Analysis of Stable Chelate-free Gadolinium Loaded Titanium Dioxide Nanoparticles for MRI-Guided Radionuclide Stimulated Cancer Treatment

Page: [826 - 835] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Recent studies demonstrate that titanium dioxide nanoparticles (TiO2 NPs) are an effective source of reactive oxygen species (ROS) for photodynamic therapy and radionuclide stimulated dynamic therapy (RaST). Unfortunately, tracking the in vivo distribution of TiO2 NPs noninvasively remains elusive.

Objective: Given the use of gadolinium (Gd) chelates as effective contrast agents for magnetic resonance imaging (MRI), this study aims to (1) develop hybrid TiO2-Gd NPs that exhibit high relaxivity for tracking the NPs without loss of ROS generating capacity; and (2) establish a simple colorimetric assay for quantifying Gd loading and stability.

Method: A chelate-free, heat-induced method was used to load Gd onto TiO2 NPs, which was coated with transferrin (Tf). A sensitive colorimetric assay and inductively coupled plasma mass spectrometry (ICP-MS) were used to determine Gd loading and stability of the TiO2-Gd-Tf NPs. Measurement of the relaxivity was performed on a 1.4 T relaxometer and a 4.7 T small animal magnetic resonance scanner to estimate the effects of magnetic field strength. ROS was quantified by activated dichlorodihydrofluorescein diacetate fluorescence. Cell uptake of the NPs and RaST were monitored by fluorescence microscopy. Both 3 T and 4.7 T scanners were used to image the in vivo distribution of intravenously injected NPs in tumor-bearing mice.

Results: A simple colorimetric assay accurately determined both the loading and stability of the NPs compared with the expensive and complex ICP-MS method. Coating of the TiO2-Gd NPs with Tf stabilized the nanoconstruct and minimized aggregation. The TiO2-Gd-Tf maintained ROS-generating capability without inducing cell death at a wide range of concentrations but induced significant cell death under RaST conditions in the presence of F-18 radiolabeled 2-fluorodeoxyglucose. The longitudinal (r1 = 10.43 mM-1s-1) and transverse (r2 = 13.43 mM-1s-1) relaxivity of TiO2-Gd-Tf NPs were about twice and thrice, respectively, those of clinically used Gd contrast agent (Gd-DTPA; r1 = 3.77 mM-1s-1 and r2 = 5.51 mM-1s-1) at 1.4 T. While the r1 (8.13 mM-1s-1) reduced to about twice that of Gd-DTPA (4.89 mM-1s-1) at 4.7 T, the corresponding r2 (87.15 mM-1s-1) increased by a factor 22.6 compared to Gd-DTPA (r2 = 3.85). MRI of tumor-bearing mice injected with TiO2-Gd-Tf NPs tracked the NPs distribution and accumulation in tumors.

Conclusion: This work demonstrates that Arsenazo III colorimetric assay can substitute ICP-MS for determining the loading and stability of Gd-doped TiO2 NPs. The new nanoconstruct enabled RaST effect in cells, exhibited high relaxivity, and enhanced MRI contrast in tumors in vivo, paving the way for in vivo MRI-guided RaST.

Keywords: Titanium dioxide, colorimetric assay, MRI, relaxivity, cerenkov radiation, reactive oxygen species, magnetic resonance imaging, cancer.

Graphical Abstract

[1]
Çeşmeli, S.; Biray Avci, C. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J. Drug Target., 2019, 27(7), 762-766.
[http://dx.doi.org/10.1080/1061186X.2018.1527338] [PMID: 30252540]
[2]
Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials (Basel), 2020, 10(2), 387-417.
[http://dx.doi.org/10.3390/nano10020387] [PMID: 32102185]
[3]
Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract., 2015, 24(Suppl. 1), 14-28.
[http://dx.doi.org/10.1159/000362416] [PMID: 24820409]
[4]
Chen, Y.A.; Li, J.J.; Lin, S.L.; Lu, C.H.; Chiu, S.J.; Jeng, F.S.; Chang, C.W.; Yang, B.H.; Chang, M.C.; Ke, C.C.; Liu, R.S. Effect of ceren-kov radiation-induced photodynamic therapy with 18F-FDG in an intraperitoneal xenograft mouse model of ovarian cancer. Int. J. Mol. Sci., 2021, 22(9), 4934-4945.
[http://dx.doi.org/10.3390/ijms22094934] [PMID: 34066508]
[5]
Shrestha, S.; Wu, J.; Sah, B.; Vanasse, A.; Cooper, L.N.; Ma, L.; Li, G.; Zheng, H.; Chen, W.; Antosh, M.P. X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors. Proc. Natl. Acad. Sci. USA, 2019, 116(34), 16823-16828.
[http://dx.doi.org/10.1073/pnas.1900502116] [PMID: 31371494]
[6]
Kotagiri, N.; Sudlow, G.P.; Akers, W.J.; Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol., 2015, 10(4), 370-379.
[http://dx.doi.org/10.1038/nnano.2015.17] [PMID: 25751304]
[7]
Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol., 2003, 7(5), 626-634.
[http://dx.doi.org/10.1016/j.cbpa.2003.08.007] [PMID: 14580568]
[8]
Chen, F.; Valdovinos, H.F.; Hernandez, R.; Goel, S.; Barnhart, T.E.; Cai, W. Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles. Acta Pharmacol. Sin., 2017, 38(6), 907-913.
[http://dx.doi.org/10.1038/aps.2017.1] [PMID: 28414201]
[9]
Chen, Z.; Jamadar, S.D.; Li, S.; Sforazzini, F.; Baran, J.; Ferris, N.; Shah, N.J.; Egan, G.F. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum. Brain Mapp., 2018, 39(12), 5126-5144.
[http://dx.doi.org/10.1002/hbm.24314] [PMID: 30076750]
[10]
Bellin, M.F. MR contrast agents, the old and the new. Eur. J. Radiol., 2006, 60(3), 314-323.
[http://dx.doi.org/10.1016/j.ejrad.2006.06.021] [PMID: 17005349]
[11]
Pediconi, F.; Marzocca, F.; Cavallo Marincola, B.; Napoli, A. MRI-guided treatment in the breast. J. Magn. Reson. Imaging, 2018, 48(6), 1479-1488.
[http://dx.doi.org/10.1002/jmri.26282] [PMID: 30318672]
[12]
Chandran, P.; Sasidharan, A.; Ashokan, A.; Menon, D.; Nair, S.; Koyakutty, M. Highly biocompatible TiO₂:Gd³⁺ nano-contrast agent with enhanced longitudinal relaxivity for targeted cancer imaging. Nanoscale, 2011, 3(10), 4150-4161.
[http://dx.doi.org/10.1039/c1nr10591d] [PMID: 21853215]
[13]
Imani, R.; Dillert, R.; Bahnemann, D.W.; Pazoki, M.; Apih, T.; Kononenko, V.; Repar, N.; Kralj-Iglič, V.; Boschloo, G.; Drobne, D.; Edvinsson, T.; Iglič, A. Multifunctional gadolinium-doped mesoporous TiO2 nanobeads: Photoluminescence, enhanced spin relaxation, and reactive oxygen species photogeneration, beneficial for cancer diagnosis and treatment. Small, 2017, 13(20), 1700349-1700359.
[http://dx.doi.org/10.1002/smll.201700349] [PMID: 28374954]
[14]
Lane, D.D.; Black, K.C.L.; Raliya, R.; Reed, N.; Kotagiri, N.; Gilson, R.; Tang, R.; Biswas, P.; Achilefu, S. Effects of core titanium crystal dimension and crystal phase on ROS generation and tumour accumulation of transferrin coated titanium dioxide nanoaggregates. RSC Adv., 2020, 10(40), 23759-23766.
[http://dx.doi.org/10.1039/D0RA01878C] [PMID: 32774845]
[15]
Bretthorst, G.L.; Hutton, W.C.; Garbow, J.R.; Ackerman, J.J.H. Exponential parameter estimation (in NMR) using Bayesian probability theory. Concepts Magn. Reson. Part A Bridg. Educ. Res., 2005, 27A(2), 55-63.
[http://dx.doi.org/10.1002/cmr.a.20043]
[16]
Quirk, J.D.; Bretthorst, G.L.; Garbow, J.R.; Ackerman, J.J.H. Magnetic resonance data modeling: The Bayesian analysis toolbox. Concepts Magn. Reson. Part A Bridg. Educ. Res., 2019, 47A(2), e21467-e21479.
[http://dx.doi.org/10.1002/cmr.a.21467]
[17]
Sherry, A.D.; Wu, Y. The importance of water exchange rates in the design of responsive agents for MRI. Curr. Opin. Chem. Biol., 2013, 17(2), 167-174.
[http://dx.doi.org/10.1016/j.cbpa.2012.12.012] [PMID: 23333571]
[18]
Tang, R.; Zheleznyak, A.; Mixdorf, M.; Ghai, A.; Prior, J.; Black, K.C.L.; Shokeen, M.; Reed, N.; Biswas, P.; Achilefu, S. Osteotropic radi-olabeled nanophotosensitizer for imaging and treating multiple myeloma. ACS Nano, 2020, 14(4), 4255-4264.
[http://dx.doi.org/10.1021/acsnano.9b09618] [PMID: 32223222]
[19]
Reed, N.A.; Raliya, R.; Tang, R.; Xu, B.; Mixdorf, M.; Achilefu, S.; Biswas, P. Electrospray functionalization of titanium dioxide nanopar-ticles with transferrin for cerenkov radiation induced cancer therapy. ACS Appl. Bio Mater., 2019, 2(3), 1141-1147.
[http://dx.doi.org/10.1021/acsabm.8b00755] [PMID: 31214665]
[20]
Daniels, T.R.; Bernabeu, E.; Rodríguez, J.A.; Patel, S.; Kozman, M.; Chiappetta, D.A.; Holler, E.; Ljubimova, J.Y.; Helguera, G.; Penichet, M.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta, 2012, 1820(3), 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[21]
Nagaraja, T.N.; Croxen, R.L.; Panda, S.; Knight, R.A.; Keenan, K.A.; Brown, S.L.; Fenstermacher, J.D.; Ewing, J.R. Application of arse-nazo III in the preparation and characterization of an albumin-linked, gadolinium-based macromolecular magnetic resonance contrast agent. J. Neurosci. Methods, 2006, 157(2), 238-245.
[http://dx.doi.org/10.1016/j.jneumeth.2006.05.013] [PMID: 16769125]
[22]
Sherry, A.D.; Caravan, P.; Lenkinski, R.E. Primer on gadolinium chemistry. J. Magn. Reson. Imaging, 2009, 30(6), 1240-1248.
[http://dx.doi.org/10.1002/jmri.21966] [PMID: 19938036]
[23]
Jreije, I.; Azimzada, A.; Hadioui, M.; Wilkinson, K.J. Measurement of CeO2 nanoparticles in natural waters using a high sensitivity, single particle ICP-MS. Molecules, 2020, 25(23), 5516-5530.
[http://dx.doi.org/10.3390/molecules25235516] [PMID: 33255591]
[24]
Bizzi, C.A.; Pedrotti, M.F.; Silva, J.S.; Barin, J.S.; Nóbrega, J.A.; Flores, E.M.M. Microwave-assisted digestion methods: Towards greener approaches for plasma-based analytical techniques. J. Anal. At. Spectrom., 2017, 32(8), 1448-1466.
[http://dx.doi.org/10.1039/C7JA00108H]
[25]
Xu, J.; Ao, Y.; Fu, D.; Yuan, C. Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp., 2009, 334(1), 107-111.
[http://dx.doi.org/10.1016/j.colsurfa.2008.10.017]
[26]
Deblonde, G.J.; Sturzbecher-Hoehne, M.; Mason, A.B.; Abergel, R.J. Receptor recognition of transferrin bound to lanthanides and acti-nides: A discriminating step in cellular acquisition of f-block metals. Metallomics, 2013, 5(6), 619-626.
[http://dx.doi.org/10.1039/c3mt20237b] [PMID: 23446908]
[27]
Kotagiri, N.; Cooper, M.L.; Rettig, M.; Egbulefu, C.; Prior, J.; Cui, G.; Karmakar, P.; Zhou, M.; Yang, X.; Sudlow, G.; Marsala, L.; Chanswangphuwana, C.; Lu, L.; Habimana-Griffin, L.; Shokeen, M.; Xu, X.; Weilbaecher, K.; Tomasson, M.; Lanza, G.; DiPersio, J.F.; Achilefu, S. Radionuclides transform chemotherapeutics into phototherapeutics for precise treatment of disseminated cancer. Nat. Commun., 2018, 9(1), 275-286.
[http://dx.doi.org/10.1038/s41467-017-02758-9] [PMID: 29348537]
[28]
Poon, W.; Zhang, Y.N.; Ouyang, B.; Kingston, B.R.; Wu, J.L.Y.; Wilhelm, S.; Chan, W.C.W. Elimination pathways of nanoparticles. ACS Nano, 2019, 13(5), 5785-5798.
[http://dx.doi.org/10.1021/acsnano.9b01383] [PMID: 30990673]
[29]
Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J.H.; Kwon, I.C. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26), 8073-8090.
[http://dx.doi.org/10.7150/thno.37198] [PMID: 31754382]