Molecular Docking and Pharmacokinetic Studies of Aquillochin and Grewin as SARS-CoV-2 Mpro Inhibitors

Page: [54 - 61] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The COVID-19 pandemic emerged at the end of 2019 in China and spread rapidly all over the world. Scientists strive to find virus-specific antivirals against COVID-19 disease. This study aimed to assess bioactive coumarinolignans (Aquillochin, Grewin) as potential SARS-CoV-2 main protease (SARS-CoV-2 Mpro) inhibitors using a molecular docking study.

Methods: The detailed interactions between coumarinolignans and SARS-CoV-2 Mpro were determined as hydrophobic bonds, hydrogen bonds, electronic bonds, inhibition activity, ligand efficiency, bonding type, and distance using Autodock 4.2 software. SARS-CoV-2 Mpro was docked with Aquillochin and Grewin, and the docking results were analyzed by Autodock 4.2 and Biovia Discovery Studio 4.5. Nelfinavir and Lopinavir were used as standards for comparison.

Results: The binding energies of the SARS-CoV-2 Mpro-coumarinolignan’s complexes were identified from the molecular docking of SARS-CoV-2 Mpro. Aquillochin and Grewin were found to be -7.5 and -8.4 kcal/mol, respectively. The binding sites of the coumarinolignans to SARS-CoV-2 Mpro were identified with the main interactions being π-alkyl, alkyl, π-cation, π-π T-Shaped, and hydrogen bonding. Furthermore, SwissADME web tools were used to evaluate ADMET properties and pharmacokinetic parameters of Aquillochin and Grewin. The results of ADMET and pharmacokinetic results of the Aquillochin and Grewin showed that these coumarinolignans were consonant with the many accepted rules and the criteria of drug-likeness.

Conclusion: Aquillochin and Grewin obey Lipinski’s rule of five. According to the results obtained from molecular docking studies and ADMET predictions, Aquillochin and Grewin have shown weak efficacy as drug candidates against COVID-19 disease.

Keywords: Antiviral activity, COVID-2019, coumarinolignan, docking, drugscore, aromatic plants.

Graphical Abstract

[1]
Zheng, J. SARS-CoV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[2]
Fisher, D. Heymann, D. Q&A: The novel coronavirus outbreak causing COVID-19. BMC Med., 2020, 18(1), 57.
[http://dx.doi.org/10.1186/s12916-020-01533-w] [PMID: 32106852]
[3]
Yan, Y.; Shin, W.I.; Pang, Y.X.; Meng, Y.; Lai, J.; You, C.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: Recent advances, prevention, and treatment. Int. J. Environ. Res. Public Health, 2020, 17(7), 2323.
[http://dx.doi.org/10.3390/ijerph17072323] [PMID: 32235575]
[4]
Khaerunnisa, S.; Kurniawan, H.; Awaluddin, R.; Suhartati, S.; Soetjipto, S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints, 2020, 2020, 030226.
[http://dx.doi.org/10.20944/journals202003.0226.v1]
[5]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[6]
do Nascimento, B.I.J.; Cacic, N.; Abdulazeem, H.M.; von Groote, T.C.; Jayarajah, U.; Weerasekara, I.; Esfahani, M.A.; Civile, V.T.; Marusic, A.; Jeroncic, A.; Junior, N.C.; Pericic, T.P.; Zakarija-Grkovic, I.; Meirelles Guimarães, S.M.; Bragazzi, L.N.; Bjorklund, M.; Sofi-Mahmudi, A.; Altujjar, M.; Tian, M.; Arcani, D.M.C.; O’Mathúna, D.P.; Marcolino, M.S. Novel coronavirus infection (COVID-19) in humans: A scoping review and meta-analysis. J. Clin. Med., 2020, 9(4), 941.
[http://dx.doi.org/10.3390/jcm9040941] [PMID: 32235486]
[7]
Zhang, N.N.; Li, X.F.; Deng, Y.Q.; Zhao, H.; Huang, Y.J.; Yang, G.; Huang, W.J.; Gao, P.; Zhou, C.; Zhang, R.R.; Guo, Y.; Sun, S.H.; Fan, H.; Zu, S.L.; Chen, Q.; He, Q.; Cao, T.S.; Huang, X.Y.; Qiu, H.Y.; Nie, J.H.; Jiang, Y.; Yan, H.Y.; Ye, Q.; Zhong, X.; Xue, X.L.; Zha, Z.Y.; Zhou, D.; Yang, X.; Wang, Y.C.; Ying, B.; Qin, C.F. A thermostable mRNA vaccine against COVID-19. Cell, 2020, 182(5), 1271-1283.e16.
[http://dx.doi.org/10.1016/j.cell.2020.07.024] [PMID: 32795413]
[8]
Tanne, J.H. Covid-19: FDA panel votes to approve Pfizer BioNTech vaccine. BMJ, 2020, 371, m4799.
[http://dx.doi.org/10.1136/bmj.m4799] [PMID: 33310748]
[9]
Adhikari, B.; Marasini, B.P.; Rayamajhee, B.; Bhattarai, B.R.; Lamichhane, G.; Khadayat, K.; Adhikari, A.; Khanal, S.; Parajuli, N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother. Res., 2021, 35(3), 1298-1312.
[http://dx.doi.org/10.1002/ptr.6893] [PMID: 33037698]
[10]
Kim, C.; Kim, B. Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients, 2018, 10(8), 1021.
[http://dx.doi.org/10.3390/nu10081021] [PMID: 30081573]
[11]
Dragendorff, G. Die Heilpflanzen der verschiedenen Völker und Zeiten. Ihre Anwendung, wesentlichen Bestandteile und Geschichte; Werner Fritsch: München, 1967.
[12]
Oluwafemi, R.A.; Olawale, I.; Alagbe, J.O. Recent trends in the utilization of medicinal plants as growth promoters in poultry nutrition-A review. Adv. Res. Agri. Vet. Sci., 2020, 4(1), 5-11.
[PMID: 33561077]
[13]
Iizuka, T.; Nagumo, S.; Yotsumoto, H.; Moriyama, H.; Nagai, M. Vasorelaxant effects of Acer nikoense extract and isolated coumarinolignans on rat aortic rings. Biol. Pharm. Bull., 2007, 30(6), 1164-1166.
[http://dx.doi.org/10.1248/bpb.30.1164] [PMID: 17541175]
[14]
Jin, W.; Thuong, P.T.; Su, N.D.; Min, B.S.; Son, K.H.; Chang, H.W.; Kim, H.P.; Kang, S.S.; Sok, D.E.; Bae, K. Antioxidant activity of cleomiscosins A and C isolated from Acer okamotoanum. Arch. Pharm. Res., 2007, 30(3), 275-281.
[http://dx.doi.org/10.1007/BF02977606] [PMID: 17424931]
[15]
Sharma, S.; Chattopadhyay, S.K.; Trivedi, P.; Bawankule, D.U. Synthesis and anti-inflammatory activity of derivatives of coumarino-lignoid, cleomiscosin A and its methyl ether. Eur. J. Med. Chem., 2010, 45(11), 5150-5156.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.027] [PMID: 20813432]
[16]
Bero, J.; Frédérich, M.; Quetin-Leclercq, J. Antimalarial compounds isolated from plants used in traditional medicine. J. Pharm. Pharmacol., 2009, 61(11), 1401-1433.
[http://dx.doi.org/10.1211/jpp.61.11.0001] [PMID: 19903367]
[17]
Uddin, G.; Ullah, W.; Siddiqui, B.S.; Shah, S.Q. Grewialin and optivanin new constituents from the stem bark of Grewia optiva Drummond ex Burret (Tiliaceae). Nat. Prod. Res., 2013, 27(3), 215-220.
[http://dx.doi.org/10.1080/14786419.2012.666749] [PMID: 22417089]
[18]
Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Res., 2020, 177, 104762.
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[19]
Sang, P.; Tian, S.H.; Meng, Z.H.; Yang, L.Q. Anti-HIV drug repurposing against SARS-CoV-2. RSC Advances, 2020, 10(27), 15775-15783.
[http://dx.doi.org/10.1039/D0RA01899F]
[20]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[21]
Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X.; Zhu, W. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.01.27.921627]
[22]
Rao, P.; Shukla, A.; Parmar, P.; Rawal, R.M.; Patel, B.; Saraf, M.; Goswami, D. Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (Mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Biophys. Chem., 2020, 264, 106425.
[http://dx.doi.org/10.1016/j.bpc.2020.106425] [PMID: 32663708]
[23]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[24]
Rachedi, K.O.; Ouk, T.S.; Bahadi, R.; Bouzina, A.; Djouad, S.E.; Bechlem, K.; Zerrouki, R.; Ben Hadda, T.; Almalki, F.; Berredjem, M. Synthesis, DFT and POM analyses of cytotoxicity activity of α-amidophosphonates derivatives: Identification of potential antiviral O, O-pharmacophore site. J. Mol. Struct., 2019, 1197, 196-203.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.053]
[25]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[26]
Begum, S.A.; Sahai, M.; Ray, A.B. Non-conventional lignans: Coumarinolignans, flavonolignans, and stilbenolignans.Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Kinghorn, A.; Falk, H; Kobayashi, J., Ed.; Springer: Vienna, 2010, Vol. 93, pp. 1-70.
[http://dx.doi.org/10.1007/978-3-7091-0140-7_1]
[27]
Kumar, S.S.; Hira, K.; Begum Ahil, S.; Kulkarni, O.P.; Araya, H.; Fujimoto, Y. New synthetic coumarinolignans as attenuators of pro-inflammatory cytokines in LPS-induced sepsis and carrageenan-induced paw oedema models. Inflammopharmacology, 2020, 28(5), 1365-1373.
[http://dx.doi.org/10.1007/s10787-020-00710-w] [PMID: 32356087]
[28]
Cetin, A. In silico studies on stilbenolignan analogues as SARS-CoV-2 Mpro inhibitors. Chem. Phys. Lett., 2021, 771, 138563.
[http://dx.doi.org/10.1016/j.cplett.2021.138563] [PMID: 33776065]
[29]
Mpiana, P.T.; Ngbolua, K-T-N.; Tshibangu, D.S.T.; Kilembe, J.T.; Gbolo, B.Z.; Mwanangombo, D.T.; Inkoto, C.L.; Lengbiye, E.M.; Mbadiko, C.M.; Matondo, A.; Bongo, G.N.; Tshilanda, D.D. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chem. Phys. Lett., 2020, 754, 137751.
[http://dx.doi.org/10.1016/j.cplett.2020.137751] [PMID: 33518775]
[30]
Ezan, E. Pharmacokinetic studies of protein drugs: Past, present and future. Adv. Drug Deliv. Rev., 2013, 65(8), 1065-1073.
[http://dx.doi.org/10.1016/j.addr.2013.03.007] [PMID: 23541379]
[31]
Chowdhury, P. In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J. Biomol. Struct. Dyn., 2020, 1-18.
[http://dx.doi.org/10.1080/07391102.2020.1803968] [PMID: 32762511]
[32]
Wang, G.Y.; Zheng, H.H.; Zhang, K.Y.; Yang, F.; Kong, T.; Zhou, B.; Jiang, S.X. The roles of cytochrome P450 and P-glycoprotein in the pharmacokinetics of florfenicol in chickens. Majallah-i Tahqiqat-i Dampizishki-i Iran, 2018, 19(1), 9-14.
[PMID: 29805456]