Nanostructured Material and its Application in Membrane Separation Technology

Page: [16 - 27] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Nanomaterials are defined as materials with at least one dimension in the range of 1 to 100 nanometers and offer new exceptional properties for membrane development. These include nanosized adsorbents, nanomembranes, nanocomposites, photocatalysts, nanotubes, nanoclays, etc. Nanomaterials have remarkable capabilities for preventing the worldwide water crisis through their outstanding performance in membrane development technology. Nanomaterial-based membranes comprising nanoparticles, nanofibers, and 2D layered materials have superior permeability characteristics and antifouling, antibacterial, and photodegradation properties. These extraordinary properties make the membranes highly efficient and selective for water purification. This review article summarizes recently developed nanomaterial-based membranes and their applications for the water treatment process. The focus is on the nanomaterial-based membrane structure design. The variety in constituent structure and alterations provide nanomaterial-based membranes, which are expected to be perfect separation membranes in the future.

Keywords: Membrane technology, efficiency, purification processes, stability, strengthening, CNTs.

[1]
Sianipar, M.; Kim, S.H.; Iskandar, F.; Wenten, I.G. Functionalized carbon nanotube (CNT) membrane: Progress and challenges. RSC Advances, 2017, 7(81), 51175-51198.
[http://dx.doi.org/10.1039/C7RA08570B]
[2]
Asadollahi, M.; Bastani, D.; Musavi, S.A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination, 2017, 420, 330-383.
[http://dx.doi.org/10.1016/j.desal.2017.05.027]
[3]
Buonomenna, M. Nano-enhanced reverse osmosis membranes. Desalination, 2013, 314, 73-88.
[http://dx.doi.org/10.1016/j.desal.2013.01.006]
[4]
Jhaveri, J.H.; Murthy, Z. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 2016, 379, 137-154.
[http://dx.doi.org/10.1016/j.desal.2015.11.009]
[5]
Bagheripour, E.; Moghadassi, A.R.; Hosseini, S.M. Preparation of polyvinylchloride nanofiltration membrane: Investigation of the effect of thickness, prior evaporation time and addition of polyethylenglchol as additive on membrane performance and properties. Int. J. Eng., 2016, 29, 280-287.
[6]
Sanaeepur, H.; Ebadi Amooghin, A.; Bandehali, S. Theoretical Gas Permeation Models for Mixed Matrix Membranes; LAP LAMBERT Academic Publishing: UK, 2018.
[7]
Miller, D.J.; Dreyer, D.R.; Bielawski, C.W.; Paul, D.R.; Freeman, B.D. Surface modification of water purification membranes. Angew. Chem. Int. Ed. Engl., 2017, 56(17), 4662-4711.
[http://dx.doi.org/10.1002/anie.201601509] [PMID: 27604844]
[8]
Khoonsap, S.; Rugmai, S.; Hung, W.-S.; Lee, K.-R.; Klinsrisuk, S.; Amnuaypanich, S. Promoting permeabilityselectivity anti-trade-off behavior in polyvinyl alcohol (PVA) nanocomposite membranes. J. Membr. Sci., 2017, 544, 287-296.
[http://dx.doi.org/10.1016/j.memsci.2017.09.035]
[9]
Sanaeepur, H.; Amooghin, A.E.; Bandehali, S.; Moghadassi, A.; Matsuura, T.; Van der Bruggen, B. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering. Prog. Polym. Sci., 2019, 91, 80-125.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.02.001]
[10]
Pokropivny, V.; Skorokhod, V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C, 2007, 27(5-8), 990-993.
[http://dx.doi.org/10.1016/j.msec.2006.09.023]
[11]
Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci., 2015, 73, 44-126.
[http://dx.doi.org/10.1016/j.pmatsci.2015.02.002]
[12]
Ying, Y.; Yang, Y.; Ying, W.; Peng, X. Two-dimensional materials for novel liquid separation membranes. Nanotechnology, 2016, 27(33), 332001.
[http://dx.doi.org/10.1088/0957-4484/27/33/332001] [PMID: 27388995]
[13]
Qin, A.; Li, X.; Zhao, X.; Liu, D.; He, C. Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl. Mater. Interfaces, 2015, 7(16), 8427-8436.
[http://dx.doi.org/10.1021/acsami.5b00978] [PMID: 25806418]
[14]
Majumder, M.; Chopra, N.; Hinds, B.J. Mass transport through carbon nanotube membranes in three different regimes: Ionic diffusion and gas and liquid flow. ACS Nano, 2011, 5(5), 3867-3877.
[http://dx.doi.org/10.1021/nn200222g] [PMID: 21500837]
[15]
Wang, Y.; Liu, L.; Xue, J.; Hou, J.; Ding, L.; Wang, H. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid. AIChE J., 2018, 64(6), 2181-2188.
[http://dx.doi.org/10.1002/aic.16076]
[16]
Kochkodan, V.; Hilal, N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 2015, 356, 187-207.
[http://dx.doi.org/10.1016/j.desal.2014.09.015]
[17]
Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Salehi, E.; Khadivi, M.A.; Moradian, R.; Astinchap, B. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water. J. Membr. Sci., 2012, 415, 250-259.
[http://dx.doi.org/10.1016/j.memsci.2012.05.007]
[18]
Guo, Y.-S.; Mi, Y.-F.; Zhao, F.-Y.; Ji, Y.-L.; An, Q.-F.; Gao, C.-J. Zwitterions functionalized multi-walled carbon nanotubes/polyamide hybrid nanofiltration membranes for monovalent/divalent salts separation. Separ. Purif. Tech., 2018, 206, 59-68.
[http://dx.doi.org/10.1016/j.seppur.2018.05.048]
[19]
Navarro, M.; Benito, J.; Paseta, L.; Gascón, I.; Coronas, J.; Téllez, C. Thin-film nanocomposite membrane with the minimum amount of MOF by the LangmuireSchaefer technique for nanofiltration. ACS Appl. Mater. Interfaces, 2018, 10(1), 1278-1287.
[http://dx.doi.org/10.1021/acsami.7b17477] [PMID: 29243908]
[20]
Jiménez, S.; Micó, M.M.; Arnaldos, M.; Medina, F.; Contreras, S. State of the art of produced water treatment. Chemosphere, 2018, 192, 186-208.
[http://dx.doi.org/10.1016/j.chemosphere.2017.10.139] [PMID: 29102864]
[21]
Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci., 2007, 32(4), 483-507.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.01.008]
[22]
Xu, G.-R.; Wang, S.-H.; Zhao, H.-L.; Wu, S.-B.; Xu, J.-M.; Li, L.; Liu, X.-Y. Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. J. Membr. Sci., 2015, 493, 428-443.
[http://dx.doi.org/10.1016/j.memsci.2015.06.038]
[23]
Zhao, D.L.; Japip, S.; Zhang, Y.; Weber, M.; Maletzko, C.; Chung, T.-S. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Res., 2020, 173, 115557.
[http://dx.doi.org/10.1016/j.watres.2020.115557] [PMID: 32028249]
[24]
Homaeigohar, S.; Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater., 2017, 9(8), 427.
[http://dx.doi.org/10.1038/am.2017.135]
[25]
Homaeigohar, S.; Elbahri, M. Switchable plasmonic nanocomposites. Adv. Opt. Mater., 2019, 7(1), 1801101.
[http://dx.doi.org/10.1002/adom.201801101]
[26]
Sadi, A.Y.; Homaeigohar, S.Sh.; Khavandi, A.R.; Javadpour, J. The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites. J. Mater. Sci. Mater. Med., 2004, 15(8), 853-858.
[http://dx.doi.org/10.1023/B:JMSM.0000036272.28022.3a] [PMID: 15477736]
[27]
Homaeigohar, S.; Kabir, R.; Elbahri, M. Size-tailored physicochemical properties of Monodisperse polystyrene nanoparticles and the nanocomposites Made thereof. Sci. Rep., 2020, 10(1), 5191.
[http://dx.doi.org/10.1038/s41598-020-62095-8] [PMID: 32251319]
[28]
Nishimoto, S.; Takiguchi, T.; Kameshima, Y.; Miyake, M. Underwater superoleophobicity of Nb2O5 photocatalyst surface. Chem. Phys. Lett., 2019, 726, 34-38.
[http://dx.doi.org/10.1016/j.cplett.2019.04.031]
[29]
Ying, Y.; Ying, W.; Li, Q.; Meng, D.; Ren, G.; Yan, R.; Peng, X. Recent advances of nanomaterial-based membrane for water purification. Appl. Mater. Today, 2017, 7, 144-158.
[http://dx.doi.org/10.1016/j.apmt.2017.02.010]
[30]
Jo, Y.K.; Lee, J.M.; Son, S.; Hwang, S.J. 2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. J. Photochem. Photobiol. Photochem. Rev., 2019, 40, 150-190.
[http://dx.doi.org/10.1016/j.jphotochemrev.2018.03.002]
[31]
Kim, S.; Wang, H.; Lee, Y.M. 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew. Chem. Int. Ed. Engl., 2019, 58(49), 17512-17527.
[http://dx.doi.org/10.1002/anie.201814349] [PMID: 30811730]
[32]
Liu, G.; Jin, W.; Xu, N. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angew. Chem. Int. Ed. Engl., 2016, 55(43), 13384-13397.
[http://dx.doi.org/10.1002/anie.201600438] [PMID: 27364759]
[33]
Tan, B.Y.L.; Tai, M.H.; Juay, J.; Liu, Z.; Sun, D. A study on the performance of self-cleaning oil–water separation membrane formed by various TiO2 nanostructures. Separ. Purif. Tech., 2015, 156, 942-951.
[http://dx.doi.org/10.1016/j.seppur.2015.09.060]
[34]
Low, Z.X.; Ji, J.; Blumenstock, D.; Chew, Y.M.; Wolverson, D.; Mattia, D. Fouling resistant 2D boron nitride nanosheet—PES nanofiltration membranes. J. Membr. Sci., 2018, 563, 949-956.
[http://dx.doi.org/10.1016/j.memsci.2018.07.003]
[35]
Wang, X.; Li, Q.; Zhang, J.; Huang, H.; Wu, S.; Yang, Y. Novel thin-film reverse osmosis membrane with MXene Ti3C2T embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination. J. Membr. Sci., 2020, 603, 118036.
[http://dx.doi.org/10.1016/j.memsci.2020.118036]
[36]
Pastrana-Martínez, L.M.; Morales-Torres, S.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res., 2015, 77, 179-190.
[http://dx.doi.org/10.1016/j.watres.2015.03.014] [PMID: 25875927]
[37]
Zeng, X.; Wang, G.; Liu, Y.; Zhang, X. Graphene-based antimicrobial nanomaterials: Rational design and applications for water disinfection and microbial control. Environ. Sci. Nano, 2017, 4(12), 2248-2266.
[http://dx.doi.org/10.1039/C7EN00583K]
[38]
Zhu, J.; Wang, J.; Hou, J.; Zhang, Y.; Liu, J.; der Bruggen, B.V. Graphene-based antimicrobial polymeric membranes: A review. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(15), 6776-6793.
[http://dx.doi.org/10.1039/C7TA00009J]
[39]
Vandezande, P.; Gevers, L.E.M.; Vankelecom, I.F.J. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev., 2008, 37(2), 365-405.
[http://dx.doi.org/10.1039/B610848M] [PMID: 18197351]
[40]
Han, J.; Fu, J.; Schoch, R.B. Molecular sieving using nanofilters: Past, present and future. Lab Chip, 2008, 8(1), 23-33.
[http://dx.doi.org/10.1039/B714128A] [PMID: 18094759]
[41]
Homaeigohar, S.; Botcha, N.K.; Zarie, E.S.; Elbahri, M. Ups and downs of water photodecolorization by nanocomposite polymer nanofibers. Nanomaterials (Basel), 2019, 9(2), 250.
[http://dx.doi.org/10.3390/nano9020250] [PMID: 30759854]
[42]
Ayyaru, S.; Pandiyan, R.; Ahn, Y-H. Fabrication and characterization of anti-fouling and non-toxic polyvinylidene fluoride -Sulphonated carbon nanotube ultrafiltration membranes for membrane bioreactors applications. Chem. Eng. Res. Des., 2019, 142, 176-188.
[http://dx.doi.org/10.1016/j.cherd.2018.12.008]
[43]
Li, L.; Dong, J.; Nenoff, T.M.; Lee, R. Desalination by reverse osmosis using MFI zeolite membranes. J. Membr. Sci., 2004, 243(1-2), 401-404.
[http://dx.doi.org/10.1016/j.memsci.2004.06.045]
[44]
Li, L.; Liu, N.; McPherson, B.; Lee, R. Counter ions on the reverse osmosis through MFI zeolite membranes: Implications for produced water desalination. Desalination, 2008, 228(1-3), 217-225.
[http://dx.doi.org/10.1016/j.desal.2007.10.010]
[45]
Fornasiero, F.; Park, H.G.; Holt, J.K.; Stadermann, M.; Grigoropoulos, C.P.; Noy, A.; Bakajin, O. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17250-17255.
[http://dx.doi.org/10.1073/pnas.0710437105] [PMID: 18539773]
[46]
Holt, J.K.; Park, H.G.; Wang, Y.; Stadermann, M.; Artyukhin, A.B.; Grigoropoulos, C.P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006, 312(5776), 1034-1037.
[http://dx.doi.org/10.1126/science.1126298] [PMID: 16709781]
[47]
Jiang, D.E.; Cooper, V.R.; Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett., 2009, 9(12), 4019-4024.
[http://dx.doi.org/10.1021/nl9021946] [PMID: 19995080]
[48]
Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Graphene nanomesh. Nat. Nanotechnol., 2010, 5(3), 190-194.
[http://dx.doi.org/10.1038/nnano.2010.8] [PMID: 20154685]
[49]
Sint, K.; Wang, B.; Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc., 2008, 130(49), 16448-16449.
[http://dx.doi.org/10.1021/ja804409f] [PMID: 19554715]
[50]
Barzegar, H.; Shahsavarifar, S.; Vatanpour, V.; Masteri-Farahani, M. Peroxopolyoxometalate nanoparticles blended PES membrane with improved hydrophilicity, anti-fouling, permeability and dye separation properties. J. Appl. Polym. Sci., 2021, 138(31), 50764.
[http://dx.doi.org/10.1002/app.50764]
[51]
Yurekli, Y. Principles of membrane surface modification for water applications. Wastewater treatment; Intechopen, 2020.
[http://dx.doi.org/10.5772/intechopen.96366]
[52]
Rakhshan, N.; Pakizeh, M. The effect of functionalized SiO2 nanoparticles on the morphology and triazines separation properties of cellulose acetate membranes. J. Ind. Eng. Chem., 2016, 34, 51-60.
[http://dx.doi.org/10.1016/j.jiec.2015.10.031]
[53]
Farjami, M.; Moghadassi, A.; Vatanpour, V.; Hosseini, S.M.; Parvizian, F. Preparation and characterization of a novel high-flux emulsion polyvinyl chloride (EPVC) ultrafiltration membrane incorporated with boehmite nanoparticles. J. Ind. Eng. Chem., 2018, 72, 144-156.
[http://dx.doi.org/10.1016/j.jiec.2018.12.014]
[54]
Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev., 2018, 356, 147-164.
[http://dx.doi.org/10.1016/j.ccr.2017.11.003]
[55]
Javaheri, F.; Hassanajili, S. Synthesis of Fe3O4@ SiO2@ MPS@ P4VP nanoparticles for nitrate removal from aqueous solutions. J. Appl. Polym. Sci., 2016, 133(48), 133.
[http://dx.doi.org/10.1002/app.44330]
[56]
Ansari, S.; Bagheripour, E.; Moghadassi, A.; Hosseini, S.M. Fabrication of mixed matrix poly (phenylene ether-ether sulfone)-based nanofiltration membrane modified by Fe3O4 nanoparticles for water desalination. J. Polym. Eng., 2017, 37(1), 61-67.
[http://dx.doi.org/10.1515/polyeng-2015-0392]
[57]
Thuyavan, Y.L.; Anantharaman, N.; Arthanareeswaran, G.; Ismail, A.; Mangalaraja, R. Preparation and characterization of TiO2-sulfonated polymer embedded polyetherimide membranes for effective desalination application. Desalination, 2015, 365, 355-364.
[http://dx.doi.org/10.1016/j.desal.2015.03.004]
[58]
Park, C.M.; Wang, D.; Su, C. Recent developments in engineered nanomaterials for water treatment and environmental remediation. In: Handbook of Nanomaterials for Industrial Applications; Hussain, C.M., Ed.; Elsevier: Amsterdam, Netherlands, 2018; pp. 849-881.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00048-1]
[59]
Giwa, A.; Akther, N.; Dufour, V.; Hasan, S.W. A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis. RSC Advances, 2016, 6(10), 8134-8163.
[http://dx.doi.org/10.1039/C5RA17221G]
[60]
Bandehali, S.; Kargari, A.; Moghadassi, A.; Saneepur, H.; Ghanbari, D. Acrylonitrileebutadieneestyrene/poly (vinyl acetate)/nanosilica mixed matrix membrane for He/CH4 separation. Asia-Pac. J. Chem. Eng., 2014, 9(5), 638-644.
[http://dx.doi.org/10.1002/apj.1792]
[61]
Sanaeepur, H.; Ahmadi, R.; Ebadi, A.A.; Ghanbari, D. A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax 1657)/copper nanoparticles for CO2 separation. J. Membr. Sci., 2019, 573, 234-246.
[http://dx.doi.org/10.1016/j.memsci.2018.12.012]
[62]
Xing, L.; Guo, N.; Zhang, Y.; Zhang, H.; Liu, J. A negatively charged loose nanofiltration membrane by blending with poly (sodium 4-styrene sulfonate) grafted SiO2 via SI-ATRP for dye purification. Separ. Purif. Tech., 2015, 146, 50-59.
[http://dx.doi.org/10.1016/j.seppur.2015.03.030]
[63]
Bandehali, S.; Parvizian, F.; Moghadassi, A.; Hosseini, S.M. Nanomaterials for the efficient abatement of wastewater contaminants by means of reverse osmosis and nanofiltration. In: Nanomaterials for the Detection and Removal of Wastewater Pollutants; Bonelli, B.; Freyri, F.S.; Rossetti, I.; Sethi, R., Eds.; Elsevier, 2020; pp. 111-144.
[http://dx.doi.org/10.1016/B978-0-12-818489-9.00005-0]
[64]
Kebria, M.R.S.; Jahanshahi, M.; Rahimpour, A. SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Desalination, 2015, 367, 255-264.
[http://dx.doi.org/10.1016/j.desal.2015.04.017]
[65]
Vatanpour, V.; Kavian, M. Synergistic effect of silica nanoparticles in the matrix of a poly (ethylene glycol) diacrylate coating layer for the surface modification of polyamide nanofiltration membranes. J. Appl. Polym. Sci., 2016, 133(33), 133.
[http://dx.doi.org/10.1002/app.43793]
[66]
Rakhshan, N.; Pakizeh, M. Removal of triazines from water using a novel OA modified SiO2/PA/PSf nanocomposite membrane. Separ. Purif. Tech., 2015, 147, 245-256.
[http://dx.doi.org/10.1016/j.seppur.2015.04.013]
[67]
Jin, L.; Shi, W.; Yu, S.; Yi, X.; Sun, N.; Ma, C.; Liu, Y. Preparation and characterization of a novel PA-SiO2 nanofiltration membrane for raw water treatment. Desalination, 2012, 298, 34-41.
[http://dx.doi.org/10.1016/j.desal.2012.04.024]
[68]
Cejka, J. Introduction to Zeolite Science and Practice, 3rd ed.; Elsevier: New York, 2007, p. 1058.
[69]
Lai, Z.; Tsapatsis, M.; Nicolich, J. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers. Adv. Funct. Mater., 2004, 14(7), 716-729.
[http://dx.doi.org/10.1002/adfm.200400040]
[70]
Murad, S.; Lin, J. Using thin zeolite membranes and external electric fields to separate supercritical aqueous electrolyte solutions. Ind. Eng. Chem. Res., 2002, 41(5), 1076-1083.
[http://dx.doi.org/10.1021/ie010425+]
[71]
Murad, S.; Oder, K.; Lin, J. Molecular simulation of osmosis, reverse osmosis, and electro-osmosis in aqueous and methanolic electrolyte solutions. Mol. Phys., 1998, 95(3), 401-408.
[http://dx.doi.org/10.1080/00268979809483173]
[72]
Jeong, B.-H.; Hoek, E.M.V.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A.K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci., 2007, 294(1-2), 1-7.
[http://dx.doi.org/10.1016/j.memsci.2007.02.025]
[73]
Anis, S.F.; Hashaikeh, R.; Hilal, N. Flux and salt rejection enhancement of polyvinyl (alcohol) reverse osmosis membranes using nano-zeolite. Desalination, 2019, 470, 114104.
[http://dx.doi.org/10.1016/j.desal.2019.114104]
[74]
Rezakazemi, M.; Amooghin, A.E.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci., 2014, 39(5), 817-861.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.01.003]
[75]
Li, D.; He, L.; Dong, D.; Forsyth, M.; Wang, H. Preparation of silicaliteepolyamide composite membranes for desalination. Asia-Pac. J. Chem. Eng., 2012, 7(3), 434-441.
[http://dx.doi.org/10.1002/apj.588]
[76]
Fathizadeh, M.; Aroujalian, A.; Raisi, A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci., 2011, 375(1-2), 88-95.
[http://dx.doi.org/10.1016/j.memsci.2011.03.017]
[77]
Xu, G.-R.; Wang, J.-N.; Li, C.-J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations. Desalination, 2013, 328, 83-100.
[http://dx.doi.org/10.1016/j.desal.2013.08.022]
[78]
Humplik, T.; Lee, J.; CO’Hern, S.; Fellman, B.A.; Baig, M.A.; Hassan, S.F.; Atieh, M.A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E.N. Nanostructured materials for water desalination. Nanotechnology, 2011, 22, 292001.
[79]
Dresselhaus, M.S.; Dresselhaus, G.; Saito, R. Physics of carbon nanotubes. Carbon, 1995, 33(7), 883-891.
[http://dx.doi.org/10.1016/0008-6223(95)00017-8]
[80]
Frank, S.; Poncharal, P.; Wang, Z.L.; Heer, W.A. Carbon nanotube quantum resistors. Science, 1998, 280(5370), 1744-1746.
[http://dx.doi.org/10.1126/science.280.5370.1744] [PMID: 9624050]
[81]
Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis, 2005, 17(1), 7-14.
[http://dx.doi.org/10.1002/elan.200403113]
[82]
Ugarte, D.; Chatelain, A.; de Heer, W.A. Nanocapillarity and chemistry in carbon nanotubes. Science, 1996, 274(5294), 1897-1899.
[http://dx.doi.org/10.1126/science.274.5294.1897] [PMID: 8943200]
[83]
Wang, J.; Musameh, M.; Lin, Y. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc., 2003, 125(9), 2408-2409.
[http://dx.doi.org/10.1021/ja028951v] [PMID: 12603125]
[84]
Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S.W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 2015, 367, 37-48.
[http://dx.doi.org/10.1016/j.desal.2015.03.030]
[85]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[86]
Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B.J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 2005, 438(7064), 44.
[http://dx.doi.org/10.1038/438044a] [PMID: 16267546]
[87]
Joseph, S.; Aluru, N.R. Why are carbon nanotubes fast transporters of water? Nano Lett., 2008, 8(2), 452-458.
[http://dx.doi.org/10.1021/nl072385q] [PMID: 18189436]
[88]
Hummer, G.; Rasaiah, J.C.; Noworyta, J.P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414(6860), 188-190.
[http://dx.doi.org/10.1038/35102535] [PMID: 11700553]
[89]
Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R.R.; Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Lett., 2010, 10(10), 4067-4073.
[http://dx.doi.org/10.1021/nl1021046] [PMID: 20845964]
[90]
Shen, N.; Yu, C.; Ruan, H.; Gao, C.; Van der Bruggen, B. Preparation and characterization of thin-film nanocomposite membranes embedded with poly (methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J. Membr. Sci., 2013, 442, 18-26.
[http://dx.doi.org/10.1016/j.memsci.2013.04.018]
[91]
Yong, C.W. Study of interactions between polymer nanoparticles and cell membranes at atomistic levels. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1661), 20140036.
[http://dx.doi.org/10.1098/rstb.2014.0036] [PMID: 25533094]
[92]
Geim, A.K. Graphene: Status and prospects. Science, 2009, 324(5934), 1530-1534.
[http://dx.doi.org/10.1126/science.1158877] [PMID: 19541989]
[93]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110(1), 132-145.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[94]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385-388.
[http://dx.doi.org/10.1126/science.1157996] [PMID: 18635798]
[95]
Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett., 2008, 8(8), 2458-2462.
[http://dx.doi.org/10.1021/nl801457b] [PMID: 18630972]
[96]
Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.; Kim, Y.J.; Kim, K.S.; Ozyilmaz, B.; Ahn, J.H.; Hong, B.H.; Iijima, S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol., 2010, 5(8), 574-578.
[http://dx.doi.org/10.1038/nnano.2010.132] [PMID: 20562870]
[97]
Chen, J.-H.; Cullen, W.G.; Jang, C.; Fuhrer, M.S.; Williams, E.D. Defect scattering in graphene. Phys. Rev. Lett., 2009, 102(23), 236805.
[http://dx.doi.org/10.1103/PhysRevLett.102.236805] [PMID: 19658959]
[98]
Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B, 2003, 107(16), 3712-3718.
[http://dx.doi.org/10.1021/jp027500u]
[99]
Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002), 870-873.
[http://dx.doi.org/10.1038/nature02817] [PMID: 15318216]
[100]
Inui, N.; Mochiji, K.; Moritani, K.; Nakashima, N. Molecular dynamics simulations of nanopore processing in a graphene sheet by using gas cluster ion beam. Appl. Phys. A Mater. Sci. Process., 2010, 98(4), 787-794.
[http://dx.doi.org/10.1007/s00339-009-5528-0]
[101]
Lucchese, M.M.; Stavale, F.; Martins Ferreira, E.H.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 2010, 48(5), 1592-1597.
[http://dx.doi.org/10.1016/j.carbon.2009.12.057]
[102]
Pomoell, J.A.V.; Krasheninnikov, A.V.; Nordlund, K.; Keinonen, J. Ion ranges and irradiation-induced defects in multiwalled carbon nanotubes. J. Appl. Phys., 2004, 96(5), 2864-2871.
[http://dx.doi.org/10.1063/1.1776317]
[103]
Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett., 2009, 9(5), 1752-1758.
[http://dx.doi.org/10.1021/nl803279t] [PMID: 19326921]
[104]
Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater., 2013, 23(29), 3693-3700.
[http://dx.doi.org/10.1002/adfm.201202601]
[105]
O’Hern, S.C.; Stewart, C.A.; Boutilier, M.S.; Idrobo, J-C.; Bhaviripudi, S.; Das, S.K.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano, 2012, 6(11), 10130-10138.
[http://dx.doi.org/10.1021/nn303869m] [PMID: 23030691]
[106]
Ghadimi, M.; Zangenehtabar, S.; Homaeigohar, S. An overview of the water remediation potential of nanomaterials and their ecotoxicological impacts. Water, 2020, 12(4), 1150.
[http://dx.doi.org/10.3390/w12041150]
[107]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Correction to photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 12(1), 526.
[http://dx.doi.org/10.1021/nl2044887]
[108]
Tao, Q.; He, H.; Frost, R.L.; Yuan, P.; Zhu, J. Nanomaterials based upon silylated layered double hydroxides. Appl. Surf. Sci., 2009, 255(7), 4334-4340.
[http://dx.doi.org/10.1016/j.apsusc.2008.11.030]
[109]
Chatterjee, S.; Luo, Z.; Acerce, M.; Yates, D.M.; Johnson, A.T.C.; Sneddon, L.G. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem. Mater., 2011, 23(20), 4414-4416.
[http://dx.doi.org/10.1021/cm201955v]
[110]
Niu, P.; Zhang, L.; Liu, G.; Cheng, H.M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater., 2012, 22(22), 4763-4770.
[http://dx.doi.org/10.1002/adfm.201200922]
[111]
Dai, H.; Xu, Z.; Yang, X. Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: A molecular dynamics simulation. J. Phys. Chem. C, 2016, 120(39), 22585-22596.
[http://dx.doi.org/10.1021/acs.jpcc.6b05337]
[112]
Joshi, R.K.; Carbone, P.; Wang, F.C.; Kravets, V.G.; Su, Y.; Grigorieva, I.V.; Wu, H.A.; Geim, A.K.; Nair, R.R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014, 343(6172), 752-754.
[http://dx.doi.org/10.1126/science.1245711] [PMID: 24531966]
[113]
Suk, M.E.; Aluru, N.R. Water transport through ultrathin graphene. J. Phys. Chem. Lett., 2010, 1(10), 1590-1594.
[http://dx.doi.org/10.1021/jz100240r]
[114]
Li, X.; Zhao, C.; Yang, M.; Yang, B.; Hou, D.; Wang, W. Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities. Appl. Surf. Sci., 2017, 419, 418-428.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.080]
[115]
Fathizadeh, M.; Tien, H.N.; Khivantsev, K.; Chen, J.-T.; Yu, M. Printing ultrathin graphene oxide nanofiltration membranes for water purification. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(39), 20860-20866.
[http://dx.doi.org/10.1039/C7TA06307E]
[116]
Zhao, D.L.; Chung, T.-S. Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Res., 2018, 147, 43-49.
[http://dx.doi.org/10.1016/j.watres.2018.09.040] [PMID: 30296608]
[117]
Fathizadeh, M.; Tien, H.N.; Khivantsev, K.; Song, Z.; Zhou, F.; Yu, M. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination, 2019, 451, 125-132.
[http://dx.doi.org/10.1016/j.desal.2017.07.014]
[118]
Zhang, C.; Koros, W.J. Zeolitic imidazolate framework-enabled membranes: Challenges and opportunities. J. Phys. Chem. Lett., 2015, 6(19), 3841-3849.
[http://dx.doi.org/10.1021/acs.jpclett.5b01602] [PMID: 26722880]
[119]
Matsumoto, M.; Kitaoka, T. Ultraselective gas separation by nanoporous metal organic frameworks embedded in gas-barrier nanocellulose films. Adv. Mater., 2016, 28(9), 1765-1769.
[http://dx.doi.org/10.1002/adma.201504784] [PMID: 26669724]
[120]
Sanchez-Lainez, J.; Zornoza, B.; Tellez, C.; Coronas, J. On the chemical fillerepolymer interaction of nanoand micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H2/CO2 separation. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(37), 14334-14341.
[http://dx.doi.org/10.1039/C6TA06438H]
[121]
Xiao, F.; Wang, B.; Hu, X.; Nair, S.; Chen, Y. Thin film nanocomposite membrane containing zeolitic imidazolate framework-8 via interfacial polymerization for highly permeable nanofiltration. J. Taiwan Inst. Chem. Eng., 2018, 83, 159-167.
[122]
Zhai, Z.; Zhao, N.; Dong, W.; Li, P.; Sun, H.; Niu, Q.J. In situ assembly of a zeolite imidazolate framework hybrid thin-film nanocomposite membrane with enhanced desalination performance induced by Noria-polyethyleneimine codeposition. ACS Appl. Mater. Interfaces, 2019, 11(13), 12871-12879.
[http://dx.doi.org/10.1021/acsami.9b01237] [PMID: 30869858]
[123]
Wang, F.; Zheng, T.; Xiong, R.; Wang, P.; Ma, J. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. Chemosphere, 2019, 233, 524-531.
[http://dx.doi.org/10.1016/j.chemosphere.2019.06.008] [PMID: 31185336]
[124]
Lee, T.H.; Oh, J.Y.; Hong, S.P.; Lee, J.M.; Roh, S.M.; Kim, S.H.; Park, H.B. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. J. Membr. Sci., 2019, 570, 23-33.
[http://dx.doi.org/10.1016/j.memsci.2018.10.015]
[125]
Shafiei, M.; Hajian, M. Poly (vinyl butyral)/zeolitic imidazole framework-8/poly (vinyl alcohol) thin-film nanocomposite nanofiltration membrane: Synthesis and characterization. Iran. Polym. J., 2019, 28, 659-672.
[126]
Gu, Q.; Ng, H.Y.; Zhao, D.; Wang, J. Metal–organic frameworks (MOFs)-boosted filtration membrane technology for water sustainability. APL Mater., 2020, 8(4), 040902.
[http://dx.doi.org/10.1063/5.0002905]
[127]
Li, X.; Wang, B.; Cao, Y.; Zhao, S.; Wang, H.; Feng, X.; Zhou, J.; Ma, X. Water contaminant elimination based on metal–organic frameworks and perspective on their industrial applications. ACS Sustain. Chem. Eng., 2019, 7(5), 4548-4563.
[http://dx.doi.org/10.1021/acssuschemeng.8b05751]