Attitude and Orbit Control of a Space Robot at Additional Launching and Approaching a Geostationary Satellite

Page: [173 - 182] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The problems of putting a space robot into a geostationary orbit using a combined scheme and its approach to a geostationary satellite are considered. The authors’ previous results on this topic are briefly analyzed.

Objective: The paper deals with three problems: further development of a rational strategy for the robot’s add-launching on geostationary orbit and its approaching target using a plasma electric propulsion unit only; synthesis of the guidance and control laws; a nonlinear dynamical analysis of the robot’s attitude and orbit control system during these modes.

Methods: The developed methods and algorithms are based on the local optimizing the fuel consumption of the plasma electric propulsion unit during each inter-orbital flight of a space robot.

Results: Simulation results on the guidance and control algorithms are presented that demonstrate their effectiveness.

Conclusion: The breakthroughs are as follows: original strategy of add-launching and forecasting the influence of gravitational disturbances as well as solar pressure forces when synthesizing a robot’s guidance law for its inter-orbital flights.

Keywords: Space robot, additional launching, geostationary satellite, approaching, orbit control, algorithms.

Graphical Abstract

[1]
Favorsky, V.; Meshcheryakov, I. Cosmonautics and aerospace Industry. Vol. 1: Genesis and development (1946-1975); Vol. 2: Evolution of industry (1976-1992). Space cooperation , 2003. https://rusneb.ru/catalog/000199 000 009 002434970/
[2]
Legostaev, V.P. Russian space programs: Achievements and prospects of automatic control applications. Annu. Rev. Contr., 2005, 29(1), 1-11.
[http://dx.doi.org/10.1016/S1474-6670(17)32145-6]
[3]
Space Milestones Reshetnev ISS Company: Zheleznogorsk, 2009. Available from: https://rusneb.ru/catalog/000199000009004423-174
[4]
Rocket and Space Era. Memorable Dates, 5th ed.; Locus Standi: Moscow, 2012. Available from: https://mosplanetarium.livejournal.com/283226.html
[5]
Testoyedov, N.; Rayevsky, V.; Somov, Ye.; Titov, G.; Yakimov, Ye. Attitude and orbit control systems of Russian communication, navi-gation and geodesic satellites: History, present and future. IFAC-PapersOnLine, 2017, 50(1), 6422-6427.
[http://dx.doi.org/10.1016/j.ifacol.2017.08.1029]
[6]
Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci., 2014, 68, 1-26.
[http://dx.doi.org/10.1016/j.paerosci.2014.03.002]
[7]
Li, W.J.; Cheng, D.Y.; Liu, X.G.; Wang, Y.B.; Shi, W.H.; Tang, Z.X.; Gao, F.; Zeng, F.M.; Chai, H.Y.; Luo, W.B.; Cong, Q.; Gao, Z.L. On-orbit service (OOS) of spacecraft: A review of engineering developments. Prog. Aerosp. Sci., 2019, 108(2), 32-120.
[http://dx.doi.org/10.1016/j.paerosci.2019.01.004]
[8]
Starinova, O.; Somov, Ye.; Butyrin, S. Motion control of a space robot at launching and approaching a geostationary satellite. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 984(012030), pp. 1-8.
[http://dx.doi.org/10.1088/1757-899X/984/1/012030]
[9]
Elyasberg, P. Introduction to the Theory of Flight of Artificial Earth Satellites; Nauka: Moscow, 1965. Available from: https://ia800302.us.archive.org/18/items/nasatechdoc19670020827/1967 0020827.pdf
[10]
Battin, R. An Introduction to the mathematics and methods of Astrodynamics; America Inst Aeronaut Astronaut: Reston, 1999.
[http://dx.doi.org/10.2514/4.861543]
[11]
Somov, Ye.; Butyrin, S.; Somov, S. Guidance and control of a space robot at additional launching and approaching an information geosta-tionary satellite. In: 2021 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 31 May-2 June 2021, Saint Petersburg, Russia; IEEE; , 2021; p. 1-4.
[http://dx.doi.org/10.23919/ICINS43216.2021.9470829]
[12]
Chernyavsky, G.; Bartenev, B.; Malyshev, V. Mashinostroenie: Moscow, 1984. Orbit Control for Stationary Satellite; Available from: https://rusneb.ru/catalog/000199 000009 001209643/
[13]
Crenshaw, J.W. 2-SPEED, a single-gimbal moment gyro attitude control system. AIAA Paper, 1973, (73-895), 1-10. Available from: https://ur.booksc.eu/book/30129045/761d76
[http://dx.doi.org/10.2514/6.1973-895]
[14]
Somov, S. Pulse-width control of electro-reaction engines for a stationkeeping of land-survey satellite on sun-synchronous orbit. AIP Conf. Proc., 2017, 1798(020151), 1-7.
[http://dx.doi.org/10.1063/1.4972743]
[15]
Raushenbakh, B.V.; Tokar, Ye.N. Spacecraft Attitude Control; Nauka: Moscow, 1974. Available from: https://rusneb.ru/catalog/000199 000009 007197255/
[16]
Branets, V.N.; Weinberg, D.M.; Verestchagin, V.P.; Danilov-Nitusov, N.N.; Legostaev, V.P.; Platonov, V.N.; Semenov, U.P.; Semyachkin, V.S.; Chertok, B.E.; Sheremetyevsky, N.N. Development experience of the attitude control system using single-axis control moment gyros for long-term orbiting space stations. Acta Astronaut., 1988, 18(1), 91-98.
[http://dx.doi.org/10.1016/0094-5765(88)90091-4]