Recent Applications and Synthesis Techniques of Graphene

Page: [287 - 303] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Because of major developments in fundamental research and industrial applications, graphene's mass and low-cost production have become a vital step toward its real-world uses. Graphene, a one-atom-thick carbon crystal with a unique set of physical and chemical properties comprising extreme mechanical behaviour with excellent electrical and thermal conductivity, is emerging as a serious contender to replace many traditional materials in a variety of applications. Graphene has the potential to improve the performance, functionality, and durability of a broad spectrum of applications, but its commercialization will require more study. Applications and emerging techniques for the production of graphene have been investigated in this study. To increase the use of graphene, its current limitations must be solved expeditiously to improve its performance. In terms of applications, graphene's advantages have expanded its use in both electroanalytical and electrochemical sensors. This review paper highlights the most important experimental successes in graphene material manufacturing, as well as its changing characteristics in connection to smart applications. We explore how graphene may be successfully integrated directly into devices, enabling a wide range of applications such as transparent electrodes, photovoltaics, thermoelectricity, 3D printing, and applications in biomedical and bioimaging devices. Graphene's prospects are also explored and discussed.

Keywords: Graphene, CVD, exfoliation, sensors, biomedical derivatives, 3D printing, electrodes, actuators.

Graphical Abstract

[1]
Tiwari, S.K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A.D.; Nayak, G.C. Magical allotropes of carbon: Prospects and applications. Crit. Rev. Solid State Mater. Sci., 2016, 41(4), 257-317.
[http://dx.doi.org/10.1080/10408436.2015.1127206]
[2]
Yang, Y.; Liu, R.; Wu, J.; Jiang, X.; Cao, P.; Hu, X.; Pan, T.; Qiu, C.; Yang, J.; Song, Y.; Wu, D.; Su, Y. Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci. Rep., 2015, 5(1), 13480.
[http://dx.doi.org/10.1038/srep13480] [PMID: 26311022]
[3]
Tiwari, S.K.; Mishra, R.K.; Ha, S.K.; Huczko, A. Evolution of graphene oxide and graphene: From imagination to industrialization. ChemNanoMat, 2018, 4(7), 598-620.
[http://dx.doi.org/10.1002/cnma.201800089]
[4]
Liao, L.; Peng, H.; Liu, Z. Chemistry makes graphene beyond graphene. J. Am. Chem. Soc., 2014, 136(35), 12194-12200.
[5]
Hughes, Z.E.; Walsh, T.R. Computational chemistry for graphene-based energy applications: Progress and challenges. Nanoscale, 2015, 7(16), 6883-6908.
[http://dx.doi.org/10.1039/C5NR00690B] [PMID: 25833794]
[6]
Flynn, GW Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces; Columbia Univ: New York, NY, 2015.
[http://dx.doi.org/10.2172/1170229]
[7]
Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices, 2020, 5(1), 10-29.
[8]
Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.L.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin, S.B.; Behera, M.; Bernard, B.; Beroukhim, R.; Bishop, J.A.; Black, A.D.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bowlby, R.; Bristow, C.A.; Brookens, R.; Brooks, D.; Bryant, R.; Buda, E.; Butterfield, Y.S.N.; Carling, T.; Carlsen, R.; Carter, S.L.; Carty, S.E.; Chan, T.A.; Chen, A.Y.; Cherniack, A.D.; Cheung, D.; Chin, L.; Cho, J.; Chu, A.; Chuah, E.; Cibulskis, K.; Ciriello, G.; Clarke, A.; Clayman, G.L.; Cope, L.; Copland, J.A.; Covington, K.; Danilova, L.; Davidsen, T.; Demchok, J.A.; DiCara, D.; Dhalla, N.; Dhir, R.; Dookran, S.S.; Dres-dner, G.; Eldridge, J.; Eley, G.; El-Naggar, A.K.; Eng, S.; Fagin, J.A.; Fennell, T.; Ferris, R.L.; Fisher, S.; Frazer, S.; Frick, J.; Gabriel, S.B.; Ganly, I.; Gao, J.; Garraway, L.A.; Gastier-Foster, J.M.; Getz, G.; Gehlenborg, N.; Ghossein, R.; Gibbs, R.A.; Giordano, T.J.; Gomez-Hernandez, K.; Grimsby, J.; Gross, B.; Guin, R.; Hadjipanayis, A.; Harper, H.A.; Hayes, D.N.; Heiman, D.I.; Herman, J.G.; Hoadley, K.A.; Hofree, M.; Holt, R.A.; Hoyle, A.P.; Huang, F.W.; Huang, M.; Hutter, C.M.; Ideker, T.; Iype, L.; Jacobsen, A.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Kasaian, K.; Kebebew, E.; Khuri, F.R.; Kim, J.; Kramer, R.; Kreisberg, R.; Kucherlapati, R.; Kwiatkowski, D.J.; Ladanyi, M.; Lai, P.H.; Laird, P.W.; Lander, E.; Lawrence, M.S.; Lee, D.; Lee, E.; Lee, S.; Lee, W.; Leraas, K.M.; Lichtenberg, T.M.; Lichtenstein, L.; Lin, P.; Ling, S.; Liu, J.; Liu, W.; Liu, Y. LiVolsi, V.A.; Lu, Y.; Ma, Y.; Mahadeshwar, H.S.; Marra, M.A.; Mayo, M.; McFadden, D.G.; Meng, S.; Meyerson, M.; Mieczkowski, P.A.; Miller, M.; Mills, G.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Murray, B.A.; Nikiforov, Y.E.; Noble, M.S.; Ojesina, A.I.; Owonikoko, T.K.; Ozenberger, B.A.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Paull, E.O.; Pedamallu, C.S.; Perou, C.M.; Prins, J.F.; Protopopov, A.; Ramalingam, S.S.; Ramirez, N.C.; Ramirez, R.; Raphael, B.J.; Rathmell, W.K.; Ren, X.; Reynolds, S.M.; Rheinbay, E.; Ringel, M.D.; Rivera, M.; Roach, J.; Robertson, A.G.; Rosenberg, M.W.; Rosenthal, M.; Sadeghi, S.; Saksena, G.; Sander, C.; Santoso, N.; Schein, J.E.; Schultz, N.; Schumacher, S.E.; Seethala, R.R.; Seidman, J.; Senbabaoglu, Y.; Seth, S.; Sharpe, S.; Shaw, K.R.M.; Shen, J.P.; Shen, R.; Sherman, S.; Sheth, M.; Shi, Y.; Shmulevich, I.; Sica, G.L.; Simons, J.V.; Sinha, R.; Sipahimalani, P.; Smallridge, R.C.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Stewart, C.; Stojanov, P.; Stuart, J.M.; Sumer, S.O.; Sun, Y.; Tabak, B.; Tam, A.; Tan, D.; Tang, J.; Tarnuzzer, R.; Taylor, B.S.; Thiessen, N.; Thorne, L.; Thorsson, V.; Tuttle, R.M.; Um-bricht, C.B.; Van Den Berg, D.J.; Vandin, F.; Veluvolu, U.; Verhaak, R.G.W.; Vinco, M.; Voet, D.; Walter, V.; Wang, Z.; Waring, S.; Wein-berger, P.M.; Weinhold, N.; Weinstein, J.N.; Weisenberger, D.J.; Wheeler, D.; Wilkerson, M.D.; Wilson, J.; Williams, M.; Winer, D.A.; Wise, L.; Wu, J.; Xi, L.; Xu, A.W.; Yang, L.; Yang, L.; Zack, T.I.; Zeiger, M.A.; Zeng, D.; Zenklusen, J.C.; Zhao, N.; Zhang, H.; Zhang, J.; Zhang, J.J.; Zhang, W.; Zmuda, E.; Zou, L. Cancer genome atlas research network. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3), 676-690.
[http://dx.doi.org/10.1016/j.cell.2014.09.050] [PMID: 25417114]
[9]
Ma, Y.; Chen, J.; Hu, Y.; Zhang, Y.; Zhang, Z.; Zhan, J.; Chen, A.; Peng, Q. Synthesis of three-dimensional graphene-based materials for applications in energy storage. J. Miner. Met. Mater. Soc., 2020, 72(6), 2445-2459.
[http://dx.doi.org/10.1007/s11837-020-04074-y]
[10]
Xu, X.; Zhao, R.; Ai, W.; Chen, B.; Du, H.; Wu, L.; Zhang, H.; Huang, W.; Yu, T. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance. Adv. Mater., 2018, 30(27), e1800658.
[http://dx.doi.org/10.1002/adma.201800658] [PMID: 29797502]
[11]
Zhang, H.; Wen, P.; Li, P.; Wang, Z.; Wang, S.; Zhao, X.; Xiao, Y.; Shen, J.; He, D.; Chen, W. Enhanced output performance of flexible piezoelectric energy harvester by using auxetic graphene films as electrodes. Appl. Phys. Lett., 2020, 117(10), 103901.
[http://dx.doi.org/10.1063/5.0015100]
[12]
Liu, Y.; Zheng, J.; Zhang, X.; Li, K.; Du, Y.; Yu, G.; Jia, Y.; Zhang, Y. Recent advances on graphene microstructure engineering for pro-pellant-related applications. J. Appl. Polym. Sci., 2021, 138(21), 50474.
[http://dx.doi.org/10.1002/app.50474]
[13]
Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881), 1308.
[http://dx.doi.org/10.1126/science.1156965] [PMID: 18388259]
[14]
Rahmati, S.; Doherty, W.; Amani Babadi, A.; Akmal Che Mansor, M.S.; Julkapli, N.M.; Hessel, V.; Ostrikov, K.K. Gold-carbon nanocom-posites for environmental contaminant sensing. Micromachines (Basel), 2021, 12(6), 719.
[http://dx.doi.org/10.3390/mi12060719] [PMID: 34205255]
[15]
Eizenberg, M.; Blakely, J.M. Carbon interaction with nickel surfaces: Monolayer formation and structural stability. J. Chem. Phys., 1979, 71(8), 3467-3477.
[http://dx.doi.org/10.1063/1.438736]
[16]
Zhang, Y.; Small, J.P.; Pontius, W.V.; Kim, P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett., 2005, 86(7), 073104.
[http://dx.doi.org/10.1063/1.1862334]
[17]
Lu, X.; Yu, M.; Huang, H.; Ruoff, R.S. Tailoring graphite with the Graphene Oxideal of achieving single sheets. Nanotechnology, 1999, 10(3), 269-272.
[http://dx.doi.org/10.1088/0957-4484/10/3/308]
[18]
Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 2005, 102(30), 10451-10453.
[http://dx.doi.org/10.1073/pnas.0502848102] [PMID: 16027370]
[19]
Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl. Chem., 1994, 66(9), 1893-1901.
[http://dx.doi.org/10.1351/pac199466091893]
[20]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110(1), 132-145.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[21]
Viculis, L.M.; Mack, J.J.; Kaner, R.B. A chemical route to carbon nanoscrolls. Science, 2003, 299(5611), 1361-1362.
[http://dx.doi.org/10.1126/science.1078842] [PMID: 12610297]
[22]
Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 2009, 9(1), 30-35.
[http://dx.doi.org/10.1021/nl801827v] [PMID: 19046078]
[23]
Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol., 2010, 5(5), 321-325.
[http://dx.doi.org/10.1038/nnano.2010.54] [PMID: 20364133]
[24]
Wang, X.; You, H.; Liu, F.; Li, M.; Wan, L.; Li, S.; Li, Q.; Xu, Y.; Tian, R.; Yu, Z.; Xiang, D.; Cheng, J. Large‐scale synthesis of few‐layered graphene using CVD. Chem. Vap. Depos., 2009, 15(1‐3), 53-56.
[http://dx.doi.org/10.1002/cvde.200806737]
[25]
Wang, Y.; Chen, X.; Zhong, Y.; Zhu, F.; Loh, K.P. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devic-es. Appl. Phys. Lett., 2009, 95(6), 209.
[http://dx.doi.org/10.1063/1.3204698]
[26]
Chae, S.J. Güneş F.; Kim, K.K.; Kim, E.S.; Han, G.H.; Kim, S.M.; Shin, H.J.; Yoon, S.M.; Choi, J.Y.; Park, M.H.; Yang, C.W.; Pribat, D.; Lee, Y.H. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater., 2009, 21(22), 2328-2333.
[http://dx.doi.org/10.1002/adma.200803016]
[27]
Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240), 872-876.
[http://dx.doi.org/10.1038/nature07872] [PMID: 19370030]
[28]
Sutter, P. Epitaxial graphene: How silicon leaves the scene. Nat. Mater., 2009, 8(3), 171-172.
[http://dx.doi.org/10.1038/nmat2392] [PMID: 19229263]
[29]
Zhang, W.; Cui, J.; Tao, C.; Wu, Y.; Li, Z.; Ma, L.; Wen, Y.; Li, G. \A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew. Chem., 2009, 121(32), 5978-5982.
[http://dx.doi.org/10.1002/ange.200902365]
[30]
Dervishi, E.; Li, Z.; Watanabe, F.; Biswas, A.; Xu, Y.; Biris, A.R.; Saini, V.; Biris, A.S. Large-scale graphene production by RF-cCVD method. Chem. Commun. (Camb.), 2009, (27), 4061-4063.
[http://dx.doi.org/10.1039/b906323d] [PMID: 19568633]
[31]
Di, C.; Wei, D.; Yu, G.; Liu, Y.; Guo, Y.; Zhu, D. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater., 2008, 20(17), 3289-3293.
[http://dx.doi.org/10.1002/adma.200800150]
[32]
Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon, 2010, 48(1), 255-259.
[http://dx.doi.org/10.1016/j.carbon.2009.09.013]
[33]
Karmakar, S.; Kulkarni, N.V.; Nawale, A.B.; Lalla, N.P.; Mishra, R.; Sathe, V.; Bhoraskar, S.V.; Das, A.K. A novel approach towards se-lective bulk synthesis of few-layer graphenes in an electric arc. J. Phys. D Appl. Phys., 2009, 42(11), 115201.
[http://dx.doi.org/10.1088/0022-3727/42/11/115201]
[34]
Rollings, E.; Gweon, G-H.; Zhou, S.; Mun, B.; McChesney, J.; Hussain, B.; Fedorov, A.V.; First, P.N.; de Heer, W.A.; Lanzara, A. Synthe-sis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids, 2006, 67(9-10), 2172-2177.
[http://dx.doi.org/10.1016/j.jpcs.2006.05.010]
[35]
Sajibul, M.; Bhuyan, A.; Uddin, M.N.; Islam, M.M.; Bipasha, F.A.; Hossain, S.S. Synthesis of graphene. Int. Nano Lett., 2016, 6(2), 65-83.
[http://dx.doi.org/10.1007/s40089-015-0176-1]
[36]
Carvalho, A.F.; Kulyk, B.; Fernandes, A.J.S.; Fortunato, E.; Costa, F.M. A review on the applications of graphene in mechanical transduc-tion. Adv. Mater., 2021, e2101326.
[http://dx.doi.org/10.1002/adma.202101326] [PMID: 34288155]
[37]
Gao, E.; Lin, S-Z.; Qin, Z.; Buehler, M.J.; Feng, X-Q.; Xu, Z. Mechanical exfoliation of two dimensional materials. J. Mech. Phys. Solids, 2018, 115, 248-262.
[http://dx.doi.org/10.1016/j.jmps.2018.03.014]
[38]
Hiura, H.; Ebbesen, T.; Fujita, J.; Tanigaki, K.; Takada, T. Role of sp 3 defect structures in graphite and carbon nanotubes. Nature, 1994, 367(6459), 148-151.
[http://dx.doi.org/10.1038/367148a0]
[39]
Ebbesen, T.W.; Hiura, H. Graphene in 3-dimensions: Towards graphite origami. Adv. Mater., 1995, 7(6), 582-586.
[http://dx.doi.org/10.1002/adma.19950070618]
[40]
Bernhardt, T.; Kaiser, B.; Rademann, K. Formation of super periodic patterns on highly oriented pyrolytic graphite by manipulation of nanosized graphite sheets with the STM tip. Surf. Sci., 1998, 408(1-3), 86-94.
[http://dx.doi.org/10.1016/S0039-6028(98)00152-6]
[41]
Ci, L.; Song, L.; Jariwala, D.; Elias, A.L.; Gao, W.; Terrones, M. Graphene shape control by multistage cutting and transfer. Adv. Mater., 2009, 21, 4487-4491.
[http://dx.doi.org/10.1002/adma.200900942]
[42]
Song, L.; Ci, L.; Gao, W.; Ajayan, P.M. Transfer printing of graphene using gold film. ACS Nano, 2009, 3(6), 1353-1356.
[http://dx.doi.org/10.1021/nn9003082] [PMID: 19438194]
[43]
Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett., 2007, 7(9), 2758-2763.
[http://dx.doi.org/10.1021/nl071254m] [PMID: 17655269]
[44]
Chen, M.; Tao, T.; Zhang, L.; Gao, W.; Li, C. Highly conductive and stretchable polymer composites based on graphene/MWCNT net-work. Chem. Commun. (Camb.), 2013, 49(16), 1612-1614.
[http://dx.doi.org/10.1039/c2cc38290c] [PMID: 23334065]
[45]
Kim, KS; Zhao, Y; Jang, H; Lee, SY; Kim, JM; Kim, KS Largescale pattern growth of graphene films for stretchable transparent electrodes. nature, 2009, 457, 706-710.
[46]
Kwon, S-Y.; Ciobanu, C.V.; Petrova, V.; Shenoy, V.B.; Bareño, J.; Gambin, V.; Petrov, I.; Kodambaka, S. Growth of semiconducting gra-phene on palladium. Nano Lett., 2009, 9(12), 3985-3990.
[http://dx.doi.org/10.1021/nl902140j] [PMID: 19995079]
[47]
Coraux, J.; N’Diaye, A.T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett., 2008, 8(2), 565-570.
[http://dx.doi.org/10.1021/nl0728874] [PMID: 18189442]
[48]
Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett., 2009, 9(5), 1752-1758.
[http://dx.doi.org/10.1021/nl803279t] [PMID: 19326921]
[49]
Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y.P.; Pei, S-S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett., 2008, 93(11), 113103.
[http://dx.doi.org/10.1063/1.2982585]
[50]
Obraztsov, A.; Obraztsova, E.; Tyurnina, A.; Zolotukhin, A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007, 45(10), 2017-2021.
[http://dx.doi.org/10.1016/j.carbon.2007.05.028]
[51]
Karu, A.E.; Beer, M. Pyrolytic formation of highly crystalline graphite films. J. Appl. Phys., 1966, 37(5), 2179-2181.
[http://dx.doi.org/10.1063/1.1708759]
[52]
Perdereau, J.; Rhead, G. LEED studies of adsorption on vicinal copper surfaces. Surf. Sci., 1971, 24(2), 555-571.
[http://dx.doi.org/10.1016/0039-6028(71)90281-0]
[53]
Kholin, N.; Rut’kov, E.; Tontegode, A.Y. TonteGraphene Oxidede AY. The nature of the adsorption bond between graphite islands and iridium surface. Surf. Sci., 1984, 139(1), 155-172.
[http://dx.doi.org/10.1016/0039-6028(84)90014-1]
[54]
Gall, N. Rut’Kov, E; TonteGraphene Oxidede, AY. Intercalation of nickel atoms under two dimensional graphene film on (111). Ir. Carbon, 2000, 38, 663-667.
[http://dx.doi.org/10.1016/S0008-6223(99)00135-9]
[55]
Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of graphene in energy storage device–A review. Renew. Sustain. Energy Rev., 2021, 135, 110026.
[http://dx.doi.org/10.1016/j.rser.2020.110026]
[56]
Al-Shurman, K.M.; Naseem, H. CVD Graphene growth mechanism on nickel thin films. Proceed 2014 COMSOL Conference in Boston, 2014.
[57]
Lee, H.C.; Liu, W.W.; Chai, S.P.; Mohamed, A.R.; Aziz, A.; Khe, C.S.; Hidayah, N.M.; Hashim, U. Review of the synthesis, transfer, char-acterization and growth mechanisms of single and multilayer graphene. RSC Advances, 2017, 7(26), 15644-15693.
[http://dx.doi.org/10.1039/C7RA00392G]
[58]
Tanaka, H.; Arima, R.; Fukumori, M.; Tanaka, D.; Negishi, R.; Kobayashi, Y.; Kasai, S.; Yamada, T.K.; Ogawa, T. Method for controlling electrical properties of single-layer graphene nanoribbons via adsorbed planar molecular nanoparticles. Sci. Rep., 2015, 5(1), 1-0.
[59]
Del Rio-Castillo, A.E.; Merino, C.; Díez-Barra, E.; Vázquez, E. Selective suspension of single layer graphene mechanochemically exfoliat-ed from carbon nanofibres. Nano Res., 2014, 7(7), 963-972.
[http://dx.doi.org/10.1007/s12274-014-0457-4]
[60]
Zhu, K.; Lv, Y.; Liu, J.; Wang, W.; Wang, C.; Li, S.; Wang, P.; Zhang, M.; Meng, A.; Li, Z. Facile fabrication of g-C3N4/SnO2 composites and ball milling treatment for enhanced photocatalytic performance. J. Alloys Compd., 2019, 802, 13-18.
[http://dx.doi.org/10.1016/j.jallcom.2019.06.193]
[61]
He, S.; Qian, Y.; Liu, K.; Macosko, C.W.; Stein, A. Modified-graphene-oxide-containing styrene masterbatches for thermosets. Ind. Eng. Chem. Res., 2017, 56(40), 11443-11450.
[http://dx.doi.org/10.1021/acs.iecr.7b02583]
[62]
Mattevi, C.; Colléaux, F.; Kim, H.; Lin, Y.H.; Park, K.T.; Chhowalla, M.; Anthopoulos, T.D. Solution-processable organic dielectrics for graphene electronics. Nanotechnology, 2012, 23(34), 344017.
[http://dx.doi.org/10.1088/0957-4484/23/34/344017] [PMID: 22885685]
[63]
Randviir, E.P.; Brownson, D.A.; Banks, C.E. A decade of graphene research: Production, applications and outlook. Mater. Today, 2014, 17(9), 426-432.
[http://dx.doi.org/10.1016/j.mattod.2014.06.001]
[64]
Goli, P.; Ning, H.; Li, X.; Lu, C.Y.; Novoselov, K.S.; Balandin, A.A. Thermal properties of graphene-copper-graphene heterogeneous films. Nano Lett., 2014, 14(3), 1497-1503.
[http://dx.doi.org/10.1021/nl404719n] [PMID: 24555640]
[65]
Zhao, Y.; Li, X.G.; Zhou, X.; Zhang, Y.N. Review on the graphene based optical fiber chemical and biological sensors. Sens. Actuators B Chem., 2016, 231, 324-340.
[http://dx.doi.org/10.1016/j.snb.2016.03.026]
[66]
Song, J.; Yu, Z.; Graphene Oxiderdin, M.L.; Wang, D. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithiumesulfur batteries. Nano Lett., 2016, 16(2), 864-870.
[67]
Qu, G.; Cheng, J.; Li, X.; Huang, L.; Ni, W.; Wang, Z.; Wang, B. Graphene-enveloped poly(N-vinylcarbazole)/sulfur composites with im-proved performances for lithium-sulfur batteries by A simple vibrating-emulsification method. ACS Appl. Mater. Interfaces, 2015, 7(30), 16668-16675.
[http://dx.doi.org/10.1021/acsami.5b04079] [PMID: 26154477]
[68]
Anagnostopoulos, G.; Pappas, P.N.; Li, Z.; Kinloch, I.A.; Young, R.J.; Novoselov, K.S.; Lu, C.Y.; Pugno, N.; Parthenios, J.; Galiotis, C.; Papagelis, K. Mechanical stability of flexible graphene-based displays. ACS Appl. Mater. Interfaces, 2016, 8(34), 22605-22614.
[http://dx.doi.org/10.1021/acsami.6b05227] [PMID: 27494211]
[69]
Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nano-composites. J. Ind. Eng. Chem., 2015, 21, 11-25.
[http://dx.doi.org/10.1016/j.jiec.2014.03.022]
[70]
Mittal, V. Functional polymer nanocomposites with graphene: A review. Macromol. Mater. Eng., 2014, 299(8), 906-931.
[http://dx.doi.org/10.1002/mame.201300394]
[71]
Wu, C.M.; Cheong, S.S.; Chang, T.H. Rheological properties of graphene/nylon 6 nanocomposites prepared by masterbatch melt mixing. J. Polym. Res., 2016, 23(12), 1-9.
[http://dx.doi.org/10.1007/s10965-016-1144-9]
[72]
Zhou, X.; Qiao, J.; Yang, L.; Zhang, J. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv. Energy Mater., 2014, 4(8), 1301523.
[http://dx.doi.org/10.1002/aenm.201301523]
[73]
Julkapli, N.M.; Bagheri, S. Graphene supported heterogeneous catalysts: An overview. Int. J. Hydrogen Energy, 2015, 40(2), 948-979.
[http://dx.doi.org/10.1016/j.ijhydene.2014.10.129]
[74]
Won, M.; Byun, H.S.; Park, K.A.; Hur, G.M. Post-translational control of NF-κB signaling by ubiquitination. Arch. Pharm. Res., 2016, 39(8), 1075-1084.
[http://dx.doi.org/10.1007/s12272-016-0772-2] [PMID: 27287455]
[75]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[76]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112(45), 17554-17558.
[http://dx.doi.org/10.1021/jp806751k]
[77]
Wang, C.; Li, J.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X.M. Graphene Oxideld nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem., 2011, 123(49), 11848-11852.
[http://dx.doi.org/10.1002/ange.201105573]
[78]
Chai, D.; Hao, B.; Hu, R.; Zhang, F.; Yan, J.; Sun, Y.; Huang, X.; Zhang, Q.; Jiang, H. Delivery of oridonin and methotrexate via PEGylated graphene oxide. ACS Appl. Mater. Interfaces, 2019, 11(26), 22915-22924.
[http://dx.doi.org/10.1021/acsami.9b03983] [PMID: 31252460]
[79]
Saifullah, B.; Buskaran, K.; Shaikh, R.B.; Barahuie, F.; Fakurazi, S.; Mohd Moklas, M.A.; Hussein, M.Z. Graphene oxide–PEG–protocatechuic acid nanocomposite formulation with improved anticancer properties. Nanomaterials (Basel), 2018, 8(10), 820.
[http://dx.doi.org/10.3390/nano8100820] [PMID: 30314340]
[80]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[81]
Cheng, S.J.; Chiu, H.Y.; Kumar, P.V.; Hsieh, K.Y.; Yang, J.W.; Lin, Y.R.; Shen, Y.C.; Chen, G.Y. Simultaneous drug delivery and cellular imaging using graphene oxide. Biomater. Sci., 2018, 6(4), 813-819.
[http://dx.doi.org/10.1039/C7BM01192J] [PMID: 29417098]
[82]
Syama, S.; Mohanan, P.V. Comprehensive application of graphene: Emphasis on biomedical concerns. Nano-Micro Lett., 2019, 11(1), 6.
[http://dx.doi.org/10.1007/s40820-019-0237-5] [PMID: 34137957]
[83]
Jin, S.H.; Kim, D.H.; Jun, G.H.; Hong, S.H.; Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano, 2013, 7(2), 1239-1245.
[http://dx.doi.org/10.1021/nn304675g] [PMID: 23272894]
[84]
Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C. Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. (Camb.), 2011, 47(9), 2580-2582.
[http://dx.doi.org/10.1039/C0CC04812G] [PMID: 21173992]
[85]
Wang, Y.; Li, Z.; Hu, D.; Lin, C.T.; Li, J.; Lin, Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc., 2010, 132(27), 9274-9276.
[http://dx.doi.org/10.1021/ja103169v] [PMID: 20565095]
[86]
Chen, W.; Yi, P.; Zhang, Y.; Zhang, L.; Deng, Z.; Zhang, Z. Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interfaces, 2011, 3(10), 4085-4091.
[http://dx.doi.org/10.1021/am2009647] [PMID: 21882840]
[87]
Jakus, A.E.; Secor, E.B.; Rutz, A.L.; Jordan, S.W.; Hersam, M.C.; Shah, R.N. Three-dimensional printing of high-content graphene scaf-folds for electronic and biomedical applications. ACS Nano, 2015, 9(4), 4636-4648.
[http://dx.doi.org/10.1021/acsnano.5b01179] [PMID: 25858670]
[88]
Sha, J.; Li, Y.; Villegas Salvatierra, R.; Wang, T.; Dong, P.; Ji, Y.; Lee, S.K.; Zhang, C.; Zhang, J.; Smith, R.H.; Ajayan, P.M.; Lou, J.; Zhao, N.; Tour, J.M. Three-dimensional printed graphene foams. ACS Nano, 2017, 11(7), 6860-6867.
[http://dx.doi.org/10.1021/acsnano.7b01987] [PMID: 28608675]
[89]
Gosai, A.; Khondakar, K.R.; Ma, X.; Ali, M.A. Application of functionalized graphene oxide based biosensors for health monitoring: Sim-ple graphene derivatives to 3D printed platforms. Biosensors (Basel), 2021, 11(10), 384.
[http://dx.doi.org/10.3390/bios11100384] [PMID: 34677340]
[90]
Wu, J.; Becerril, H.A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett., 2008, 92(26), 237.
[http://dx.doi.org/10.1063/1.2924771]
[91]
Guo, H.; Lv, R.; Bai, S. Recent advances on 3D printing graphene-based composites. Nano Materials Science., 2019, 1(2), 101-115.
[http://dx.doi.org/10.1016/j.nanoms.2019.03.003]
[92]
Nakamura, K.; Fukazawa, K.; Yamada, K.; Saito, S. Hysteresis-free piezoelectric actuators using linbo3 plates with a ferroelectric inver-sion layer. Ferroelectrics, 1989, 93(1), 211-216.
[http://dx.doi.org/10.1080/00150198908017348]
[93]
Kuribayashi, K. Millimeter-sized joint actuator using a shape memory alloy. Sens. Actuators, 1989, 20(1-2), 57-64.
[http://dx.doi.org/10.1016/0250-6874(89)87102-1]
[94]
Damjanovic, D.; Newnham, R.E. Electrostrictive and piezoelectric materials for actuator applications. J. Intell. Mater. Syst. Struct., 1992, 3(2), 190-208.
[http://dx.doi.org/10.1177/1045389X9200300201]
[95]
Smela, E.; Gadegaard, N. Surprising volume change in PPy(DBS): An atomic force microscopy study. Adv. Mater., 1999, 11(11), 953-957.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199908)11:11<953:AID-ADMA953>3.0.CO;2-H]
[96]
Baughman, R.H.; Cui, C.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; Rinzler, A.G.; Jaschinski, O.; Roth, S.; Kertesz, M. De Rossi, D Carbon nanotube actuators. Science, 1999, 284(5418), 1340-1344.
[http://dx.doi.org/10.1126/science.284.5418.1340] [PMID: 10334985]
[97]
Ahir, S.V.; Terentjev, E.M. Photomechanical actuation in polymer-nanotube composites. Nat. Mater., 2005, 4(6), 491-495.
[http://dx.doi.org/10.1038/nmat1391] [PMID: 15880115]
[98]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1), 228-240.
[http://dx.doi.org/10.1039/B917103G] [PMID: 20023850]
[99]
Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett., 2008, 8(7), 2045-2049.
[http://dx.doi.org/10.1021/nl801384y] [PMID: 18540659]
[100]
Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene based polymer nanocomposites. Polymer , 2011, 52, 5-25.
[http://dx.doi.org/10.1016/j.polymer.2010.11.042]
[101]
Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene mode-locked ultra-fast laser. ACS Nano, 2010, 4(2), 803-810.
[http://dx.doi.org/10.1021/nn901703e] [PMID: 20099874]
[102]
Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K.S.; Ferrari, A.C. Rayleigh imaging of gra-phene and graphene layers. Nano Lett., 2007, 7(9), 2711-2717.
[http://dx.doi.org/10.1021/nl071168m] [PMID: 17713959]
[103]
Zhang, Y.; Tiwarya, P.; Scott Parenta, J.; Kontopoulou, M. Crystallization and foaming of coagent-modified polypropylene: Nucleation effects of cross-linked nanoparticles. Polymer , 2013, 54, 4814-4819.
[http://dx.doi.org/10.1016/j.polymer.2013.07.020]
[104]
Xu, P.; Loomis, J.; Panchapakesan, B. Photo-thermal polymerization of nanotube/polymer composites: Effects of load transfer and me-chanical strength. Appl. Phys. Lett., 2012, 100(13), 131907-1319075.
[http://dx.doi.org/10.1063/1.3698343] [PMID: 22509070]
[105]
Wang, Z.; Luo, J.; Zhao, G.L. Dielectric and microwave attenuation properties of graphene nanoplatelet–epoxy composites. AIP Adv., 2014, 4(1), 017139.
[http://dx.doi.org/10.1063/1.4863687]
[106]
Aissa, B.; Memon, N.K.; Ali, A.; Khraisheh, M.K. Recent progress in the growth and applications of graphene as a smart material: A re-view. Front. Mater., 2015, 2, 58.
[http://dx.doi.org/10.3389/fmats.2015.00058]
[107]
Li, Z.; Lei, H.; Kan, A.; Xie, H.; Yu, W. Photothermal applications based on graphene and its derivatives: A state-of-the-art review. Energy, 2021, 216, 119262.
[http://dx.doi.org/10.1016/j.energy.2020.119262]
[108]
Jaworski, S.; Sawosz, E.; Grodzik, M.; Winnicka, A.; Prasek, M.; Wierzbicki, M.; Chwalibog, A. In vitro evaluation of the effects of gra-phene platelets on glioblastoma multiforme cells. Int. J. Nanomedicine, 2013, 8, 413-420.
[PMID: 23378763]
[109]
Ma, R.; Sun, J.; Li, D.H.; Wei, J.J. Review of synergistic photo-thermo-catalysis: Mechanisms, materials and applications. Int. J. Hydrogen Energy, 2020, 45(55), 30288-30324.
[http://dx.doi.org/10.1016/j.ijhydene.2020.08.127]
[110]
Hou, B.; Shi, Z.; Kong, D.; Chen, Z.; Yang, K.; Ming, X.; Wang, X. Scalable porous Al foil/reduced graphene oxide/Mn3O4 composites for efficient fresh water generation. Mater. Today Energy, 2020, 15, 100371.
[http://dx.doi.org/10.1016/j.mtener.2019.100371]
[111]
Yang, Q.; Xu, C.; Wang, F.; Ling, Z.; Zhang, Z.; Fang, X. A high-efficiency and low-cost interfacial evaporation system based on gra-phene-loaded pyramid polyurethane sponge for wastewater and seawater treatments. ACS Appl. Energy Mater., 2019, 2(10), 7223-7232.
[http://dx.doi.org/10.1021/acsaem.9b01201]
[112]
Liu, S.; Gao, Y.A.S.; Zhou, D.; Greiser, U.; Guo, T.; Guo, R.; Wang, W. Biodegradable highly branched poly (β-amino ester) s for target-ed cancer cell gene transfection. ACS Biomater. Sci. Eng., 2017, 3(7), 1283-1286.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00503] [PMID: 33440516]
[113]
Yin, F.; Hu, K.; Chen, Y.; Yu, M.; Wang, D.; Wang, Q.; Yong, K.T.; Lu, F.; Liang, Y.; Li, Z. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics, 2017, 7(5), 1133-1148.
[http://dx.doi.org/10.7150/thno.17841] [PMID: 28435453]
[114]
Dunbar, C.E.; High, K.A.; Joung, J.K.; Kohn, D.B.; Ozawa, K.; Sadelain, M. Gene therapy comes of age. Science, 2018, 359(6372), eaan4672.
[http://dx.doi.org/10.1126/science.aan4672] [PMID: 29326244]
[115]
Ghafary, S.M.; Nikkhah, M.; Hatamie, S.; Hosseinkhani, S. Simultaneous gene delivery and tracking through preparation of photo-luminescent nanoparticles based on graphene quantum dots and chimeric peptides. Sci. Rep., 2017, 7(1), 9552.
[http://dx.doi.org/10.1038/s41598-017-09890-y] [PMID: 28842617]
[116]
Muro, A.F.; D’Antiga, L.; Mingozzi, F. Gene therapy in pediatric liver disease. In Pediatric Hepatology and Liver Transplantation; Springer: Cham, 2019, pp. 799-829..
[http://dx.doi.org/10.1007/978-3-319-96400-3_44]
[117]
Chung, S.; Revia, R.A.; Zhang, M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater., 2021, 33(22), e1904362.
[http://dx.doi.org/10.1002/adma.201904362] [PMID: 31833101]
[118]
Lakshmanan, R.; Maulik, N. Graphene-based drug delivery systems in tissue engineering and nanomedicine. Can. J. Physiol. Pharmacol., 2018, 96(9), 869-878.
[http://dx.doi.org/10.1139/cjpp-2018-0225] [PMID: 30136862]
[119]
Yan QL, Cohen A, Petrutik N, Shlomovich A, Burstein L, Pang SP, Gozin M. Highly insensitive and thermostable energetic coordination nanomaterials based on functionalized graphene oxides. J. Mater. Chem. A , 2016, 4(25), 9941-9948.