops in allosteric control of ATP hydrolysis in an ABC transporter. J. Phys. Chem. A, 2012, 116(11), 3004-3013.
[http://dx.doi.org/10.1021/jp211139s] [PMID: 22369471]
[38]
López-Marqués, R.L.; Poulsen, L.R.; Bailly, A.; Geisler, M.; Pomorski, T.G.; Palmgren, M.G. Structure and mechanism of ATP-dependent phospholipid transporters. Biochim. Biophys. Acta, 2015, 1850(3), 461-475.
[http://dx.doi.org/10.1016/j.bbagen.2014.04.008] [PMID: 24746984]
[39]
Jahraus, A.; Egeberg, M.; Hinner, B.; Habermann, A.; Sackman, E.; Pralle, A.; Faulstich, H.; Rybin, V.; Defacque, H.; Griffiths, G. ATP-dependent membrane assembly of F-actin facilitates membrane fusion. Mol. Biol. Cell, 2001, 12(1), 155-170.
[http://dx.doi.org/10.1091/mbc.12.1.155] [PMID: 11160830]
[40]
Paavilainen, V.O.; Bertling, E.; Falck, S.; Lappalainen, P. Regulation of cytoskeletal dynamics by actin- monomer-binding proteins. Trends Cell Biol., 2004, 14(7), 386-394.
[http://dx.doi.org/10.1016/j.tcb.2004.05.002] [PMID: 15246432]
[41]
Zanotelli, M.R.; Goldblatt, Z.E.; Miller, J.P.; Bordeleau, F.; Li, J.; VanderBurgh, J.A.; Lampi, M.C.; King, M.R.; Reinhart-King, C.A. Regulation of ATP utilization during metastatic cell migration by collagen architecture. Mol. Biol. Cell, 2018, 29(1), 1-9.
[http://dx.doi.org/10.1091/mbc.E17-01-0041] [PMID: 29118073]
[42]
Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[43]
Dennis, P.B.; Jaeschke, A.; Saitoh, M.; Fowler, B.; Kozma, S.C.; Thomas, G. Mammalian TOR: A homeostatic ATP sensor. Science, 2001, 294(5544), 1102-1105.
[http://dx.doi.org/10.1126/science.1063518] [PMID: 11691993]
[44]
Cheek, S.; Zhang, H.; Grishin, N.V. Sequence and structure classification of kinases. J. Mol. Biol., 2002, 320(4), 855-881.
[http://dx.doi.org/10.1016/S0022-2836(02)00538-7] [PMID: 12095261]
[45]
Verhalen, B.; Dastvan, R.; Thangapandian, S.; Peskova, Y.; Koteiche, H.A.; Nakamoto, R.K.; Tajkhorshid, E.; Mchaourab, H.S. Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature, 2017, 543(7647), 738-741.
[http://dx.doi.org/10.1038/nature21414] [PMID: 28289287]
[46]
Zolnerciks, J.K.; Andress, E.J.; Nicolaou, M.; Linton, K.J. Structure of ABC transporters. Essays Biochem., 2011, 50(1), 43-61.
[http://dx.doi.org/10.1042/bse0500043] [PMID: 21967051]
[47]
van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112-124.
[http://dx.doi.org/10.1038/nrm2330] [PMID: 18216768]
[48]
Montigny, C.; Lyons, J.; Champeil, P.; Nissen, P.; Lenoir, G. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim. Biophys. Acta, 2016, 1861(8 Pt B), 767-783.
[http://dx.doi.org/10.1016/j.bbalip.2015.12.020] [PMID: 26747647]
[49]
Clausen, M.V.; Hilbers, F.; Poulsen, H. The structure and function of the Na,K-ATpase isoforms in health and disease. Front. Physiol., 2017, 8, 371.
[http://dx.doi.org/10.3389/fphys.2017.00371] [PMID: 28634454]
[50]
Pollard, T.D. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol., 2016, 8(8), a018226.
[http://dx.doi.org/10.1101/cshperspect.a018226] [PMID: 26988969]
[51]
Pivovarova, A.V.; Chebotareva, N.A.; Kremneva, E.V.; Lappalainen, P.; Levitsky, D.I. Effects of actin-binding proteins on the thermal stability of monomeric actin. Biochemistry, 2013, 52(1), 152-160.
[http://dx.doi.org/10.1021/bi3012884] [PMID: 23231323]
[52]
Thomas, C. Bundling actin filaments from membranes: Some novel players. Front. Plant Sci., 2012, 3, 188.
[http://dx.doi.org/10.3389/fpls.2012.00188] [PMID: 22936939]
[53]
Baker, J.L.; Voth, G.A. Effects of ATP and actin-filament binding on the dynamics of the myosin II S1 domain. Biophys. J., 2013, 105(7), 1624-1634.
[http://dx.doi.org/10.1016/j.bpj.2013.08.023] [PMID: 24094403]
[54]
Huang, H.; Zhang, X.; Li, S.; Liu, N.; Lian, W.; McDowell, E.; Zhou, P.; Zhao, C.; Guo, H.; Zhang, C.; Yang, C.; Wen, G.; Dong, X.; Lu, L.; Ma, N.; Dong, W.; Dou, Q.P.; Wang, X.; Liu, J. Physiological levels of ATP negatively regulate proteasome function. Cell Res., 2010, 20(12), 1372-1385.
[http://dx.doi.org/10.1038/cr.2010.123] [PMID: 20805844]
[55]
Korolchuk, V.I.; Menzies, F.M.; Rubinsztein, D.C. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett., 2010, 584(7), 1393-1398.
[http://dx.doi.org/10.1016/j.febslet.2009.12.047] [PMID: 20040365]
[56]
Liu, C.W.; Li, X.; Thompson, D.; Wooding, K.; Chang, T.L.; Tang, Z.; Yu, H.; Thomas, P.J.; DeMartino, G.N. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell, 2006, 24(1), 39-50.
[http://dx.doi.org/10.1016/j.molcel.2006.08.025] [PMID: 17018291]
[57]
Lazarowski, E.R.; Sesma, J.I.; Seminario-Vidal, L.; Kreda, S.M. Molecular mechanisms of purine and pyrimidine nucleotide release. Adv. Pharmacol., 2011, 61, 221-261.
[http://dx.doi.org/10.1016/B978-0-12-385526-8.00008-4] [PMID: 21586361]
[58]
Shigematsu, T.; Koshiyama, K.; Wada, S. Effects of stretching speed on mechanical rupture of phospholipid/cholesterol bilayers: Molecular dynamics simulation. Sci. Rep., 2015, 5(1), 15369.
[http://dx.doi.org/10.1038/srep15369] [PMID: 26471872]
[59]
Praetorius, H.A.; Leipziger, J. ATP release from non-excitable cells. Purinergic Signal., 2009, 5(4), 433-446.
[http://dx.doi.org/10.1007/s11302-009-9146-2] [PMID: 19301146]
[60]
Taruno, A. ATP release channels. Int. J. Mol. Sci., 2018, 19(3), E808.
[http://dx.doi.org/10.3390/ijms19030808] [PMID: 29534490]
[61]
Colombini, M. VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta, 2012, 1818(6), 1457-1465.
[http://dx.doi.org/10.1016/j.bbamem.2011.12.026] [PMID: 22240010]
[62]
Harada, Y.; Kato, Y.; Miyaji, T.; Omote, H.; Moriyama, Y.; Hiasa, M. Vesicular nucleotide transporter mediates ATP release and migration in neutrophils. J. Biol. Chem., 2018, 293(10), 3770-3779.
[http://dx.doi.org/10.1074/jbc.M117.810168] [PMID: 29363573]
[63]
Hiasa, M.; Togawa, N.; Miyaji, T.; Omote, H.; Yamamoto, A.; Moriyama, Y. Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets. Physiol. Rep., 2014, 2(6), 12304.
[http://dx.doi.org/10.14814/phy2.12034] [PMID: 24907298]
[64]
Sawada, K.; Echigo, N.; Juge, N.; Miyaji, T.; Otsuka, M.; Omote, H.; Yamamoto, A.; Moriyama, Y. Identification of a vesicular nucleotide transporter. Proc. Natl. Acad. Sci. USA, 2008, 105(15), 5683-5686.
[http://dx.doi.org/10.1073/pnas.0800141105] [PMID: 18375752]
[65]
Hasuzawa, N.; Moriyama, S.; Moriyama, Y.; Nomura, M. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release. Biochim. Biophys. Acta Biomembr., 2020, 1862(12), 183408.
[http://dx.doi.org/10.1016/j.bbamem.2020.183408] [PMID: 32652056]
[66]
Zimmermann, H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal., 2016, 12(1), 25-57.
[http://dx.doi.org/10.1007/s11302-015-9483-2] [PMID: 26545760]
[67]
Corriden, R.; Insel, P.A. Basal release of ATP: An autocrine-paracrine mechanism for cell regulation. Sci. Signal., 2010, 3(104), re1.
[http://dx.doi.org/10.1126/scisignal.3104re1] [PMID: 20068232]
[68]
Regateiro, F.S.; Cobbold, S.P.; Waldmann, H. CD73 and adenosine generation in the creation of regulatory microenvironments. Clin. Exp. Immunol., 2013, 171(1), 1-7.
[http://dx.doi.org/10.1111/j.1365-2249.2012.04623.x] [PMID: 23199317]
[69]
Moesta, A.K.; Li, X.Y.; Smyth, M.J. Targeting CD39 in cancer. Nat. Rev. Immunol., 2020, 20(12), 739-755.
[http://dx.doi.org/10.1038/s41577-020-0376-4] [PMID: 32728220]
[70]
Lim, H.M.; Heo, W.; Han, J.W.; Lee, M.G.; Kim, J.Y. NPP1 is responsible for potent extracellular ATP hydrolysis as NTPDase1 in primary cultured murine microglia. Purinergic Signal., 2018, 14(2), 157-166.
[http://dx.doi.org/10.1007/s11302-018-9601-z] [PMID: 29516286]
[71]
Madaj, R.; Gostynski, B.; Pawlowska, R.; Chworos, A. Tissue-nonspecific alkaline phosphatase (TNAP) as the enzyme involved in the degradation of nucleotide analogues in the ligand docking and molecular dynamics approaches. Biomolecules, 2021, 11(8), 1104.
[http://dx.doi.org/10.3390/biom11081104] [PMID: 34439771]
[72]
Madaj, R.; Pawlowska, R.; Chworos, A. In silico exploration of binding of selected bisphosphonate derivatives to placental alkaline phosphatase via docking and molecular dynamics. J. Mol. Graph. Model., 2021, 103, 107801.
[http://dx.doi.org/10.1016/j.jmgm.2020.107801] [PMID: 33296741]
[73]
Lecka, J.; Ben-David, G.; Simhaev, L.; Eliahu, S.; Oscar, J., Jr; Luyindula, P.; Pelletier, J.; Fischer, B.; Senderowitz, H.; Sévigny, J. Nonhydrolyzable ATP analogues as selective inhibitors of human NPP1: A combined computational/experimental study. J. Med. Chem., 2013, 56(21), 8308-8320.
[http://dx.doi.org/10.1021/jm400918s] [PMID: 24083941]
[74]
Burnstock, G. Purine and purinergic receptors. Brain Neurosci. Adv., 2018, 2, 2398212818817494.
[http://dx.doi.org/10.1177/2398212818817494] [PMID: 32166165]
[75]
Malwal, S.R.; O’Dowd, B.; Feng, X.; Turhanen, P.; Shin, C.; Yao, J.; Kim, B.K.; Baig, N.; Zhou, T.; Bansal, S.; Khade, R.L.; Zhang, Y.; Oldfield, E. Bisphosphonate-generated ATP-analogs inhibit cell signaling pathways. J. Am. Chem. Soc., 2018, 140(24), 7568-7578.
[http://dx.doi.org/10.1021/jacs.8b02363] [PMID: 29787268]
[76]
Dworak, M.; McCarley, R.W.; Kim, T.; Kalinchuk, A.V.; Basheer, R. Sleep and brain energy levels: ATP changes during sleep. J. Neurosci., 2010, 30(26), 9007-9016.
[http://dx.doi.org/10.1523/JNEUROSCI.1423-10.2010] [PMID: 20592221]
[77]
Abbracchio, M.P.; Burnstock, G.; Verkhratsky, A.; Zimmermann, H. Purinergic signalling in the nervous system: An overview. Trends Neurosci., 2009, 32(1), 19-29.
[http://dx.doi.org/10.1016/j.tins.2008.10.001] [PMID: 19008000]
[78]
Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac metabolism in heart failure: Implications beyond ATP production. Circ. Res., 2013, 113(6), 709-724.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300376] [PMID: 23989714]
[79]
Neubauer, S. The failing heart-an engine out of fuel. N. Engl. J. Med., 2007, 356(11), 1140-1151.
[http://dx.doi.org/10.1056/NEJMra063052] [PMID: 17360992]
[80]
Trautmann, A. Extracellular ATP in the immune system: More than just a “danger signal”. Sci. Signal., 2009, 2(56), pe6.
[http://dx.doi.org/10.1126/scisignal.256pe6] [PMID: 19193605]
[81]
Junger, W.G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol., 2011, 11(3), 201-212.
[http://dx.doi.org/10.1038/nri2938] [PMID: 21331080]
[82]
Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; Lysiak, J.J.; Harden, T.K.; Leitinger, N.; Ravichandran, K.S. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 2009, 461(7261), 282-286.
[http://dx.doi.org/10.1038/nature08296] [PMID: 19741708]
[83]
Jacob, F.; Pérez Novo, C.; Bachert, C.; Van Crombruggen, K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal., 2013, 9(3), 285-306.
[http://dx.doi.org/10.1007/s11302-013-9357-4] [PMID: 23404828]
[84]
Faas, M.M.; Sáez, T.; de Vos, P. Extracellular ATP and adenosine: The Yin and Yang in immune responses? Mol. Aspects Med., 2017, 55, 9-19.
[http://dx.doi.org/10.1016/j.mam.2017.01.002] [PMID: 28093236]
[85]
Khakh, B.S.; Burnstock, G. The double life of ATP. Sci. Am., 2009, 301(6), 84-90, 92.
[http://dx.doi.org/10.1038/scientificamerican1209-84] [PMID: 20058644]
[86]
Tan, T.W.; Pfau, B.; Jones, D.; Meyer, T. Stimulation of primary osteoblasts with ATP induces transient vinculin clustering at sites of high intracellular traction force. J. Mol. Histol., 2014, 45(1), 81-89.
[http://dx.doi.org/10.1007/s10735-013-9530-7] [PMID: 23933795]
[87]
Burnstock, G. Historical review: ATP as a neurotransmitter. Trends Pharmacol. Sci., 2006, 27(3), 166-176.
[http://dx.doi.org/10.1016/j.tips.2006.01.005] [PMID: 16487603]
[88]
Cotrina, M.L.; Lin, J.H.C.; López-García, J.C.; Naus, C.C.G.; Nedergaard, M. ATP-mediated glia signaling. J. Neurosci., 2000, 20(8), 2835-2844.
[http://dx.doi.org/10.1523/JNEUROSCI.20-08-02835.2000] [PMID: 10751435]
[89]
Calovi, S.; Mut-Arbona, P.; Sperlágh, B. Microglia and the purinergic signaling system. Neuroscience, 2019, 405, 137-147.
[http://dx.doi.org/10.1016/j.neuroscience.2018.12.021] [PMID: 30582977]
[90]
Tsuda, M.; Inoue, K. Neuron-microglia interaction by purinergic signaling in neuropathic pain following neurodegeneration. Neuropharmacology, 2016, 104, 76-81.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.042] [PMID: 26327676]
[91]
Ballanyi, K. Protective role of neuronal KATP channels in brain hypoxia. J. Exp. Biol., 2004, 207(Pt 18), 3201-3212.
[http://dx.doi.org/10.1242/jeb.01106] [PMID: 15299041]
[92]
Chen, H.H.; Schock, S.C.; Xu, J.; Safarpour, F.; Thompson, C.S.; Stewart, A.F. Extracellular ATP-dependent upregulation of the transcription cofactor LMO4 promotes neuron survival from hypoxia. Exp. Cell Res., 2007, 313(14), 3106-3116.
[http://dx.doi.org/10.1016/j.yexcr.2007.04.026] [PMID: 17524392]
[93]
Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron, 2012, 75(5), 762-777.
[http://dx.doi.org/10.1016/j.neuron.2012.08.019] [PMID: 22958818]
[94]
Kato, Y.; Hiasa, M.; Ichikawa, R.; Hasuzawa, N.; Kadowaki, A.; Iwatsuki, K.; Shima, K.; Endo, Y.; Kitahara, Y.; Inoue, T.; Nomura, M.; Omote, H.; Moriyama, Y.; Miyaji, T. Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain. Proc. Natl. Acad. Sci. USA, 2017, 114(31), E6297-E6305.
[http://dx.doi.org/10.1073/pnas.1704847114] [PMID: 28720702]
[95]
Finger, T.E.; Danilova, V.; Barrows, J.; Bartel, D.L.; Vigers, A.J.; Stone, L.; Hellekant, G.; Kinnamon, S.C. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science, 2005, 310(5753), 1495-1499.
[http://dx.doi.org/10.1126/science.1118435] [PMID: 16322458]
[96]
Schlattner, U.; Tokarska-Schlattner, M.; Wallimann, T. Mitochondrial creatine kinase in human health and disease. Biochim. Biophys. Acta, 2006, 1762(2), 164-180.
[http://dx.doi.org/10.1016/j.bbadis.2005.09.004] [PMID: 16236486]
[97]
Idzko, M.; Ferrari, D.; Eltzschig, H.K. Nucleotide signalling during inflammation. Nature, 2014, 509(7500), 310-317.
[http://dx.doi.org/10.1038/nature13085] [PMID: 24828189]
[98]
Dal Ben, D.; Antonioli, L.; Lambertucci, C.; Fornai, M.; Blandizzi, C.; Volpini, R. Purinergic ligands as potential therapeutic tools for the treatment of inflammation-related intestinal diseases. Front. Pharmacol., 2018, 9, 212.
[http://dx.doi.org/10.3389/fphar.2018.00212] [PMID: 29593540]
[99]
Pathak, D.; Berthet, A.; Nakamura, K. Energy failure: Does it contribute to neurodegeneration? Ann. Neurol., 2013, 74(4), 506-516.
[http://dx.doi.org/10.1002/ana.24014] [PMID: 24038413]
[100]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[101]
Coskuner, O.; Murray, I.V. Adenosine triphosphate (ATP) reduces amyloid-β protein misfolding in vitro. J. Alzheimers Dis., 2014, 41(2), 561-574.
[http://dx.doi.org/10.3233/JAD-132300] [PMID: 24625803]
[102]
Godoy, P.A.; Ramírez-Molina, O.; Fuentealba, J. Exploring the role of P2X receptors in Alzheimer’s Disease. Front. Pharmacol., 2019, 10, 1330.
[http://dx.doi.org/10.3389/fphar.2019.01330] [PMID: 31787900]
[103]
Burnstock, G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology, 2016, 104, 4-17.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.031] [PMID: 26056033]
[104]
Bartlett, R.; Stokes, L.; Sluyter, R. The P2X7 receptor channel: Recent developments and the use of P2X7 antagonists in models of disease. Pharmacol. Rev., 2014, 66(3), 638-675.
[http://dx.doi.org/10.1124/pr.113.008003] [PMID: 24928329]
[105]
Tang, J.; Oliveros, A.; Jang, M.H. Dysfunctional mitochondrial bioenergetics and synaptic degeneration in Alzheimer disease. Int. Neurourol. J., 2019, 23(Suppl 1), S5-S10.
[http://dx.doi.org/10.5213/inj.1938036.018]
[106]
Parvathenani, L.K.; Tertyshnikova, S.; Greco, C.R.; Roberts, S.B.; Robertson, B.; Posmantur, R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J. Biol. Chem., 2003, 278(15), 13309-13317.
[http://dx.doi.org/10.1074/jbc.M209478200] [PMID: 12551918]
[107]
Woods, L.T.; Ajit, D.; Camden, J.M.; Erb, L.; Weisman, G.A. Purinergic receptors as potential therapeutic targets in Alzheimer’s disease. Neuropharmacology, 2016, 104, 169-179.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.031] [PMID: 26519903]
[108]
Erb, L.; Cao, C.; Ajit, D.; Weisman, G.A. P2Y receptors in Alzheimer’s disease. Biol. Cell, 2015, 107(1), 1-21.
[http://dx.doi.org/10.1111/boc.201400043] [PMID: 25179475]
[109]
Lee, Y.J.; Han, S.B.; Nam, S.Y.; Oh, K.W.; Hong, J.T. Inflammation and Alzheimer’s disease. Arch. Pharm. Res., 2010, 33(10), 1539-1556.
[http://dx.doi.org/10.1007/s12272-010-1006-7] [PMID: 21052932]
[110]
Salgado-Puga, K.; Rodríguez-Colorado, J.; Prado-Alcalá, R.A.; Peña-Ortega, F. Subclinical doses of ATP-sensitive potassium channel modulators prevent alterations in memory and synaptic plasticity induced by amyloid-β. J. Alzheimers Dis., 2017, 57(1), 205-226.
[http://dx.doi.org/10.3233/JAD-160543] [PMID: 28222502]
[111]
Fujita, T.; Tozaki-Saitoh, H.; Inoue, K. P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia, 2009, 57(3), 244-257.
[http://dx.doi.org/10.1002/glia.20749] [PMID: 18756525]
[112]
Tóth, A.; Antal, Z.; Bereczki, D.; Sperlágh, B. Purinergic signalling in Parkinson’s disease: A multi-target system to combat neurodegeneration. Neurochem. Res., 2019, 44(10), 2413-2422.
[http://dx.doi.org/10.1007/s11064-019-02798-1] [PMID: 31054067]
[113]
Miras-Portugal, M.T.; Diaz-Hernandez, J.I.; Gomez-Villafuertes, R.; Diaz-Hernandez, M.; Artalejo, A.R.; Gualix, J. Role of P2X7 and P2Y2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation “in vivo” by P2X7 receptor. Comput. Struct. Biotechnol. J., 2015, 13, 176-181.
[http://dx.doi.org/10.1016/j.csbj.2015.02.005] [PMID: 25848496]
[114]
Wilkaniec, A.; Gąssowska, M.; Czapski, G.A.; Cieślik, M.; Sulkowski, G.; Adamczyk, A. P2X7 receptor-pannexin 1 interaction mediates extracellular alpha-synuclein-induced ATP release in neuroblastoma SH-SY5Y cells. Purinergic Signal., 2017, 13(3), 347-361.
[http://dx.doi.org/10.1007/s11302-017-9567-2] [PMID: 28516276]
[115]
Ludtmann, M.H.R.; Angelova, P.R.; Horrocks, M.H.; Choi, M.L.; Rodrigues, M.; Baev, A.Y.; Berezhnov, A.V.; Yao, Z.; Little, D.; Banushi, B.; Al-Menhali, A.S.; Ranasinghe, R.T.; Whiten, D.R.; Yapom, R.; Dolt, K.S.; Devine, M.J.; Gissen, P.; Kunath, T.; Jaganjac, M.; Pavlov, E.V.; Klenerman, D.; Abramov, A.Y.; Gandhi, S. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat. Commun., 2018, 9(1), 2293.
[http://dx.doi.org/10.1038/s41467-018-04422-2] [PMID: 29895861]
[116]
Navarro, G.; Borroto-Escuela, D.O.; Fuxe, K.; Franco, R. Purinergic signaling in Parkinson’s disease. Relevance for treatment. Neuropharmacology, 2016, 104, 161-168.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.024] [PMID: 26211977]
[117]
Qian, Y.; Xu, S.; Yang, X.; Xiao, Q. Purinergic receptor P2Y6 contributes to 1-methyl-4-phenylpyridinium-induced oxidative stress and cell death in neuronal SH-SY5Y cells. J. Neurosci. Res., 2018, 96(2), 253-264.
[http://dx.doi.org/10.1002/jnr.24119] [PMID: 28752899]
[118]
Burnstock, G. Purinergic signalling: Therapeutic developments. Front. Pharmacol., 2017, 8, 661.
[http://dx.doi.org/10.3389/fphar.2017.00661] [PMID: 28993732]
[119]
Burnstock, G. Purinergic signaling in the cardiovascular system. Circ. Res., 2017, 120(1), 207-228.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309726] [PMID: 28057794]
[120]
Birkenfeld, A.L.; Jordan, J.; Dworak, M.; Merkel, T.; Burnstock, G. Myocardial metabolism in heart failure: Purinergic signalling and other metabolic concepts. Pharmacol. Ther., 2019, 194, 132-144.
[http://dx.doi.org/10.1016/j.pharmthera.2018.08.015] [PMID: 30149104]
[121]
Dong, F.; Yang, X.J.; Jiang, T.B.; Chen, Y. Ischemia triggered ATP release through Pannexin-1 channel by myocardial cells activates sympathetic fibers. Microvasc. Res., 2016, 104, 32-37.
[http://dx.doi.org/10.1016/j.mvr.2015.11.005] [PMID: 26596404]
[122]
Li, L.; He, L.; Wu, D.; Chen, L.; Jiang, Z. Pannexin-1 channels and their emerging functions in cardiovascular diseases. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(6), 391-396.
[http://dx.doi.org/10.1093/abbs/gmv028] [PMID: 25921414]
[123]
Dolmatova, E.; Spagnol, G.; Boassa, D.; Baum, J.R.; Keith, K.; Ambrosi, C.; Kontaridis, M.I.; Sorgen, P.L.; Sosinsky, G.E.; Duffy, H.S. Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am. J. Physiol. Heart Circ. Physiol., 2012, 303(10), H1208-H1218.
[http://dx.doi.org/10.1152/ajpheart.00251.2012] [PMID: 22982782]
[124]
Guerra Martinez, C. P2X7 receptor in cardiovascular disease: The heart side. Clin. Exp. Pharmacol. Physiol., 2019, 46(6), 513-526.
[http://dx.doi.org/10.1111/1440-1681.13079] [PMID: 30834550]
[125]
Wang, S.; Iring, A.; Strilic, B.; Albarrán Juárez, J.; Kaur, H.; Troidl, K.; Tonack, S.; Burbiel, J.C.; Müller, C.E.; Fleming, I.; Lundberg, J.O.; Wettschureck, N.; Offermanns, S. P2Y and Gq/G control blood pressure by mediating endothelial mechanotransduction. J. Clin. Invest., 2015, 125(8), 3077-3086.
[http://dx.doi.org/10.1172/JCI81067] [PMID: 26168216]
[126]
Ni, R.; Zheng, D.; Xiong, S.; Hill, D.J.; Sun, T.; Gardiner, R.B.; Fan, G.C.; Lu, Y.; Abel, E.D.; Greer, P.A.; Peng, T. Mitochondrial calpain-1 disrupts atp synthase and induces superoxide generation in type 1 diabetic hearts: A novel mechanism contributing to Diabetic Cardiomyopathy. Diabetes, 2016, 65(1), 255-268.
[http://dx.doi.org/10.2337/db15-0963] [PMID: 26470784]
[127]
Martinez, C.G.; Zamith-Miranda, D.; da Silva, M.G.; Ribeiro, K.C.; Brandão, I.T.; Silva, C.L.; Diaz, B.L.; Bellio, M.; Persechini, P.M.; Kurtenbach, E. P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: Autoantibody levels, heart functionality and cytokine expression. Sci. Rep., 2015, 5(1), 16940.
[http://dx.doi.org/10.1038/srep16940] [PMID: 26592184]
[128]
Liu, Z.; Cai, H.; Dang, Y.; Qiu, C.; Wang, J. Adenosine triphosphate-sensitive potassium channels and cardiomyopathies (Review). Mol. Med. Rep., 2016, 13(2), 1447-1454.
[http://dx.doi.org/10.3892/mmr.2015.4714] [PMID: 26707080]
[129]
Novitskaya, T.; Chepurko, E.; Covarrubias, R.; Novitskiy, S.; Ryzhov, S.V.; Feoktistov, I.; Gumina, R.J. Extracellular nucleotide regulation and signaling in cardiac fibrosis. J. Mol. Cell. Cardiol., 2016, 93, 47-56.
[http://dx.doi.org/10.1016/j.yjmcc.2016.02.010] [PMID: 26891859]
[130]
Chen, J.B.; Liu, W.J.; Che, H.; Liu, J.; Sun, H.Y.; Li, G.R. Adenosine-5′-triphosphate up-regulates proliferation of human cardiac fibroblasts. Br. J. Pharmacol., 2012, 166(3), 1140-1150.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01831.x] [PMID: 22224416]
[131]
Tinker, A.; Aziz, Q.; Thomas, A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br. J. Pharmacol., 2014, 171(1), 12-23.
[http://dx.doi.org/10.1111/bph.12407] [PMID: 24102106]
[132]
Ye, P.; Zhu, Y.R.; Gu, Y.; Zhang, D.M.; Chen, S.L. Functional protection against cardiac diseases depends on ATP-sensitive potassium channels. J. Cell. Mol. Med., 2018, 22(12), 5801-5806.
[http://dx.doi.org/10.1111/jcmm.13893] [PMID: 30596400]
[133]
Yang, R.; Liang, B.T. Cardiac P2X(4) receptors: Targets in ischemia and heart failure? Circ. Res., 2012, 111(4), 397-401.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.265959] [PMID: 22859669]
[134]
Balogh, J.; Wihlborg, A.K.; Isackson, H.; Joshi, B.V.; Jacobson, K.A.; Arner, A.; Erlinge, D. Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J. Mol. Cell. Cardiol., 2005, 39(2), 223-230.
[http://dx.doi.org/10.1016/j.yjmcc.2005.03.007] [PMID: 15893764]
[135]
Nishimura, A.; Sunggip, C.; Oda, S.; Numaga-Tomita, T.; Tsuda, M.; Nishida, M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol. Ther., 2017, 180, 113-128.
[http://dx.doi.org/10.1016/j.pharmthera.2017.06.010] [PMID: 28648830]
[136]
Burnstock, G.; Pelleg, A. Cardiac purinergic signalling in health and disease. Purinergic Signal., 2015, 11(1), 1-46.
[http://dx.doi.org/10.1007/s11302-014-9436-1] [PMID: 25527177]
[137]
Nishida, M.; Ogushi, M.; Suda, R.; Toyotaka, M.; Saiki, S.; Kitajima, N.; Nakaya, M.; Kim, K.M.; Ide, T.; Sato, Y.; Inoue, K.; Kurose, H. Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y2 receptor stimulation through S-nitrosylation of NF-kappaB. Proc. Natl. Acad. Sci. USA, 2011, 108(16), 6662-6667.
[http://dx.doi.org/10.1073/pnas.1017640108] [PMID: 21464294]
[138]
Pijacka, W.; Moraes, D.J.A.; Ratcliffe, L.E.K.; Nightingale, A.K.; Hart, E.C.; da Silva, M.P.; Machado, B.H.; McBryde, F.D.; Abdala, A.P.; Ford, A.P.; Paton, J.F.R. Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat. Med., 2016, 22(10), 1151-1159.
[http://dx.doi.org/10.1038/nm.4173] [PMID: 27595323]
[139]
Kaczmarek, E.; Erb, L.; Koziak, K.; Jarzyna, R.; Wink, M.R.; Guckelberger, O.; Blusztajn, J.K.; Trinkaus-Randall, V.; Weisman, G.A.; Robson, S.C. Modulation of endothelial cell migration by extracellular nucleotides: Involvement of focal adhesion kinase and phosphatidylinositol 3-kinase-mediated pathways. Thromb. Haemost., 2005, 93(4), 735-742.
[http://dx.doi.org/10.1160/TH04-09-0576] [PMID: 15841322]
[140]
Avanzato, D.; Genova, T.; Fiorio Pla, A.; Bernardini, M.; Bianco, S.; Bussolati, B.; Mancardi, D.; Giraudo, E.; Maione, F.; Cassoni, P.; Castellano, I.; Munaron, L. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling. Sci. Rep., 2016, 6(1), 32602.
[http://dx.doi.org/10.1038/srep32602] [PMID: 27586846]
[141]
da Silva, J.L.G.; Passos, D.F.; Bernardes, V.M.; Leal, D.B.R. ATP and adenosine: Role in the immunopathogenesis of rheumatoid arthritis. Immunol. Lett., 2019, 214, 55-64.
[http://dx.doi.org/10.1016/j.imlet.2019.08.009] [PMID: 31479688]
[142]
Chen, J.; Zhao, Y.; Liu, Y. The role of nucleotides and purinergic signaling in apoptotic cell clearance - implications for chronic inflammatory diseases. Front. Immunol., 2014, 5, 656.
[http://dx.doi.org/10.3389/fimmu.2014.00656] [PMID: 25566266]
[143]
Liverani, E.; Rico, M.C.; Tsygankov, A.Y.; Kilpatrick, L.E.; Kunapuli, S.P. P2Y12 receptor modulates sepsis-induced inflammation. Arterioscler. Thromb. Vasc. Biol., 2016, 36(5), 961-971.
[http://dx.doi.org/10.1161/ATVBAHA.116.307401] [PMID: 27055904]
[144]
Riegel, A.K.; Faigle, M.; Zug, S.; Rosenberger, P.; Robaye, B.; Boeynaems, J.M.; Idzko, M.; Eltzschig, H.K. Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood, 2011, 117(8), 2548-2555.
[http://dx.doi.org/10.1182/blood-2010-10-313957] [PMID: 21173118]
[145]
Schnurr, M.; Toy, T.; Stoitzner, P.; Cameron, P.; Shin, A.; Beecroft, T.; Davis, I.D.; Cebon, J.; Maraskovsky, E. ATP gradients inhibit the migratory capacity of specific human dendritic cell types: Implications for P2Y11 receptor signaling. Blood, 2003, 102(2), 613-620.
[http://dx.doi.org/10.1182/blood-2002-12-3745] [PMID: 12649135]
[146]
Vaughan, K.R.; Stokes, L.; Prince, L.R.; Marriott, H.M.; Meis, S.; Kassack, M.U.; Bingle, C.D.; Sabroe, I.; Surprenant, A.; Whyte, M.K. Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J. Immunol., 2007, 179(12), 8544-8553.
[http://dx.doi.org/10.4049/jimmunol.179.12.8544] [PMID: 18056402]
[147]
Ledderose, C.; Bao, Y.; Kondo, Y.; Fakhari, M.; Slubowski, C.; Zhang, J.; Junger, W.G. Purinergic signaling and the immune response in sepsis: A review. Clin. Ther., 2016, 38(5), 1054-1065.
[http://dx.doi.org/10.1016/j.clinthera.2016.04.002] [PMID: 27156007]
[148]
Stachon, P.; Peikert, A.; Michel, N.A.; Hergeth, S.; Marchini, T.; Wolf, D.; Dufner, B.; Hoppe, N.; Ayata, C.K.; Grimm, M.; Cicko, S.; Schulte, L.; Reinöhl, J.; von zur Muhlen, C.; Bode, C.; Idzko, M.; Zirlik, A. P2Y6 deficiency limits vascular inflammation and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 2014, 34(10), 2237-2245.
[http://dx.doi.org/10.1161/ATVBAHA.114.303585] [PMID: 25104800]
[149]
Lisman, T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res., 2018, 371(3), 567-576.
[http://dx.doi.org/10.1007/s00441-017-2727-4] [PMID: 29178039]
[150]
Coutinho-Silva, R.; Ojcius, D.M. Role of extracellular nucleotides in the immune response against intracellular bacteria and protozoan parasites. Microbes Infect., 2012, 14(14), 1271-1277.
[http://dx.doi.org/10.1016/j.micinf.2012.05.009] [PMID: 22634346]
[151]
Oury, C.; Wéra, O. P2X1: A unique platelet receptor with a key role in thromboinflammation. Platelets, 2021, 32(7), 902-908.
[http://dx.doi.org/10.1080/09537104.2021.1902972] [PMID: 33760688]
[152]
Miller, C.M.; Boulter, N.R.; Fuller, S.J.; Zakrzewski, A.M.; Lees, M.P.; Saunders, B.M.; Wiley, J.S.; Smith, N.C. The role of the P2X₇ receptor in infectious diseases. PLoS Pathog., 2011, 7(11), e1002212.
[http://dx.doi.org/10.1371/journal.ppat.1002212] [PMID: 22102807]
[153]
Savio, L.E.B.; Coutinho-Silva, R. Purinergic signaling in infection and autoimmune disease. Biomed. J., 2016, 39(5), 304-305.
[http://dx.doi.org/10.1016/j.bj.2016.09.002] [PMID: 27884376]
[154]
Paoletti, A.; Raza, S.Q.; Voisin, L.; Law, F.; Pipoli da Fonseca, J.; Caillet, M.; Kroemer, G.; Perfettini, J.L. Multifaceted roles of purinergic receptors in viral infection. Microbes Infect., 2012, 14(14), 1278-1283.
[http://dx.doi.org/10.1016/j.micinf.2012.05.010] [PMID: 22683717]
[155]
Pelleg, A. Extracellular adenosine 5′-triphosphate in pulmonary disorders. Biochem. Pharmacol., 2020, 187, 114319.
[http://dx.doi.org/10.1016/j.bcp.2020.114319] [PMID: 33161021]
[156]
Franciosi, M.L.M.; Lima, M.D.M.; Schetinger, M.R.C.; Cardoso, A.M. Possible role of purinergic signaling in COVID-19. Mol. Cell. Biochem., 2021, 476(8), 2891-2898.
[http://dx.doi.org/10.1007/s11010-021-04130-4] [PMID: 33740184]
[157]
Alves, V.S.; Leite-Aguiar, R.; Silva, J.P.D.; Coutinho-Silva, R.; Savio, L.E.B. Purinergic signaling in infectious diseases of the central nervous system. Brain Behav. Immun., 2020, 89, 480-490.
[http://dx.doi.org/10.1016/j.bbi.2020.07.026] [PMID: 32717399]
[158]
Ribeiro, D.E.; Oliveira-Giacomelli, Á.; Glaser, T.; Arnaud-Sampaio, V.F.; Andrejew, R.; Dieckmann, L.; Baranova, J.; Lameu, C.; Ratajczak, M.Z.; Ulrich, H. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol. Psychiatry, 2021, 26(4), 1044-1059.
[http://dx.doi.org/10.1038/s41380-020-00965-3] [PMID: 33328588]
[159]
Dos Anjos, F.; Simões, J.L.B.; Assmann, C.E.; Carvalho, F.B.; Bagatini, M.D. Potential therapeutic role of purinergic receptors in cardiovascular disease mediated by SARS-CoV-2. J. Immunol. Res., 2020, 2020, 8632048.
[http://dx.doi.org/10.1155/2020/8632048] [PMID: 33299899]
[160]
Ahmadi, P.; Hartjen, P.; Kohsar, M.; Kummer, S.; Schmiedel, S.; Bockmann, J.H.; Fathi, A.; Huber, S.; Haag, F.; Schulze Zur Wiesch, J. Defining the CD39/CD73 axis in SARS-CoV-2 infection: The CD73- phenotype identifies polyfunctional cytotoxic lymphocytes. Cells, 2020, 9(8), E1750.
[http://dx.doi.org/10.3390/cells9081750] [PMID: 32707842]
[161]
Tsai, S.H.; Takeda, K. Regulation of allergic inflammation by the ectoenzyme E-NPP3 (CD203c) on basophils and mast cells. Semin. Immunopathol., 2016, 38(5), 571-579.
[http://dx.doi.org/10.1007/s00281-016-0564-2] [PMID: 27130555]
[162]
Passos, D.F.; Schetinger, M.R.; Leal, D.B. Purinergic signaling and human immunodeficiency virus/acquired immune deficiency syndrome: From viral entry to therapy. World J. Virol., 2015, 4(3), 285-294.
[http://dx.doi.org/10.5501/wjv.v4.i3.285] [PMID: 26279989]
[163]
Swartz, T.H.; Dubyak, G.R.; Chen, B.K. Purinergic receptors: key mediators of HIV-1 infection and inflammation. Front. Immunol., 2015, 6, 585.
[http://dx.doi.org/10.3389/fimmu.2015.00585] [PMID: 26635799]
[164]
Freeman, T.L.; Swartz, T.H. Purinergic receptors: Elucidating the role of these immune mediators in HIV-1 fusion. Viruses, 2020, 12(3), E290.
[http://dx.doi.org/10.3390/v12030290] [PMID: 32155980]
[165]
Eltzschig, H.K.; Sitkovsky, M.V.; Robson, S.C. Purinergic signaling during inflammation. N. Engl. J. Med., 2012, 367(24), 2322-2333.
[http://dx.doi.org/10.1056/NEJMra1205750] [PMID: 23234515]
[166]
Wang, C.; Geng, B.; Cui, Q.; Guan, Y.; Yang, J. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β). J. Diabetes, 2014, 6(2), 113-119.
[http://dx.doi.org/10.1111/1753-0407.12098] [PMID: 24134160]
[167]
Sakamoto, S.; Miyaji, T.; Hiasa, M.; Ichikawa, R.; Uematsu, A.; Iwatsuki, K.; Shibata, A.; Uneyama, H.; Takayanagi, R.; Yamamoto, A.; Omote, H.; Nomura, M.; Moriyama, Y. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity. Sci. Rep., 2014, 4(4), 6689.
[PMID: 25331291]
[168]
Burnstock, G.; Novak, I. Purinergic signalling and diabetes. Purinergic Signal., 2013, 9(3), 307-324.
[http://dx.doi.org/10.1007/s11302-013-9359-2] [PMID: 23546842]
[169]
Koster, J.C.; Permutt, M.A.; Nichols, C.G. Diabetes and insulin secretion: the ATP-sensitive K+ channel (K ATP) connection. Diabetes, 2005, 54(11), 3065-3072.
[http://dx.doi.org/10.2337/diabetes.54.11.3065] [PMID: 16249427]
[170]
Ashcroft, F.M.; Rorsman, P. K(ATP) channels and islet hormone secretion: new insights and controversies. Nat. Rev. Endocrinol., 2013, 9(11), 660-669.
[http://dx.doi.org/10.1038/nrendo.2013.166] [PMID: 24042324]
[171]
Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1066-1077.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[172]
Babashamsi, M.M.; Koukhaloo, S.Z.; Halalkhor, S.; Salimi, A.; Babashamsi, M. ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity. Diabetes Metab. Syndr., 2019, 13(2), 1529-1534.
[http://dx.doi.org/10.1016/j.dsx.2019.03.004] [PMID: 31336517]
[173]
Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci., 2013, 9(2), 191-200.
[http://dx.doi.org/10.5114/aoms.2013.33181] [PMID: 23671428]
[174]
Ciciarello, M.; Zini, R.; Rossi, L.; Salvestrini, V.; Ferrari, D.; Manfredini, R.; Lemoli, R.M. Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Stem Cells Dev., 2013, 22(7), 1097-1111.
[http://dx.doi.org/10.1089/scd.2012.0432] [PMID: 23259837]
[175]
Rossi, C.; Santini, E.; Chiarugi, M.; Salvati, A.; Comassi, M.; Vitolo, E.; Madec, S.; Solini, A. The complex P2X7 receptor/inflammasome in perivascular fat tissue of heavy smokers. Eur. J. Clin. Invest., 2014, 44(3), 295-302.
[http://dx.doi.org/10.1111/eci.12232] [PMID: 24372548]
[176]
Eisenstein, A.; Ravid, K. G protein-coupled receptors and adipogenesis: A focus on adenosine receptors. J. Cell. Physiol., 2014, 229(4), 414-421.
[http://dx.doi.org/10.1002/jcp.24473] [PMID: 24114647]
[177]
Wang, N.; Lan, D.; Chen, W.; Matsuura, F.; Tall, A.R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl. Acad. Sci. USA, 2004, 101(26), 9774-9779.
[http://dx.doi.org/10.1073/pnas.0403506101] [PMID: 15210959]
[178]
Frisdal, E.; Le Lay, S.; Hooton, H.; Poupel, L.; Olivier, M.; Alili, R.; Plengpanich, W.; Villard, E.F.; Gilibert, S.; Lhomme, M.; Superville, A.; Miftah-Alkhair, L.; Chapman, M.J.; Dallinga-Thie, G.M.; Venteclef, N.; Poitou, C.; Tordjman, J.; Lesnik, P.; Kontush, A.; Huby, T.; Dugail, I.; Clement, K.; Guerin, M.; Le Goff, W. Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity. Diabetes, 2015, 64(3), 840-855.
[http://dx.doi.org/10.2337/db14-0245] [PMID: 25249572]
[179]
Iannello, S.; Milazzo, P.; Belfiore, F. Animal and human tissue Na,K-ATPase in obesity and diabetes: A new proposed enzyme regulation. Am. J. Med. Sci., 2007, 333(1), 1-9.
[http://dx.doi.org/10.1097/00000441-200701000-00001] [PMID: 17220688]
[180]
Arakaki, N.; Kita, T.; Shibata, H.; Higuti, T. Cell-surface H+-ATP synthase as a potential molecular target for anti-obesity drugs. FEBS Lett., 2007, 581(18), 3405-3409.
[http://dx.doi.org/10.1016/j.febslet.2007.06.041] [PMID: 17612527]
[181]
Kumar, V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: Where to go? Purinergic Signal., 2013, 9(2), 145-165.
[http://dx.doi.org/10.1007/s11302-012-9349-9] [PMID: 23271562]
[182]
Burnstock, G.; Di Virgilio, F. Purinergic signalling and cancer. Purinergic Signal., 2013, 9(4), 491-540.
[http://dx.doi.org/10.1007/s11302-013-9372-5] [PMID: 23797685]
[183]
Di Virgilio, F.; Sarti, A.C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer, 2018, 18(10), 601-618.
[http://dx.doi.org/10.1038/s41568-018-0037-0] [PMID: 30006588]
[184]
Kepp, O.; Loos, F.; Liu, P.; Kroemer, G. Extracellular nucleosides and nucleotides as immunomodulators. Immunol. Rev., 2017, 280(1), 83-92.
[http://dx.doi.org/10.1111/imr.12571] [PMID: 29027229]
[185]
Dou, L.; Chen, Y.F.; Cowan, P.J.; Chen, X.P. Extracellular ATP signaling and clinical relevance. Clin. Immunol., 2018, 188, 67-73.
[http://dx.doi.org/10.1016/j.clim.2017.12.006] [PMID: 29274390]
[186]
Yang, H.; Geng, Y.H.; Wang, P.; Yang, H.; Zhou, Y.T.; Zhang, H.Q.; He, H.Y.; Fang, W.G.; Tian, X.X. Extracellular ATP promotes breast cancer invasion and chemoresistance via SOX9 signaling. Oncogene, 2020, 39(35), 5795-5810.
[http://dx.doi.org/10.1038/s41388-020-01402-z] [PMID: 32724162]
[187]
Li, W.H.; Qiu, Y.; Zhang, H.Q.; Liu, Y.; You, J.F.; Tian, X.X.; Fang, W.G. P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br. J. Cancer, 2013, 109(6), 1666-1675.
[http://dx.doi.org/10.1038/bjc.2013.484] [PMID: 23969730]
[188]
Jin, H.; Eun, S.Y.; Lee, J.S.; Park, S.W.; Lee, J.H.; Chang, K.C.; Kim, H.J. P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res., 2014, 16(5), R77.
[http://dx.doi.org/10.1186/bcr3694] [PMID: 25156554]
[189]
Li, W.H.; Qiu, Y.; Zhang, H.Q.; Tian, X.X.; Fang, W.G. P2Y2 receptor and EGFR cooperate to promote prostate cancer cell invasion via ERK1/2 pathway. PLoS One, 2015, 10(7), e0133165.
[http://dx.doi.org/10.1371/journal.pone.0133165] [PMID: 26182292]
[190]
De Marchi, E.; Orioli, E.; Pegoraro, A.; Sangaletti, S.; Portararo, P.; Curti, A.; Colombo, M.P.; Di Virgilio, F.; Adinolfi, E. The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene, 2019, 38(19), 3636-3650.
[http://dx.doi.org/10.1038/s41388-019-0684-y] [PMID: 30655604]
[191]
Vijayan, D.; Smyth, M.J.; Teng, M.W.L. Purinergic receptors: novel targets for cancer immunotherapy. In: Oncoimmunology: A Practical Guide for Cancer Immunotherapy; Springer: New York, 2018; pp. 115-142.
[192]
Gómez-Escudero, J.; Clemente, C.; García-Weber, D.; Acín-Pérez, R.; Millán, J.; Enríquez, J.A.; Bentley, K.; Carmeliet, P.; Arroyo, A.G. PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Sci. Rep., 2019, 9(1), 15022.
[http://dx.doi.org/10.1038/s41598-019-50866-x] [PMID: 31636306]
[193]
Qiu, Y.; Li, W.H.; Zhang, H.Q.; Liu, Y.; Tian, X.X.; Fang, W.G. P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS One, 2014, 9(12), e114371.
[http://dx.doi.org/10.1371/journal.pone.0114371] [PMID: 25486274]
[194]
Takai, E.; Tsukimoto, M.; Harada, H.; Kojima, S. Autocrine signaling via release of ATP and activation of P2X7 receptor influences motile activity of human lung cancer cells. Purinergic Signal., 2014, 10(3), 487-497.
[http://dx.doi.org/10.1007/s11302-014-9411-x] [PMID: 24627191]
[195]
Feng, L.; Sun, X.; Csizmadia, E.; Han, L.; Bian, S.; Murakami, T.; Wang, X.; Robson, S.C.; Wu, Y. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia, 2011, 13(3), 206-216.
[http://dx.doi.org/10.1593/neo.101332] [PMID: 21390184]
[196]
Giannuzzo, A.; Pedersen, S.F.; Novak, I. The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol. Cancer, 2015, 14(1), 203.
[http://dx.doi.org/10.1186/s12943-015-0472-4] [PMID: 26607222]
[197]
Coolen, E.J.; Arts, I.C.; Bekers, O.; Vervaet, C.; Bast, A.; Dagnelie, P.C. Oral bioavailability of ATP after prolonged administration. Br. J. Nutr., 2011, 105(3), 357-366.
[http://dx.doi.org/10.1017/S0007114510003570] [PMID: 21129239]
[198]
Arts, I.C.; Coolen, E.J.; Bours, M.J.; Huyghebaert, N.; Stuart, M.A.; Bast, A.; Dagnelie, P.C. Adenosine 5′-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans. J. Int. Soc. Sports Nutr., 2012, 9(1), 16.
[http://dx.doi.org/10.1186/1550-2783-9-16] [PMID: 22510240]
[199]
Jäger, R.; Roberts, M.D.; Lowery, R.P.; Joy, J.M.; Cruthirds, C.L.; Lockwood, C.M.; Rathmacher, J.A.; Purpura, M.; Wilson, J.M. Oral adenosine-5′-triphosphate (ATP) administration increases blood flow following exercise in animals and humans. J. Int. Soc. Sports Nutr., 2014, 11(11), 28.
[http://dx.doi.org/10.1186/1550-2783-11-28] [PMID: 25006331]
[200]
Chen, Y.; Cao, X.; Zang, W.; Tan, S.; Ou, C.Q.; Shen, X.; Gao, T.; Zhao, L. Intravenous administration of adenosine triphosphate and phosphocreatine combined with fluoxetine in major depressive disorder: Protocol for a randomized, double-blind, placebo-controlled pilot study. Trials, 2019, 20(1), 34.
[http://dx.doi.org/10.1186/s13063-018-3115-4] [PMID: 30626424]
[201]
Agteresch, H.J.; Dagnelie, P.C.; van der Gaast, A.; Stijnen, T.; Wilson, J.H. Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. J. Natl. Cancer Inst., 2000, 92(4), 321-328.
[http://dx.doi.org/10.1093/jnci/92.4.321] [PMID: 10675381]
[202]
Agteresch, H.J.; Rietveld, T.; Kerkhofs, L.G.; van den Berg, J.W.; Wilson, J.H.; Dagnelie, P.C. Beneficial effects of adenosine triphosphate on nutritional status in advanced lung cancer patients: A randomized clinical trial. J. Clin. Oncol., 2002, 20(2), 371-378.
[http://dx.doi.org/10.1200/JCO.2002.20.2.371] [PMID: 11786563]
[203]
Beijer, S.; Gielisse, E.A.; Hupperets, P.S.; van den Borne, B.E.; van den Beuken-van Everdingen, M.; Nijziel, M.R.; van Henten, A.M.; Dagnelie, P.C. Intravenous ATP infusions can be safely administered in the home setting: A study in pre-terminal cancer patients. Invest. New Drugs, 2007, 25(6), 571-579.
[http://dx.doi.org/10.1007/s10637-007-9076-1] [PMID: 17786387]