Treatment Management of Diabetic Wounds Utilizing Herbalism: An Overview

Article ID: e180322202355 Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background and Objectives: Diabetes Mellitus, commonly known as DM, is a metabolic disorder which is characterized by high blood glucose level, i.e., chronic hyperglycemia. If it is not managed properly, DM can lead to many severe complexities with time and can cause significant damage to the kidneys, heart, eyes, nerves and blood vessels. Diabetic foot ulcers (DFU) are one of those major complexities which affect around 15-25% of the population diagnosed with diabetes. Due to diabetic conditions, the body's natural healing process slows down leading to longer duration for healing of wounds only when taken care of properly. Herbal therapies are one of the approaches for the management and care of diabetic foot ulcer, which utilizes the concept of synergism for better treatment options. With the recent advancement in the field of nanotechnology and natural drug therapy, a lot of opportunities can be seen in combining both technologies and moving towards a more advanced drug delivery system to overcome the limitations of polyherbal formulations.

Methods: During the writing of this document, the data was derived from existing original research papers gathered from a variety of sources such as PubMed, ScienceDirect, Google Scholar.

Conclusion: Hence, this review includes evidence about the current practices and future possibilities of nano-herbal formulation in treatment and management of diabetic wounds.

Keywords: Diabetes Mellitus (DM), diabetic wound, chronic wound, wound healing, polyherbal nano formulation, nanotechnology.

[1]
Dhivya S, Padma VV, Santhini E. Wound dressings - A review. Biomedicine 2015; 5(4): 22.
[http://dx.doi.org/10.7603/s40681-015-0022-9]
[2]
Kujath P, Michelsen A. Wounds - from physiology to wound dressing. Dtsch Arztebl Int 2008; 105(13): 239-48.
[http://dx.doi.org/10.3238/arztebl.2008.0239] [PMID: 19629204]
[3]
Antunes-Ricardo M, Gutiérrez-Uribe J, Serna-Saldívar SO. Antiinflammatory glycosylated flavonoids as therapeutic agents for treatment of diabetes-impaired wounds. Curr Top Med Chem 2015; 15(23): 2456-63.
[http://dx.doi.org/10.2174/1568026615666150619141702] [PMID: 26088354]
[4]
Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020; 12(8): 1-30.
[http://dx.doi.org/10.3390/pharmaceutics12080735] [PMID: 32764269]
[5]
Harper D, Young A, McNaught CE. The physiology of wound healing. United Kingdom. Surgery. 2014; 32: pp. 445-50.
[6]
Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res 2012; 49(1): 35-43.
[http://dx.doi.org/10.1159/000339613] [PMID: 22797712]
[7]
Tam JCW, Lau KM, Liu CL, et al. The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. J Ethnopharmacol 2011; 134(3): 831-8.
[http://dx.doi.org/10.1016/j.jep.2011.01.032] [PMID: 21291991]
[8]
Jeffcoate WJ, Price P, Harding KG. Wound healing and treatments for people with diabetic foot ulcer. Diabetes Metab Res Rev 2004; 20(S1): S78-89.
[http://dx.doi.org/10.1002/dmrr.476] [PMID: 15150819]
[9]
Laurens N, Koolwijk P, de Maat MP. Fibrin structure and wound healing. J Thromb Haemost 2006; 4(5): 932-9.
[http://dx.doi.org/10.1111/j.1538-7836.2006.01861.x] [PMID: 16689737]
[10]
Petrie TA, Strand NS, Yang CT, Rabinowitz JS, Moon RT. Macrophages modulate adult zebrafish tail fin regeneration. Development 2014; 141(13): 2581-91.
[http://dx.doi.org/10.1242/dev.098459] [PMID: 24961798]
[11]
Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int 2010; 203(1-3): 93-8.
[http://dx.doi.org/10.1016/j.forsciint.2010.07.004] [PMID: 20739128]
[12]
Singh MR, Saraf S, Vyas A, Jain V, Singh D. Innovative approaches in wound healing: Trajectory and advances. Artif Cells Nanomed Biotechnol 2013; 41(3): 202-12.
[http://dx.doi.org/10.3109/21691401.2012.716065] [PMID: 23316788]
[13]
Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 2003; 73(6): 713-21.
[http://dx.doi.org/10.1189/jlb.0802397] [PMID: 12773503]
[14]
Brugués A, Anon E, Conte V, et al. Forces driving epithelial wound healing. Nat Phys 2014; 10(9): 683-90.
[http://dx.doi.org/10.1038/nphys3040] [PMID: 27340423]
[15]
Raffel LJ, Goodarzi MO. Diabetes Mellitus Reference Module in Biomedical Sciences. Amsterdam: Elsevier 2014.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.05558-6]
[16]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci Rep 2020; 10(1): 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[17]
Pawar KB, Desai S, Bhonde RR, Bhole RP, Deshmukh AA. Wound with diabetes: Present scenario and future. Curr Diabetes Rev 2021; 17(2): 136-42.
[http://dx.doi.org/10.2174/1573399816666200703180137] [PMID: 32619172]
[18]
den Dekker A, Davis FM, Kunkel SL, Gallagher KA. Targeting epigenetic mechanisms in diabetic wound healing. Transl Res 2019; 204: 39-50.
[http://dx.doi.org/10.1016/j.trsl.2018.10.001] [PMID: 30392877]
[19]
Holl J, Kowalewski C, Zimek Z, et al. Chronic diabetic wounds and their treatment with skin substitutes. Cells 2021; 10(3): 655.
[http://dx.doi.org/10.3390/cells10030655] [PMID: 33804192]
[20]
Oliver TI, Mutluoglu M. Diabetic foot ulcer. Treasure island, FL: StatPearls publishing 2021.
[21]
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 2019; 112: 108615.
[22]
Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis. Ann Med 2017; 49(2): 106-16.
[http://dx.doi.org/10.1080/07853890.2016.1231932] [PMID: 27585063]
[23]
Moxey PW, Gogalniceanu P, Hinchliffe RJ, et al. Lower extremity amputations-a review of global variability in incidence. Diabet Med 2011; 28(10): 1144-53.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03279.x] [PMID: 21388445]
[24]
Boulton AJ. Diabetic foot disease during the COVID-19 pandemic. Medicina 2021; 57(2): 97.
[http://dx.doi.org/10.3390/medicina57020097]
[25]
Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Bioengineering 2018; 5(3): 51.
[http://dx.doi.org/10.3390/bioengineering5030051]
[26]
Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis. Int J Mol Sci 2017; 18(7): 1419.
[http://dx.doi.org/10.3390/ijms18071419] [PMID: 28671607]
[27]
Fleit HB. Chronic inflammation. In: McMAnus LM, Mitchell RN, Eds. Pathobiology of human disease. Amsterdam, Netherlands: Elsevier 2014; pp. 300-14.
[http://dx.doi.org/10.1016/B978-0-12-386456-7.01808-6]
[28]
Puhaindran ME. Principles of wound healing Diabetic Foot Problems. World Scientific 2008; pp. 395-402.
[http://dx.doi.org/10.1142/9789812791535_0028]
[29]
O’Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 2002; 51(8): 2481-8.
[http://dx.doi.org/10.2337/diabetes.51.8.2481] [PMID: 12145161]
[30]
Acosta JB, del Barco DG, Vera DC, et al. The pro-inflammatory environment in recalcitrant diabetic foot wounds. Int Wound J 2008; 5(4): 530-9.
[http://dx.doi.org/10.1111/j.1742-481X.2008.00457.x] [PMID: 19006574]
[31]
Khanna S, Biswas S, Shang Y, et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 2010; 5(3): e9539.
[http://dx.doi.org/10.1371/journal.pone.0009539] [PMID: 20209061]
[32]
Xu F, Zhang C, Graves DT. Abnormal cell responses and role of TNF-α in impaired diabetic wound healing. BioMed Res Int 2013; 2013: 754802.
[http://dx.doi.org/10.1155/2013/754802] [PMID: 23484152]
[33]
Li Z, Guo S, Yao F, Zhang Y, Li T. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers. J Diabetes Complications 2013; 27(4): 380-2.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.12.007] [PMID: 23357650]
[34]
Dinh T, Tecilazich F, Kafanas A, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes 2012; 61(11): 2937-47.
[http://dx.doi.org/10.2337/db12-0227] [PMID: 22688339]
[35]
Liu Y, Min D, Bolton T, et al. Increased matrix metalloproteinase9 predicts poor wound healing in diabetic foot ulcers. Diabetes Care 2009; 32(1): 117-9.
[http://dx.doi.org/10.2337/dc08-0763] [PMID: 18835949]
[36]
Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest 2007; 117(5): 1219-22.
[http://dx.doi.org/10.1172/JCI32169] [PMID: 17476353]
[37]
Schürmann C, Goren I, Linke A, Pfeilschifter J, Frank S. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: A potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing. Biochem Biophys Res Commun 2014; 446(1): 195-200.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.085] [PMID: 24583133]
[38]
Gooyit M, Peng Z, Wolter WR, et al. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem Biol 2014; 9(1): 105-10.
[http://dx.doi.org/10.1021/cb4005468] [PMID: 24053680]
[39]
Verkleij CJ, Roelofs JJ, Havik SR, Meijers JC, Marx PF. The role of thrombin-activatable fibrinolysis inhibitor in diabetic wound healing. Thromb Res 2010; 126(5): 442-6.
[http://dx.doi.org/10.1016/j.thromres.2010.08.008] [PMID: 20828799]
[40]
Pradhan L, Cai X, Wu S, et al. Gene expression of proinflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res 2011; 167(2): 336-42.
[http://dx.doi.org/10.1016/j.jss.2009.09.012] [PMID: 20070982]
[41]
Sender R, Milo R. The distribution of cellular turnover in the human body. Nat Med 2021; 27(1): 45-8.
[http://dx.doi.org/10.1038/s41591-020-01182-9]
[42]
Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 2015; 16(9): 907-17.
[http://dx.doi.org/10.1038/ni.3253] [PMID: 26287597]
[43]
Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ 2016; 23(6): 915-26.
[http://dx.doi.org/10.1038/cdd.2015.172] [PMID: 26990661]
[44]
Schwegler M, Wirsing AM, Dollinger AJ, et al. Clearance of primary necrotic cells by non-professional phagocytes. Biol Cell 2015; 107(10): 372-87.
[http://dx.doi.org/10.1111/boc.201400090] [PMID: 26032600]
[45]
Garbarino J, Sturley SL. Saturated with fat: New perspectives on lipotoxicity. Curr Opin Clin Nutr Metab Care 2009; 12(2): 110-6.
[http://dx.doi.org/10.1097/MCO.0b013e32832182ee] [PMID: 19202381]
[46]
Yu B, Yu L, Klionsky DJ. Nutrition acquisition by human immunity, transient overnutrition and the cytokine storm in severe cases of COVID-19. Med Hypotheses 2021; 155: 110668.
[http://dx.doi.org/10.1016/j.mehy.2021.110668] [PMID: 34467856]
[47]
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 2018; 27(6): 1212-21.
[http://dx.doi.org/10.1016/j.cmet.2018.04.010] [PMID: 29754952]
[48]
Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr 2019; 39: 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320] [PMID: 31180809]
[49]
Hutchison AT, Regmi P, Manoogian ENC, et al. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity 2019; 27(5): 724-32.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[50]
Yang JS, Lu CC, Kuo SC, et al. Autophagy and its link to type 2 diabetes mellitus. Biomedicine (Taipei) 2017; 7(2): 8.
[http://dx.doi.org/10.1051/bmdcn/2017070201] [PMID: 28612706]
[51]
Shedoeva A, Leavesley D, Upton Z, Fan C. Wound healing and the use of medicinal plants. Evid Based Complement Alternat Med 2019; 2019: 2684108.
[http://dx.doi.org/10.1155/2019/2684108] [PMID: 31662773]
[52]
Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013; 10(5): 210-29.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[53]
Voudouri D, Tesseromati C. Medicinal plants in wound healing. In: Dogan KH, Ed. Wound Healing-Current Perspectives. London: IntechOpen 2019; pp. 135-44.
[http://dx.doi.org/10.5772/intechopen.80215]
[54]
Thakur R, Jain N, Pathak R, Sandhu SS. Practices in wound healing studies of plants. Evid Based Complement Alternat Med 2011; 2011: 438056.
[http://dx.doi.org/10.1155/2011/438056] [PMID: 21716711]
[55]
Yuan H, Ma Q, Ye L, Piao G. The Traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[56]
Oguntibeju OO. Medicinal plants and their effects on diabetic wound healing. Vet World 2019; 12(5): 653-63.
[http://dx.doi.org/10.14202/vetworld.2019.653-663] [PMID: 31327900]
[57]
Maver T, Maver U, Stana Kleinschek K, Smrke DM, Kreft S. A review of herbal medicines in wound healing. Int J Dermatol 2015; 54(7): 740-51.
[http://dx.doi.org/10.1111/ijd.12766] [PMID: 25808157]
[58]
Sharma A, Khanna S, Kaur G, Singh I. Medicinal plants and their components for wound healing applications. Futur J Pharm Sci 2021; 7(1): 53.
[http://dx.doi.org/10.1186/s43094-021-00202-w]
[59]
Dorai AA. Wound care with traditional, complementary and alternative medicine. Indian J Plast Surg 2012; 45(2): 418-24.
[http://dx.doi.org/10.4103/0970-0358.101331] [PMID: 23162243]
[60]
Oryan A, Mohammadalipour A, Moshiri A, Tabandeh MR. Topical application of aloe vera accelerated wound healing, modeling, and remodeling: An experimental study. Ann Plast Surg 2016; 77(1): 37-46.
[http://dx.doi.org/10.1097/SAP.0000000000000239] [PMID: 25003428]
[61]
Hashemi SA, Madani SA, Abediankenari S. The review on properties of aloe vera in healing of cutaneous wounds. BioMed Res Int 2015; 2015: 714216.
[http://dx.doi.org/10.1155/2015/714216] [PMID: 26090436]
[62]
Ibrahim N, Wong SK, Mohamed IN, et al. Wound healing properties of selected natural products. Int J Environ Res Public Health 2018; 15(11): 2360.
[http://dx.doi.org/10.3390/ijerph15112360] [PMID: 30366427]
[63]
Hekmatpou D, Mehrabi F, Rahzani K, Aminiyan A. The Effect of aloe vera clinical trials on prevention and healing of skin wound: A systematic review. Iran J Med Sci 2019; 44(1): 1-9.
[PMID: 30666070]
[64]
Chithra P, Sajithlal GB, Chandrakasan G. Influence of aloe vera on the healing of dermal wounds in diabetic rats. J Ethnopharmacol 1998; 59(3): 195-201.
[http://dx.doi.org/10.1016/S0378-8741(97)00124-4] [PMID: 9507904]
[65]
Atiba A, Ueno H, Uzuka Y. The effect of aloe vera oral administration on cutaneous wound healing in type 2 diabetic rats. J Vet Med Sci 2011; 73(5): 583-9.
[http://dx.doi.org/10.1292/jvms.10-0438] [PMID: 21178319]
[66]
Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological update properties of aloe vera and its major active constituents. Molecules 2020; 25(6): 1324.
[http://dx.doi.org/10.3390/molecules25061324] [PMID: 32183224]
[67]
Hekmatpou D, Mehrabi F, Rahzani K, Aminiyan A. The effect of Aloe Vera gel on prevention of pressure ulcers in patients hospitalized in the orthopedic wards: A randomized triple-blind clinical trial. BMC Complement Altern Med 2018; 18(1): 264.
[http://dx.doi.org/10.1186/s12906-018-2326-2] [PMID: 30268162]
[68]
Kaur V, Kaur R, Bhardwaj U. A review on dill essential oil and its chief compounds as natural biocide. Flavour Fragrance J 2021; 36(3): 412-31.
[http://dx.doi.org/10.1002/ffj.3633]
[69]
Zhang JH, Sun HL, Chen SY, Zeng LI, Wang TT. Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium. Bot Stud (Taipei, Taiwan) 2017; 58(1)
[http://dx.doi.org/10.1186/s40529-017-0168-8]
[70]
Kaur GJ, Arora DS. Bioactive potential of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi belonging to the family Umbelliferae - current status. J Med Plants Res 2010; 4: 87-94.
[http://dx.doi.org/10.5897/JMPR09.018]
[71]
Goodarzi MT, Khodadadi I, Tavilani H, Abbasi Oshaghi E. The role of Anethum graveolens L. (Dill) in the management of diabetes. J Trop Med 2016; 2016: 1098916.
[http://dx.doi.org/10.1155/2016/1098916] [PMID: 27829842]
[72]
Haidari F, Zakerkish M, Borazjani F, Ahmadi Angali K, Amoochi Foroushani G. The effects of Anethum graveolens (dill) powder supplementation on clinical and metabolic status in patients with type 2 diabetes. Trials 2020; 21(1): 483.
[http://dx.doi.org/10.1186/s13063-020-04401-3] [PMID: 32503652]
[73]
Dosoky NS, Setzer WN. Chemical composition and biological activities of essential oils of Curcuma Species. Nutrients 2018; 10(9): 1196.
[http://dx.doi.org/10.3390/nu10091196] [PMID: 30200410]
[74]
Roxo DF, Arcaro CA, Gutierres VO, et al. Curcumin combined with metformin decreases glycemia and dyslipidemia, and increases paraoxonase activity in diabetic rats. Diabetol Metab Syndr 2019; 11(1): 33.
[http://dx.doi.org/10.1186/s13098-019-0431-0] [PMID: 31061679]
[75]
Abbas S, Latif MS, Shafie NS, Ghazali MI, Kormin F. Neuroprotective expression of turmeric and curcumin. Food Res 2020; 4(6): 2366-81.
[http://dx.doi.org/10.26656/fr.2017.4(6).363]
[76]
Emiroglu G, Ozergin Coskun Z, Kalkan Y, et al. The effects of curcumin on wound healing in a rat model of nasal mucosal trauma. Evid Based Complement Alternat Med 2017; 2017: 9452392.
[http://dx.doi.org/10.1155/2017/9452392] [PMID: 29018487]
[77]
Lev-Tov H. Small spice for big wounds: Can curcumin close the gap? Sci Transl Med 2017; 9(385): e2776.
[http://dx.doi.org/10.1126/scitranslmed.aan2776] [PMID: 28404858]
[78]
Tejada S, Manayi A, Daglia M, et al. Wound healing effects of curcumin: A short review. Curr Pharm Biotechnol 2016; 17(11): 1002-7.
[http://dx.doi.org/10.2174/1389201017666160721123109] [PMID: 27640646]
[79]
Mansouri K, Rasoulpoor S, Daneshkhah A, et al. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer 2020; 20(1): 791.
[http://dx.doi.org/10.1186/s12885-020-07256-8] [PMID: 32838749]
[80]
Zhang X-R, Kaunda JS, Zhu H-T, Wang D, Yang C-R, Zhang Y-J. The genus Terminalia (Combretaceae): An ethnopharmacological, phytochemical and pharmacological review. Nat Prod Bioprospect 2019; 9(6): 357-92.
[http://dx.doi.org/10.1007/s13659-019-00222-3] [PMID: 31696441]
[81]
Khan AA, Kumar V, Singh BK, Singh R. Evaluation of wound healing property of Terminalia catappa on excision wound models in wistar rats. Drug Res 2014; 64(5): 225-8.
[http://dx.doi.org/10.1055/s-0033-1357203] [PMID: 24132703]
[82]
Chaudhari M, Mengi S. Evaluation of phytoconstituents of Terminalia arjuna for wound healing activity in rats. Phytother Res 2006; 20(9): 799-805.
[http://dx.doi.org/10.1002/ptr.1857] [PMID: 16835874]
[83]
Fraga-Corral M, Otero P, Cassani L, et al. Traditional applications of tannin rich Extracts supported by scientific data: Chemical composition, bioavailability and bioaccessibility. Foods 2021; 10(2): 251.
[http://dx.doi.org/10.3390/foods10020251] [PMID: 33530516]
[84]
Tanase C. Coșarcă S, Muntean DL. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019; 24(6): 1182.
[http://dx.doi.org/10.3390/molecules24061182] [PMID: 30917556]
[85]
Natarajan V, Krithica N, Madhan B, Sehgal PK. Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing. J Biomed Mater Res B Appl Biomater 2013; 101(4): 560-7.
[http://dx.doi.org/10.1002/jbm.b.32856] [PMID: 23255343]
[86]
Manjari MS, Aaron KP, Muralidharan C, Rose C. Highly biocompatible novel polyphenol cross-linked collagen scaffold for potential tissue engineering applications. React Funct Polym 2020; 153: 104630.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104630]
[87]
Singh D, Singh D, Choi SM, et al. Effect of extracts of Terminalia chebula on proliferation of keratinocytes and fibroblasts cells: An alternative approach for wound healing. Evid Based Complement Alternat Med 2014; 2014: 701656.
[http://dx.doi.org/10.1155/2014/701656] [PMID: 24719644]
[88]
Bag A, Kumar BS, Kumar PN, Ranjan CR. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits. Pharm Biol 2013; 51(12): 1515-20.
[http://dx.doi.org/10.3109/13880209.2013.799709] [PMID: 24004166]
[89]
Li K, Diao Y, Zhang H, et al. Tannin extracts from immature fruits of Terminalia chebula Fructus Retz. Promote cutaneous wound healing in rats. BMC Complement Altern Med 2011; 11(1): 86.
[http://dx.doi.org/10.1186/1472-6882-11-86] [PMID: 21982053]
[90]
Bag A, Bhattacharyya SK, Chattopadhyay RR. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac J Trop Biomed 2013; 3(3): 244-52.
[http://dx.doi.org/10.1016/S2221-1691(13)60059-3] [PMID: 23620847]
[91]
Reddy DB, Reddanna P. Chebulagic acid (CA) attenuates LPSinduced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Biochem Biophys Res Commun 2009; 381(1): 112-7.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.022] [PMID: 19351605]
[92]
Abbas AM, Seddik MA, Gahory AA, Salaheldin S, Soliman WS. Differences in the aroma profile of chamomile (Matricaria chamomilla L.) after different drying conditions. Sustainability 2021; 13(9): 5083.
[http://dx.doi.org/10.3390/su13095083]
[93]
McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res 2006; 20(7): 519-30.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[94]
Akbar S. Matricaria chamomilla L (Asteraceae/Compositae) Handbook of 200 Medicinal Plants. Cham: Springer International Publishing 2020; pp. 1147-59.
[http://dx.doi.org/10.1007/978-3-030-16807-0_123]
[95]
Farahpour M. Comparision effect of chamomile (Chamomilla recutita) hydroethanolic extract and flaxseed oil (Linum ustatissum) alone and simultaneous administration with nitrofurazone in wound healing process. Indian J Fundam Appl Life Sci 2015; 5: 2231-6345.
[96]
Ahmad A, Tahir Ul Qamar M, Shoukat A, et al. The effects of genotypes and media composition on callogenesis, regeneration and cell suspension culture of chamomile (Matricaria chamomilla L.). PeerJ 2021; 9: e11464.
[http://dx.doi.org/10.7717/peerj.11464] [PMID: 34113490]
[97]
Singh O, Khanam Z, Misra N, Srivastava MK. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn Rev 2011; 5(9): 82-95.
[http://dx.doi.org/10.4103/0973-7847.79103] [PMID: 22096322]
[98]
Rao PV, Gan SH. Cinnamon: A multifaceted medicinal plant. Evid Based Complement Alternat Med 2014; 2014: 642942.
[http://dx.doi.org/10.1155/2014/642942] [PMID: 24817901]
[99]
Sahib AS. Anti-diabetic and antioxidant effect of cinnamon in poorly controlled type-2 diabetic Iraqi patients: A randomized, placebo-controlled clinical trial. J Intercult Ethnopharmacol 2016; 5(2): 108.
[http://dx.doi.org/10.5455/jice.20160217044511] [PMID: 27104030]
[100]
Parham S, Kharazi AZ, Bakhsheshi-Rad HR, et al. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020; 9(12): 1309.
[http://dx.doi.org/10.3390/antiox9121309] [PMID: 33371338]
[101]
Kamath JV, Rana AC, Chowdhury AR. Pro-healing effect of Cinnamomum zeylanicum bark. Phytother Res 2003; 17(8): 970-2.
[http://dx.doi.org/10.1002/ptr.1293] [PMID: 13680838]
[102]
Farahpour MR, Habibi M. Evaluation of the wound healing activity of an ethanolic extract of Ceylon cinnamon in mice. Vet Med 2012; 57(1): 53-7.
[http://dx.doi.org/10.17221/4972-VETMED]
[103]
Lee SH, Lee SY, Son DJ, et al. Inhibitory effect of 2′hydroxycinnamaldehyde on nitric oxide production through inhibition of NF-κ B activation in RAW 264.7 cells. Biochem Pharmacol 2005; 69(5): 791-9.
[http://dx.doi.org/10.1016/j.bcp.2004.11.013] [PMID: 15710356]
[104]
Caddeo C, Díez-Sales O, Pons R, Fernàndez-Busquets X, Fadda AM, Manconi M. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: In vivo and in vitro evaluation. Pharm Res 2014; 31(4): 959-68.
[http://dx.doi.org/10.1007/s11095-013-1215-0] [PMID: 24297068]
[105]
Yang D, Liang XC, Shi Y, et al. Anti-oxidative and antiinflammatory effects of cinnamaldehyde on protecting high glucose-induced damage in cultured dorsal root ganglion neurons of rats. Chin J Integr Med 2016; 22(1): 19-27.
[http://dx.doi.org/10.1007/s11655-015-2103-8] [PMID: 26577110]
[106]
Erkan N, Ayranci G, Ayranci E. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem 2008; 110(1): 76-82.
[http://dx.doi.org/10.1016/j.foodchem.2008.01.058] [PMID: 26050168]
[107]
Moreno S, Scheyer T, Romano CS, Vojnov AA. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 2006; 40(2): 223-31.
[http://dx.doi.org/10.1080/10715760500473834] [PMID: 16390832]
[108]
Mengoni ES, Vichera G, Rigano LA, et al. Suppression of COX-2, IL-1β and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L. Fitoterapia 2011; 82(3): 414-21.
[http://dx.doi.org/10.1016/j.fitote.2010.11.023] [PMID: 21129455]
[109]
Jiang Y, Wu N, Fu YJ, et al. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ Toxicol Pharmacol 2011; 32(1): 63-8.
[http://dx.doi.org/10.1016/j.etap.2011.03.011] [PMID: 21787731]
[110]
Abu-Al-Basal MA. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induceddiabetic BALB/c mice. J Ethnopharmacol 2010; 131(2): 443-50.
[http://dx.doi.org/10.1016/j.jep.2010.07.007] [PMID: 20633625]
[111]
Nejati H, Farahpour MR, Nagadehi MN. Topical Rosemary officinalis essential oil improves wound healing against disseminated Candida albicans infection in rat model. Comp Clin Pathol 2015; 24(6): 1377-83.
[http://dx.doi.org/10.1007/s00580-015-2086-z]
[112]
Mureşan A, Alb C, Suciu S, et al. Studies on antioxidant effects of the red grapes seed extract from Vitis vinifera, Burgund Mare, Recaş in pregnant rats. Acta Physiol Hung 2010; 97(2): 240-6.
[http://dx.doi.org/10.1556/APhysiol.97.2010.2.11] [PMID: 20511134]
[113]
Maier T, Schieber A, Kammerer DR, Carle R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem 2009; 112(3): 551-9.
[http://dx.doi.org/10.1016/j.foodchem.2008.06.005]
[114]
Hemmati AA, Aghel N, Rashidi I, Gholampur-Aghdami A. Topical grape (Vitis vinifera) seed extract promotes repair of full thickness wound in rabbit. Int Wound J 2011; 8(5): 514-20.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00833.x] [PMID: 21816000]
[115]
Xia EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int J Mol Sci 2010; 11(2): 622-46.
[http://dx.doi.org/10.3390/ijms11020622] [PMID: 20386657]
[116]
Farahpour MR, Nejati H. Effect of topical red grape seed hydroethanol extract on burn wound healing in rats effectiveness of topical administration of Anethum graveolens essential oil on MRSAinfected wounds view project effect of topical red grape seed hydroethanol extract on burn wound healing in rats. Artic Int J ChemTech Res 2014; 6(4): 2340-6.
[117]
Shi J, Yu J, Pohorly JE, Kakuda Y. Polyphenolics in grape seedsbiochemistry and functionality. J Med Food 2003; 6(4): 291-9.
[http://dx.doi.org/10.1089/109662003772519831] [PMID: 14977436]
[118]
Yilmaz Y, Toledo RT. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 2004; 52(2): 255-60.
[http://dx.doi.org/10.1021/jf030117h] [PMID: 14733505]
[119]
Unusan N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J Funct Foods 2020; 67: 103861.
[http://dx.doi.org/10.1016/j.jff.2020.103861]
[120]
Olaifa A. Effects of aqueous extract of Moringa oleifera leaves on epidermal wound healing in domestic rabbit. Int J Livest Res 2016; 6(7): 44.
[http://dx.doi.org/10.5455/ijlr.20160609124742]
[121]
Fayemi OE, Ekennia AC, Katata-Seru L, et al. Antimicrobial and wound healing properties of polyacrylonitrile-moringa extract nanofibers. ACS Omega 2018; 3(5): 4791-7.
[http://dx.doi.org/10.1021/acsomega.7b01981] [PMID: 30023903]
[122]
Ali A, Garg P, Goyal R, et al. A novel herbal hydrogel formulation of Moringa oleifera for wound healing. Plants 2020; 10(1): 25.
[http://dx.doi.org/10.3390/plants10010025] [PMID: 33374419]
[123]
Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019; 8(7): 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[124]
Evrendilek GA. Garlic. In: Jaiswal AK, Ed. Nutritional composition and antioxidant properties of fruits and vegetables. Cambridge, Massachusetts: Academic Press 2020; pp. 89-105.
[125]
Alhashim M, Lombardo J. Mechanism of action of topical garlic on wound healing. Dermatol Surg 2018; 44(5): 630-4.
[http://dx.doi.org/10.1097/DSS.0000000000001382] [PMID: 29077629]
[126]
Santiago JL, Galan-Moya EM, Muñoz-Rodriguez JR, et al. Topical applications of thiosulfinate-enriched allium sativum extract accelerates acute cutaneous wound healing in murine model. Chin J Integr Med 2020; 26(11): 812-8.
[http://dx.doi.org/10.1007/s11655-020-3086-7] [PMID: 32418180]
[127]
Leontiev R, Hohaus N, Jacob C, Gruhlke MC, Slusarenko AJ. A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Sci Rep 2018; 8(1): 6763.
[http://dx.doi.org/10.1038/s41598-018-25154-9] [PMID: 29712980]
[128]
Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect 1999; 1(2): 125-9.
[http://dx.doi.org/10.1016/S1286-4579(99)80003-3]
[129]
Farahpour MR, Hesaraki S, Faraji D, Zeinalpour R, Aghaei M. Hydroethanolic Allium sativum extract accelerates excision wound healing: Evidence for roles of mast-cell infiltration and intracytoplasmic carbohydrate ratio. Braz J Pharm Sci 2017; 53(1): e15079.
[http://dx.doi.org/10.1590/s2175-97902017000115079]
[130]
Esti M, Benucci I, Lombardelli C, Liburdi K, Garzillo AM. Papain from papaya (Carica papaya L.) fruit and latex: Preliminary characterization in alcoholic-acidic buffer for wine application. Food Bioprod Process 2013; 91(4): 595-8.
[http://dx.doi.org/10.1016/j.fbp.2013.02.003]
[131]
Buttle DJ, Barrett AJ. Chymopapain. Chromatographic purification and immunological characterization. Biochem J 1984; 223(1): 81-8.
[http://dx.doi.org/10.1042/bj2230081] [PMID: 6437389]
[132]
El Moussaoui A, Nijs M, Paul C, et al. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol Life Sci 2001; 58(4): 556-70.
[http://dx.doi.org/10.1007/PL00000881] [PMID: 11361091]
[133]
Nayak BS, Ramdeen R, Adogwa A, Ramsubhag A, Marshall JR. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int Wound J 2012; 9(6): 650-5.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00933.x] [PMID: 22296524]
[134]
Hakim RF. Fakhrurrazi, Dinni. Effect of Carica papaya extract toward incised wound healing process in mice (Mus musculus) clinically and histologically. Evid Based Complement Alternat Med 2019; 2019: 8306519.
[http://dx.doi.org/10.1155/2019/8306519] [PMID: 31827564]
[135]
Siddiqui RA. Green Papaya as a potential source for antidiabetic and diabetic-wound healing therapy. J Nutr Heal Food Eng 2016; 4(5): 504-6.
[http://dx.doi.org/10.15406/jnhfe.2016.04.00146]
[136]
Sabharwal S, Aggarwal S, Vats M, Sardana S. Preliminary phytochemical investigation and wound healing activity of Jasminum sambac (Linn) ait. (Oleaceae) Leaves. Int J Pharmacogn Phytochem Res 2012; 4: 146-50.
[137]
Hirapara H, Ghori V, Anovadiya A, Baxi S, Tripathi C. Effects of ethanolic extract of Jasminum grandiflorum Linn. flowers on wound healing in diabetic Wistar albino rats. Avicenna J Phytomed 2017; 7(5): 401-8.
[http://dx.doi.org/10.22038/ajp.2017.14406.1580] [PMID: 29062801]
[138]
Arun M, Satish S, Anima P. Phytopharmacological Profile of Jasminum grandiflorum Linn. (Oleaceae). Chin J Integr Med 2016; 22(4): 311-20.
[http://dx.doi.org/10.1007/s11655-015-2051-3] [PMID: 25847780]
[139]
Anima P, Arun M, Satish S. Scientific validation of wound healing potential of Jasminum sambac Ait. S Afr J Bot 2019; 121: 584-9.
[http://dx.doi.org/10.1016/j.sajb.2018.11.018]
[140]
Barku YA, Wound Healing V. Contributions from plant secondary metabolite antioxidants. In: Dogan KH, Ed. Wound Healing - Current Perspectives. London: IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.81208]
[141]
Jeya Rajkumar RS, Nadar MSAM, Mosae Selvakumar P. Phytochemicals as a potential source for anti-microbial, anti-oxidant and wound healing - a review. MOJ Bioorganic Org Chem 2018; 2(2): 61-70.
[http://dx.doi.org/10.15406/mojboc.2018.02.00058]
[142]
Thangapazham RL, Sharad S, Maheshwari RK. Phytochemicals in wound healing. Adv Wound Care 2016; 5(5): 230-41.
[http://dx.doi.org/10.1089/wound.2013.0505] [PMID: 27134766]
[143]
Walton EW. Topical phytochemicals: Applications for wound healing. Adv Skin Wound Care 2014; 27(7): 328-32.
[http://dx.doi.org/10.1097/01.ASW.0000450101.97743.0f] [PMID: 24932954]
[144]
Hussein R, El-Anssary AR. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herbal Medicine. 2019; 1: p. 13.
[http://dx.doi.org/10.5772/intechopen.76139]
[145]
Larayetan R, Ololade ZS, Ogunmola OO, Ladokun A. Phytochemical constituents, antioxidant, cytotoxicity, antimicrobial, antitrypanosomal, and antimalarial potentials of the crude extracts of Callistemon citrinus. Evid-Based Complement Altern Med 2019; 5410923.
[http://dx.doi.org/10.1155/2019/5410923]
[146]
Shad AA, Ahmad S, Ullah R, et al. Phytochemical and biological activities of four wild medicinal plants. ScientificWorldJournal 2014; 2014: 857363.
[http://dx.doi.org/10.1155/2014/857363] [PMID: 25374941]
[147]
Aniszewski T. Definition, typology, and occurrence of alkaloids. In: Aniszewski T, Ed. Alkaloids. Amsterdam, Netherlands: Elsevier 2015; pp. 1-97.
[http://dx.doi.org/10.1016/B978-0-444-59433-4.00001-8]
[148]
Guggisberg A, Hesse M. Encyclopedia of Physical Science and Technology. Amsterdam, Netherlands: Elsevier 2003; pp. 477-93.
[http://dx.doi.org/10.1016/B0-12-227410-5/00021-1]
[149]
Patel K, Gadewar M, Tripathi R, Prasad SK, Patel DK. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”. Asian Pac J Trop Biomed 2012; 2(8): 660-4.
[http://dx.doi.org/10.1016/S2221-1691(12)60116-6] [PMID: 23569990]
[150]
Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst) 2019; 24: e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[151]
Lattanzio V. Phenolic compounds: Introduction. In: Ramawat K, Mérillon JM, Eds. Natural Products. Berlin, Heidelberg: Springer 2013; pp. 1543-80.
[http://dx.doi.org/10.1007/978-3-642-22144-6_57]
[152]
Li S, Yuan W, Deng Ping Wang G, Yang P. Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm Crop 2017; 2: 28-54.
[153]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[154]
Aggarwal BB, Gupta SC, Sung B. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 2013; 169(8): 1672-92.
[http://dx.doi.org/10.1111/bph.12131] [PMID: 23425071]
[155]
Adapala N, Chan MM. Long-term use of an antiinflammatory, curcumin, suppressed type 1 immunity and exacerbated visceral leishmaniasis in a chronic experimental model. Lab Invest 2008; 88(12): 1329-39.
[http://dx.doi.org/10.1038/labinvest.2008.90] [PMID: 18794851]
[156]
Zhou H. The targets of curcumin. Curr Drug Targets 2012; 12(3): 332-47.
[http://dx.doi.org/10.2174/138945011794815356]
[157]
Heng MCY. Signaling pathways targeted by curcumin in acute and chronic injury: Burns and photo-damaged skin. Int J Dermatol 2013; 52(5): 531-43.
[http://dx.doi.org/10.1111/j.1365-4632.2012.05703.x] [PMID: 23231506]
[158]
Dai J, Mumper RJ. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010; 15(10): 7313-52.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[159]
Frutos P, Hervás G, Giráldez FJ, Mantecón AR. Review. Tannins and ruminant nutrition. Span J Agric Res 2004; 2(2): 191.
[http://dx.doi.org/10.5424/sjar/2004022-73]
[160]
Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 2016; 17(2): 160.
[http://dx.doi.org/10.3390/ijms17020160]
[161]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[162]
Aslam MS, Ahmad MS, Riaz H, et al. Role of flavonoids as wound healing agent. In: Asao T, Ed. Phytochemicals - source of antioxidants and role in disease prevention. London: InTechOpen 2018; pp. 95-102.
[http://dx.doi.org/10.5772/intechopen.79179]
[163]
Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of catechins and their applications. Biomed Dermatol 2020; 4(1): 1-0.
[http://dx.doi.org/10.1186/s41702-020-0057-8]
[164]
Reygaert WC. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Res Int 2018; 2018: 9105261.
[http://dx.doi.org/10.1155/2018/9105261] [PMID: 30105263]
[165]
Stalikas CD. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 2007; 30(18): 3268-95.
[http://dx.doi.org/10.1002/jssc.200700261] [PMID: 18069740]
[166]
Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J 2017; 25(2): 149-64.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[167]
Mahizan NA, Yang SK, Moo CL, et al. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019; 24(14): 2631.
[http://dx.doi.org/10.3390/molecules24142631] [PMID: 31330955]
[168]
Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. In: Joshee N, Dhekney S, Parajuli P, Eds. Medicinal Plants. Cham: Springer 2019; pp. 333-59.
[http://dx.doi.org/10.1007/978-3-030-31269-5_15]
[169]
Yousaf S, Hanif MA, Rehman R, Azeem MW, Racoti A. Indian Pennywort. In: Hanif MA, Nawaz H, Khan MM, Byrne HJ, Eds. Medicinal plants of south asia-novel sources for drug discvoery. Amsterdam, Netherlands: Elsevier 2020; pp. 423-37.
[http://dx.doi.org/10.1016/B978-0-08-102659-5.00032-X]
[170]
Somboonwong J, Kankaisre M, Tantisira B, Tantisira MH. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: An experimental animal study. BMC Complement Altern Med 2012; 12: 103.
[http://dx.doi.org/10.1186/1472-6882-12-103] [PMID: 22817824]
[171]
Sh Ahmed A, Taher M, Mandal UK, et al. Pharmacological properties of Centella asiatica hydrogel in accelerating wound healing in rabbits. BMC Complement Altern Med 2019; 19(1): 213.
[http://dx.doi.org/10.1186/s12906-019-2625-2] [PMID: 31412845]
[172]
Singh SDJ, Krishna V, Mankani KL, Manjunatha BK, Vidya SM, Manohara YN. Wound healing activity of the leaf extracts and deoxyelephantopin isolated from Elephantopus scaber Linn. Indian J Pharmacol 2005; 37(4): 238-42.
[http://dx.doi.org/10.4103/0253-7613.16570]
[173]
Wicke C, Halliday B, Allen D, et al. Effects of steroids and retinoids on wound healing. Arch Surg 2000; 135(11): 1265-70.
[http://dx.doi.org/10.1001/archsurg.135.11.1265] [PMID: 11074878]
[174]
Aslam MS, Ahmad MS, Mamat AS, Ahmad MZ, Salam F. An update review on polyherbal formulation: A global perspective. Syst Rev Pharm 2016; 7(1): 35-41.
[http://dx.doi.org/10.5530/srp.2016.7.5]
[175]
Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev 2014; 8(16): 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]
[176]
Karole S, Shrivastava S, Thomas S, et al. Polyherbal formulation concept for synergic action: A Review. J Drug Deliv Ther 2019; 9(1-s): 453-66.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2339]
[177]
Talekar YP, Apte KG, Paygude SV, Tondare PR, Parab PB. Studies on wound healing potential of polyherbal formulation using in vitro and in vivo assays. J Ayurveda Integr Med 2017; 8(2): 73-81.
[http://dx.doi.org/10.1016/j.jaim.2016.11.007] [PMID: 28601354]
[178]
Gupta A, Upadhyay NK, Sawhney RC, Kumar R. A poly-herbal formulation accelerates normal and impaired diabetic wound healing. Wound Repair Regen 2008; 16(6): 784-90.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00431.x] [PMID: 19128249]
[179]
Gangopadhyay KS, Khan M, Pandit S, Chakrabarti S, Mondal TK, Biswas TK. Pharmacological evaluation and chemical standardization of an ayurvedic formulation for wound healing activity. Int J Low Extrem Wounds 2014; 13(1): 41-9.
[http://dx.doi.org/10.1177/1534734614520705] [PMID: 24659625]
[180]
Dev SK, Choudhury PK, Srivastava R, Sharma M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed Pharmacother 2019; 111: 555-67.
[http://dx.doi.org/10.1016/j.biopha.2018.12.075] [PMID: 30597309]
[181]
Majumder P, Paridhavi M. A novel poly-herbal formulation hastens diabetic wound healing with potent antioxidant potential: A comprehensive pharmacological investigation. Pharmacogn J 2019; 11: 324-31.
[http://dx.doi.org/10.5530/pj.2019.11.48]
[182]
Niknam S, Tofighi Z, Faramarzi MA, et al. Polyherbal combination for wound healing: Matricaria chamomilla L. and Punica granatum L. Daru 2021; 29(1): 133-45.
[http://dx.doi.org/10.1007/s40199-021-00392-x] [PMID: 33966255]
[183]
Soujanya K, Srinivas Reddy K, Kumaraswamy D, Vishwanath Reddy G, Girija P, Sirisha K. Evaluation of wound healing and antiinflammatory activities of new poly-herbal formulations. Indian J Pharm Sci 2020; 82(1): 174-9.
[http://dx.doi.org/10.36468/pharmaceutical-sciences.636]
[184]
Aslam MS, Ahmad MS, Mamat AS, Ahmad MZ, Salam F. Antioxidant and wound healing activity of polyherbal fractions of Clinacanthus nutans and Elephantopus scaber. Evid Based Complement Alternat Med. 2016; 2016: p. 4685246.
[185]
Zhou X, Razmovski-Naumovski V, Kam A, et al. Synergistic effects of Danshen (Salvia miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng radix et Rhizoma) combination in angiogenesis behavior in EAhy 926 Cells. Medicines (Basel) 2017; 4(4): 85.
[http://dx.doi.org/10.3390/medicines4040085] [PMID: 29160857]
[186]
Santos ES, Luís Â, Gonçalves J, et al. Julbernardia paniculata and Pterocarpus angolensis: From ethnobotanical surveys to phytochemical characterization and bioactivities evaluation. Molecules 2020; 25(8): 1828.
[http://dx.doi.org/10.3390/molecules25081828] [PMID: 32316213]
[187]
Jahandideh M, Hajimehdipoor H, Mortazavi SA, Dehpour A. Hassanzadeh G. Evaluation of the wound healing activity of a traditional compound herbal product using rat excision wound model. Iran J Pharm Res 2017; 16 (Suppl.): 153-63.
[PMID: 29844786]
[188]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[189]
Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int J Nanomedicine 2017; 12: 2957-78.
[http://dx.doi.org/10.2147/IJN.S127683] [PMID: 28442906]
[190]
Khogta S, Patel J, Barve K, Londhe V. Herbal nano-formulations for topical delivery. J Herb Med 2020; 20(9): 100300.
[http://dx.doi.org/10.1016/j.hermed.2019.100300]
[191]
Bhat M, Pukale S, Singh S, Mittal A, Chitkara D. Nano-enabled topical delivery of anti-psoriatic small molecules. J Drug Deliv Sci Technol 2021; 62: 102328.
[http://dx.doi.org/10.1016/j.jddst.2021.102328]
[192]
Sandhiya V, Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Futur J Pharm Sci 2020; 6(1): 1-6.
[http://dx.doi.org/10.1186/s43094-020-00050-0]
[193]
Rahman HS, Othman HH, Hammadi NI, et al. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int J Nanomedicine 2020; 15: 2439-83.
[http://dx.doi.org/10.2147/IJN.S227805] [PMID: 32346289]
[194]
Chakraborty K, Shivakumar A, Ramachandran S. Nano-technology in herbal medicines: A review. Int J Herb Med 2016; 4(3): 21-7.
[http://dx.doi.org/10.22271/flora.2016.v4.i3.05]
[195]
Elzoghby AO, Abd-Elwakil MM, Abd-Elsalam K, Elsayed MT, Hashem Y, Mohamed O. Natural polymeric nanoparticles for brain-targeting: Implications on drug and gene delivery. Curr Pharm Des 2016; 22(22): 3305-23.
[http://dx.doi.org/10.2174/1381612822666160204120829] [PMID: 26845323]
[196]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20: 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8]
[197]
Patil RY, Patil SA, Chivate ND, Patil YN. Herbal drug nanoparticles: Advancements in herbal treatment. Res J Pharm Technol 2018; 11(1): 421-6.
[http://dx.doi.org/10.5958/0974-360X.2018.00078.1]
[198]
Acharya NS, Parihar GV, Acharay SR. Phytosomes: Novel approach for delivering herbal extract with improved bioavailability. Pharma Sci Monit An Int J Pharm Sci 2011; 2(1): 144-60.
[199]
Mukherjee PK, Wahile A. Integrated approaches towards drug development from Ayurveda and other Indian system of medicines. J Ethnopharmacol 2006; 103(1): 25-35.
[http://dx.doi.org/10.1016/j.jep.2005.09.024] [PMID: 16271286]
[200]
Assadpour E, Jafari SM. An overview of lipid-based nanostructures for encapsulation of food ingredients. In: Jafari SM, Ed. LipidBased Nanostructures for Food Encapsulation Purposes Cambridge. Massachusetts: Academic Press 2019; pp. 1-34.
[http://dx.doi.org/10.1016/B978-0-12-815673-5.00001-5]
[201]
Bhattacharya S. Phytosomes: Emerging strategy in delivery of herbal drugs and nutraceuticals. Pharm Times 2009; 41(3): 9-12.
[202]
Mazumder A, Dwivedi A, du Preez JL, du Plessis J. In vitro wound healing and cytotoxic effects of sinigrin-phytosome complex. Int J Pharm 2016; 498(1-2): 283-93.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.027] [PMID: 26706438]
[203]
Mozafari MR, Khosravi-Darani K. An overview of liposomederived nanocarrier technologies. In: Mozafari MR, Ed. Nano- materials and Nanosystems for Biomedical Applications. Dordrecht: Springer 2007; pp. 113-23.
[http://dx.doi.org/10.1007/978-1-4020-6289-6_7]
[204]
Masjedi M, Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol 2021; 61: 102234.
[http://dx.doi.org/10.1016/j.jddst.2020.102234]
[205]
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J Control Release 2014; 185: 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[206]
Mozafari MR. Nanomaterials and nanosystems for biomedical applications. Dordrecht, Netherlands Springer. 2007; pp. 1-159.
[http://dx.doi.org/10.1007/978-1-4020-6289-6]
[207]
Muzzalupo R, Tavano L. Niosomal drug delivery for transdermal targeting: Recent advances. Res Reports Transdermal Drug Deliv 2015; 4: 23-33.
[http://dx.doi.org/10.2147/RRTD.S64773]
[208]
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[209]
Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998; 172(1-2): 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[210]
Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. Acta Pharm Sin B 2011; 1(4): 208-19.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[211]
Bhaskaran S, Lakshmi PK. Comparative evaluation of niosome formulations prepared by different techniques. Acta Pharm Sci 2009; 51: 27-32.
[212]
Rangasamy M, Ayyasamy B, Raju S, Gummadevelly S, Shaik S. Formulation and in vitro evaluation of niosome encapsulated acyclovir multiparticulate drug delivery systems: Pellet and pelletization technique view project formulation and in vitro evaluation of niosome encapsulated acyclovir. J Pharm Res 2008; 1(2): 163-6.
[213]
Krausz AE, Adler BL, Cabral V, et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 2015; 11(1): 195-206.
[http://dx.doi.org/10.1016/j.nano.2014.09.004] [PMID: 25240595]
[214]
Gharib A, Faezizadeh Z, Godarzee M. Therapeutic efficacy of epigallocatechin gallate-loaded nanoliposomes against burn wound infection by methicillin-resistant Staphylococcus aureus. Skin Pharmacol Physiol 2013; 26(2): 68-75.
[http://dx.doi.org/10.1159/000345761] [PMID: 23296023]
[215]
Perumal G, Pappuru S, Chakraborty D, Maya Nandkumar A, Chand DK, Doble M. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater Sci Eng C 2017; 76: 1196-204.
[http://dx.doi.org/10.1016/j.msec.2017.03.200] [PMID: 28482486]
[216]
Naumov AA, Shatalin YV, Potselueva MM. Effects of a nanocomplex containing antioxidant, lipid, and amino acid on thermal burn wound surface. Bull Exp Biol Med 2010; 149(1): 62-6.
[http://dx.doi.org/10.1007/s10517-010-0876-5] [PMID: 21113460]
[217]
Engel H, Kao SW, Larson J, et al. Investigation of dermis-derived hydrogels for wound healing applications. Biomed J 2015; 38(1): 58-64.
[http://dx.doi.org/10.4103/2319-4170.132899] [PMID: 25179708]
[218]
Anumolu SS, Menjoge AR, Deshmukh M, et al. Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries. Biomaterials 2011; 32(4): 1204-17.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.117] [PMID: 20950853]
[219]
Li M, Li H, Li X, et al. A Bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl Mater Interfaces 2017; 9(27): 22160-75.
[http://dx.doi.org/10.1021/acsami.7b04428] [PMID: 28640580]
[220]
Gong C, Wu Q, Wang Y, et al. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013; 34(27): 6377-87.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.005] [PMID: 23726229]
[221]
Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 2010; 28(3): 325-47.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[222]
Krychowiak M, Grinholc M, Banasiuk R, et al. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One 2014; 9(12): e115727.
[http://dx.doi.org/10.1371/journal.pone.0115727] [PMID: 25551660]
[223]
Chan WP, Huang KC, Bai MY. Silk fibroin protein-based nonwoven mats incorporating baicalein Chinese herbal extract: Preparation, characterizations, and in vivo evaluation. J Biomed Mater Res B Appl Biomater 2017; 105(2): 420-30.
[http://dx.doi.org/10.1002/jbm.b.33560] [PMID: 26540289]
[224]
Yousefi I, Pakravan M, Rahimi H, Bahador A, Farshadzadeh Z, Haririan I. An investigation of electrospun Henna leaves extractloaded chitosan based nanofibrous mats for skin tissue engineering. Mater Sci Eng C 2017; 75: 433-44.
[http://dx.doi.org/10.1016/j.msec.2017.02.076] [PMID: 28415483]
[225]
Selvaraj S, Fathima NN. Fenugreek incorporated silk fibroin nanofibers-A potential antioxidant scaffold for enhanced wound healing. ACS Appl Mater Interfaces 2017; 9(7): 5916-26.
[http://dx.doi.org/10.1021/acsami.6b16306] [PMID: 28125204]
[226]
Hanna JR, Giacopelli JA. A review of wound healing and wound dressing products. J Foot Ankle Surg 1997; 36(1): 2-14.
[http://dx.doi.org/10.1016/S1067-2516(97)80003-8] [PMID: 9031020]
[227]
CH Y. Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J Tissue Eng Regen Med 2017; 11(3): 905-15.
[http://dx.doi.org/10.1002/term.1992]
[228]
Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 2010; 21: 77-95.
[http://dx.doi.org/10.1002/pat.1625]
[229]
Zhang W, Ronca S, Mele E. Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials (Basel) 2017; 7(2): E42.
[http://dx.doi.org/10.3390/nano7020042] [PMID: 28336874]